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Abstract.
Background: Amyloid-� plaques (A�) are associated with Alzheimer’s disease (AD). Pooled assessment of amyloid
reduction in transgenic AD mice is critical for expediting anti-amyloid AD therapeutic research.
Objective: The mean threshold of A� reduction necessary to achieve cognitive improvement was measured via pooled
assessment (n = 594 mice) of Morris water maze (MWM) escape latency of transgenic AD mice treated with substances
intended to reduce A� via reduction of beta-secretase cleaving enzyme (BACE).
Methods: Machine learning and statistical methods identified necessary amyloid reduction levels using mouse data (e.g.,
APP/PS1, LPS, Tg2576, 3xTg-AD, control, wild type, treated, untreated) curated from 22 published studies.
Results: K-means clustering identified 4 clusters that primarily corresponded with level of A�: untreated transgenic AD
control mice, wild type mice, and two clusters of transgenic AD mice treated with BACE inhibitors that had either an average
25% “medium reduction” of A� or 50% “high reduction” of A� compared to untreated control. A 25% A� reduction achieved
a 28% cognitive improvement, and a 50% A� reduction resulted in a significant 32% improvement compared to untreated
transgenic mice (p < 0.05). Comparatively, wild type mice had a mean 41% MWM latency improvement over untreated
transgenic mice (p < 0.05). BACE reduction had a lesser impact on the ratio of A�42 to A�40. Supervised learning with an
80%–20% train-test split confirmed A� reduction was a key feature for predicting MWM escape latency (R2 = 0.8 to 0.95).
Conclusions: Results suggest a 25% reduction in A� as a meaningful treatment threshold for improving transgenic AD
mouse cognition.

Keywords: Alzheimer’s disease, anti-amyloid therapy, artificial intelligence, BACE inhibitor, effect size, machine learning,
transgenic mice

∗Correspondence to: Cassie S. Mitchell, PhD, Department
of Biomedical Engineering, Laboratory for Pathology Dynam-
ics, Georgia Institute of Technology and Emory University
School of Medicine, Atlanta, GA, 30332, USA. E-mail:
cassie.mitchell@bme.gatech.edu.

INTRODUCTION

Dementia is a term used to describe the deterio-
ration of the mind through behavior, memory, and
language [1, 2]. One of the most common forms
of dementia is Alzheimer’s disease (AD). AD is
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characterized as the decline in cognition that affects
behavior and body function simultaneously [3]. The
Amyloid Cascade Hypothesis has long been among
the leading theories of causation of AD [4]. It postu-
lates that the accumulation of amyloid-� (A�) protein
in the brain is a key event in the pathogenesis of AD
[3, 4]. A� is produced by the cleavage of amyloid-�
protein precursor (A�PP) by �-secretase (BACE) and
�-secretase enzymes. Two major forms of A� are pro-
duced: A�40 and A�42. A�40 is more abundant, but
A�42 is more prone to aggregation and is believed to
be the main component of amyloid plaques [5]. Addi-
tionally, A� can exist in both soluble and insoluble
forms, which may have different effects on the brain.
Insoluble A� refers to A� that has aggregated into
fibrils, which can form amyloid plaques in the brain.
These plaques are a hallmark of AD and are believed
to disrupt communication between neurons, leading
to neuronal dysfunction and death. Soluble A�, on
the other hand, refers to A� that has not aggregated
into fibrils and remains in a soluble form in the brain
[6, 7]. Soluble A� can also have toxic effects on neu-
rons and has been implicated in synaptic dysfunction
and neuronal damage [8, 9].

A recent in-depth review on the role of A� in AD
presented evidence from multiple studies that patients
with more severe AD pathology typically have signif-
icantly higher levels of A� [10]. The levels of soluble
A� are often considered a better predictor of the
degree of neurodegeneration than the levels of insol-
uble A� [11]. As such, targeting soluble A� may be a
potential therapeutic strategy. A recent meta-analysis
of 14 randomized trials illustrated that the pooled esti-
mate for the effect of reducing amyloid levels by 0.1
standardized uptake value ratio units was an improve-
ment in the Mini-Mental State Examination score of
0.03 (95% confidence interval –0.06 to 0.1) points
[12].

A recent report discussed the great potential
for anti-amyloid therapies like lecanemab and adu-
canumab to become an eventual standard of care
treatment for clinical AD [13]. Patients who received
lecanemab had a significantly slower rate of cog-
nitive and functional decline compared to those
who received a placebo. However, the increased
risk of amyloid-related imaging abnormalities with
lecanemab warrant close monitoring and additional
longitudinal follow-up [14]. Future research is neces-
sary to determine if and when at-risk, asymptomatic
patients should initiate an anti-amyloid therapy to
potentially stave off AD before clinical symptoms
manifest.

Transgenic mice present a unique experimental
paradigm to expedite clinical research and successful
therapeutic translation and have been pivotal to AD
research. For a recent comprehensive review on trans-
genic AD mouse models, please see Sanchez-Varo et
al. [15]. Briefly, mouse models enable the assessment
of multi-scalar, multi-factorial pathological mecha-
nisms and initial drug safety profiles that cannot be
easily or ethically tested in humans. Transgenic AD
mice are genetically engineered to express human
genes that are associated with the development of AD.
By first testing in transgenic mice, researchers can
more quickly and cost effectively screen drug can-
didates and potential doses necessary for a positive
outcome. As such, understanding the pooled effect
size of amyloid reduction with anti-amyloid therapy
in transgenic AD mice is pivotal for AD mechanism
examination and improving anti-amyloid drug proto-
cols.

Transgenic AD mouse cognitive function can be
measured with a variety of tests. One of the most
popular cognitive assessments is the Morris water
maze (MWM), which tests spatial memory and learn-
ing. In the MWM, transgenic AD mice undergo
repeated training to find a hidden platform within
a cold-water bath [16]. Mice use visual and spatial
clues to “remember” where the platform is located
so they can more quickly escape the cold water.
After a pre-determined number of trials, mice are
timed to see how quickly they find the platform.
The amount of time it takes to find the platform
is called the MWM escape latency. Faster MWM
escape latency is analogous to improved cognitive
performance.

The absolute levels of A� may not always reflect
the severity of the disease. For example, in some
cases, mice with relatively low levels of A� may
still show signs of cognitive impairment, while mice
with high levels of A� may not [17]. Similarly,
meta-analysis of multiple experimental mouse stud-
ies, which examined only A� or the ratio of A�42
to A�40 found a weak trend with cognition [18]. Fur-
ther, pooled analysis comparing the impact of A� and
phosphorylated tau found that the impact of phos-
phorylated tau far exceeded A� in transgenic AD
mice [19]. However, there has not been a pooled esti-
mate of amyloid reduction in transgenic mice treated
with substances meant to decrease A�. Comparing
the multi-study pooled estimate of A� reduction to
the analogous pooled clinical estimate of A� reduc-
tion [12] would provide critical insight for future
translational research.
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The goal of this study was to determine the mean
threshold of A� reduction necessary to achieve a spe-
cific quantitative threshold of cognitive improvement
in transgenic AD mice treated with anti-amyloid
therapies. Prior transgenic AD mice studies that used
therapeutic substances to directly or indirectly reduce
BACE have widely varied in their ability to reduce
A� and improve cognition. The present study deter-
mines the mean A� reduction necessary to achieve
meaningful cognitive improvement in transgenic
AD mice treated with substances that either directly
or indirectly reduce or inhibit BACE. Knowing such
aggregate effect sizes is crucial for planning future
anti-amyloid preclinical and clinical therapeutic stud-
ies. Here we perform statistical analysis and machine
learning on a carefully curated pool of published
transgenic AD mouse data to determine the average
threshold of A� reduction necessary to achieve
meaningful improvement in MWM escape latency.

METHODS

The following two questions guided the method-
ological framework: 1) By how much does A� need
to be reduced (via BACE inhibitors) before there is a
meaningful decrease in transgenic AD mouse MWM
escape latency (e.g., improved cognition)? 2) What

measured features are most important to predicting
transgenic AD mouse MWM escape latency? Sta-
tistical methods were used in tandem with machine
learning algorithms to infer answers from the aggre-
gated experimental data.

Inclusion and exclusion criteria

The experimental data collected for this study
was extracted and curated from the peer-reviewed,
published literature. Studies were identified through
key term searches in PubMed and PubMed
Central. The terms searched were “Alzheimer’s dis-
ease”, “amyloid-beta”, “beta-secretase”, and “Morris
Water Maze”. Searches also included synonyms,
possible variations in terms or phrases, or abbrevi-
ations. Treatments included substances that inhibited
BACE, whether a traditional pharmacological BACE
inhibitor or a natural, biologically active substance
like Vitamin D. Included studies must have provided
quantifiable data for A� levels and quantifiable data
for MWM escape latency on day 1 and either day 4
or day 5. Day 1 was used as the baseline performance
and day 4 or day 5 was used to assess differences in
cognition. Day 4 or day 5 was previously determined
by prior work [18–20] to be optimal for measuring
differences in cognition without risk of overtraining

Fig. 1. Prisma flow diagram for the systematic review of articles related to AD BACE. Once included, data was carefully curated into a
relational database.
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or undertraining the mice on the MWM task. To max-
imize overall included sample size, MWM escape
latency from either day 4 or day 5 in each study was
an acceptable measure for study inclusion. Only full
text published articles in English were considered for
inclusion. Figure 1 illustrates the PRISMA diagram
for article inclusion. Table 1 illustrates the full list of
included articles and extracted data.

Data curation

Data curation protocols with follow-up qual-
ity control by trained curators were as previously
described [21]. Briefly, curators were trained to col-
lect quantitative mouse model data and descriptive
methods from full text articles downloaded from
PubMed Central or through online e-journal subscrip-
tions available from Georgia Institute of Technology
or Emory University. A minimum of 3 curators sep-
arately entered the values for all features and marked
missing values as null within a relational database.
Then, a project-specific curation quality control man-
ager checked all data to ensure veracity. Tabular data
was directly extracted from the original experimental
studies and entered into the corresponding rela-
tional database fields. Quantitative data from graphs
was extracted from the original experimental studies
using WebPlot Digitizer and exported to the rela-
tional database. The final pooled dataset was exported
into a standard spreadsheet conducive for follow-up
analysis in Microsoft Excel and Python SciKitLearn.

The fields of the relational database and corre-
sponding features of the dataset utilized by this study
were guided by our prior work analyzing trans-
genic AD mouse data [18–20]. Feature definitions
are briefly described here with comprehensive defi-
nitions provided in the Results. Continuous features
included A�42 level, A�40 level, ratio of A�42 to
A�40, BACE level, MWM experimental latency (on
day 4 and/or day 5), MWM original latency (on day
1). Continuous features were also calculated as per-
centage of untreated control in each original study.
Categorical features include mouse genotype, mouse
treatment status (control or treated), significance of
BACE level as reported in the original study, sig-
nificance of A�42 as reported by the original study,
and solubility status of the curated A� measurement
(soluble or insoluble).

Data processing

The primary analysis was to assess MWM as a
function of A� reduction. As noted in the Inclu-

sion Criteria, MWM escapes latency was captured
for day 4 and/or day 5 and compared to day 1.
Specifically, MWM escape latency on day 4 was cal-
culated as percent of MWM escape latency on day
1. Likewise, MWM escape latency on day 5 was
calculated as a percent of MWM escape latency on
day 1. In studies where both day 4 and day 5 data
were available, the average of the day 4 and day 5
measurement was utilized such that there was a sin-
gle MWM escape latency measurement from each
study. Due to a lack of measured feature uniformity
across original studies, the A� and BACE metrics
were converted to percent of control on a per-study
basis. All MWM measurements were first converted
into units of seconds before being standardized into
percentage-based features to normalize for any exper-
imental set-up differences across studies [18–20].

There were no missing values for features related
to A�42 level, MWM escape latency, or BACE level.
However, about 20% of the samples were missing
values for either A�40 and/or the A�42 to A�40
ratio. Missing features were imputed using the k-
nearest algorithm (kNN). The kNN algorithm used
the five nearest neighbors to impute the missing value.
Prior to clustering features were processed to remove
skew, which is otherwise known to adversely impact
machine learning algorithms. Finally, a 5% outlier
detection and removal were performed in Python
using the isolation forest algorithm.

Statistical analysis

Statistical analysis was performed to compare fea-
tures between clusters identified from unsupervised
learning. When comparing two or more continuous
features, a two-tailed student’s t-test was performed
using an alpha of 0.05 to identify significant differ-
ences between groups. When comparing two or more
categorical features, a Chi Square analysis was per-
formed at an alpha of 0.05. In the case of multiple
comparisons for either t-test or Chi-Square, a Bonfer-
roni correction with a family-wise alpha of 0.05 was
utilized to prevent a Type I error. Statistical analysis
was performed in Microsoft Excel.

Unsupervised learning

Unsupervised learning enables the elucidation
of patterns from unlabeled data. Here two differ-
ent forms of unsupervised learning were performed
together, dimensionality reduction and clustering, to
determine the best underlying grouping or “thresh-
olds” of A� reduction in transgenic AD mice treated
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with BACE inhibitors. Dimensionality reduction
algorithms minimize the number of features utilized
to explain the preponderance of variance. Clustering
algorithms take unlabeled data and use the measured
features to cluster the samples into groups that are
most similar. Prior work has shown that utilizing
dimensional reduction prior to clustering can improve
the clustering patterns and improve separability of
clusters [22]. Here we perform PCA followed by k-
means clustering. Silhouette analysis was performed
to determine the optimal number and separability
of clusters [23]. All unsupervised learning was per-
formed in Python SciKitLearn using both continuous
and categorical features.

Supervised machine learning

Supervised machine learning was used to assess
how well the identified thresholds from unsuper-
vised learning could be used to predict MWM escape

latency. The data was analyzed with and without fea-
ture selection. As is standard in machine learning, a
set of traditional supervised algorithms were utilized:
linear regression, ridge regression, polynomial ridge
regression, decision tree, and tuned decision tree.
Synthetic minority oversampling (SMOTE) was used
to balance the data set. The data was randomly par-
titioned into 80% and 20% splits. The 80% split was
used for model training and the 20% split was used as
held-out test set. Model performance was measured
using R2. All supervised learning was performed in
Python SciKitLearn.

RESULTS

A combination of statistical analysis and machine
learning was utilized to quantify the mean reduction
of A� necessary to achieve significant and meaning-
ful improvements in MWM escape latency. Figure 2

Fig. 2. Overview of data pipeline and analysis. Continuous and categorical features were curated from 22 journal articles. A combination of
machine learning and statistical analysis techniques were utilized to quantify A� reduction thresholds necessary to meaningfully improve
AD transgenic mouse cognition measured via the Morris Water Maze escape latency.
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Table 1
List of included mouse type, mouse type sample size, and included

study citations

Mouse type Sample size Citations

3xTg-AD 116 [29–32]
A�1–42 50 [33]
APP/PS1 200 [24, 34–40]
LPS 30 [26, 41]
SAMP8 30 [27]
SAMR1 10 [27]
Tg2576 112 [25, 28, 42–45]
Wild Type 46 [24, 28, 39, 42, 45]
TOTAL 594

illustrates the analysis pipeline. First, a total of 22
journal articles with transgenic AD mouse data met
the study’s inclusion criteria. Second, the data from
the original articles (n = 594 mice) were curated to
obtain a set of continuous and categorical features
necessary for analysis. Third, unsupervised learn-
ing identified the clusters used to infer potential
mean A� reduction thresholds necessary for mean-
ingful improvement of MWM escape latency. Fourth,
statistical analysis was performed to determine if
the identified A� reduction thresholds significantly
improved MWM escape latency. Finally, supervised
learning algorithms were utilized to assess feature
importance in predicting MWM escape latency.

A summary of the aggregated sample sizes is
shown in Table 1. There was a total of 594 mice
from 7 mouse types: 3xTg-AD, Tg2576, APP/PS1,
A�1–42, APP/PS1, LPS, SAMP8, SAMR1, and wild
type. The largest samples sizes were from APP/PS1
(n = 200), 3xTg-AD (n = 116), and Tg2576 (n = 112)
transgenic AD mouse genotypes. Each mouse model
was split into control or treated. The treated mice
consisted of approximately 65% of the total sam-
ples. Treatments for directly or indirectly reducing
or inhibiting BACE and/or A� varied with examples
including traditional BACE inhibitors like 2,2′,4′-
Trihydroxychalcone [24] or GRL-8234 [25], a plant
extract like 4-O-methylhonokiol [26], a nutritional
supplement combination of vitamin D and reservatol
[27], and behavior modifying treatments like cogni-
tive stimulation [28].

The following primary metrics were either directly
curated from the original published studies or derived
using the curated data. The naming convention of the
features matches those shown in Fig. 3.

• Unique ID – this feature assessed the potential
for study-specific biases in the aggregated data.

• N value – the sample size of the feature was col-
lected to perform aggregate statistical analysis
and to assess for potential sample size related
biases.

• Mouse Model – this categorical feature included
the various types of mouse model genotypes
included for analysis. Genotypes included wild
type, APP/PS1, A�1–42, Tg2576, LPS, 3xTg-
AD, SAMP8, SAMR1.

• Control Treated – this categorical feature stated
whether the sample was treated or untreated with
the intention of decreasing A�.

• Solubility – this categorical feature stated
whether the measured A� was soluble or insol-
uble.

• Abeta40 pg g – this feature measured the quan-
titative level of A�40 in units of pg per gram. If
a study had other units, it was converted to pg g
for this feature.

• Units Abeta40 – this categorical feature stated
the original units of the A�40 measurement prior
to normalization. This feature was included only
as a sanity check to the normalization process.

• Significant Abeta40 – this categorical feature
stated whether the measured A�40 was signif-
icant compared to control in the original data
source.

• Abeta40 percent of control – this continuous
feature measured the A�40 as a percentage rel-
ative to untreated transgenic control within the
same original study.

• Abeta42 pg g – this feature measured the quan-
titative level of A�42 in units of pg per gram. If
a study had other units, it was converted to pg g
for this feature.

• Units Abeta40 – this categorical feature stated
the original units of the A�40 measurement prior
to normalization. This feature was included only
as a sanity check to the normalization process.

• Significant Abeta42 – this categorical feature
stated whether the measured A�42 was signif-
icant compared to control in the original data
source.

• Abeta42 percent of control – this continuous
feature measured the A�42 as a percentage rel-
ative to untreated transgenic control within the
same original study.

• 42 40 ratio – this continuous feature measured
the ratio of A�42 to A�40 within a given study
for each mouse type sample.

• Ratio 42 40 ratio – this continuous feature mea-
sured the ratio of A�42 to A�40 in BACE
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inhibitor treated mice to the ratio of A�42 to
A�40 in non-treated mice for a given mouse
sample type within the same original study.

• Overall Abeta percent of control – calculated
overall average of A� relative to untreated trans-
genic control for a given mouse type within the
same original study.

• MWM N value - the sample size was col-
lected to perform aggregate statistical analysis
and to assess for potential sample size related
biases.

• Original latency – the MWM escape latency for
a given mouse type within a given study prior to
training. It is essentially a baseline measurement
of innate swimming ability and/or differences
in maze set-up and used to normalize Experi-
ment Latency.

• Experiment Latency – this continuous feature
measured the MWM latency at day 4 and/or
day 5. Once normalized, it was the measure of
cognition used to compare mouse types and the
efficacy of amyloid-reducing BACE inhibitor
treatment(s).

• BACE level percent of control – this contin-
uous feature measured the level of BACE

compared to untreated transgenic control mice
within the same study.

• BACE significant – this categorical feature mea-
sured whether there was a significant difference
in BACE for a given mouse type within a given
study.

A correlation matrix was produced (Fig. 3)
to illustrate the association(s) between the fea-
tures. The correlations with Experiment Latency
were deemed most relevant to the present study’s
goals. The features with the strongest correlations
to Experiment Latency were: Original Latency,
0.62; Abeta42 percent of control, 0.44; Con-
trol Treated, 0.38; Abeta40 percent of control,
0.34; Ratio 42 40 Ratio, 0.32. There was a rel-
atively lower correlation with Mouse Model,
0.17.

Input features for unsupervised learning included
both continuous and categorical data. Subsequently,
PCA was performed followed by clustering with the
k-means algorithm (Fig. 4). The different clustering
patterns for k = 3, k = 4, or k = 5 clusters is shown in
Fig. 4a-c, respectively. The corresponding silhouette
plots (left side of each panel in Fig. 4) measured how

Fig. 3. Pearson cross-correlation matrix of extracted features. Feature definitions are defined in the main article text.
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Fig. 4. Unsupervised clustering of transgenic AD mouse data to determine optimal amyloid-�40 and amyloid-�42 reduction thresholds using
PCA followed by k-means clustering. Silhouette analysis (left) confirmed 4 clusters as the optimal number of clusters. The clustered data is
visualized by plotting the second PCA feature by the first PCA feature.
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Table 2
The cluster mean and standard deviation of key continuous features. The four clusters were determined by k-means clustering using both
continuous and categorical features. Cluster 0 was primarily untreated transgenic control mice; cluster 1 was primarily BACE inhibitor
treated transgenic mice characterized as having a “medium” reduction in A� relative to control; cluster 2 was primarily wild type mice; and

cluster 3 was primarily BACE inhibitor treated transgenic mice characterized as having a “high” reduction in A� relative to control

Feature Cluster 0 Cluster 1 Cluster 2 Cluster 3

Abeta40 percent of control 100% 78% ± 13% 27% ± 15% 51% ± 15%
Abeta42 percent of control 100% 76% ± 13% 10% ± 14% 50% ± 14%
Overall Abeta percent of control 100% 75% ± 13% 19% ± 14% 50% ± 14%
Ratio 42 to 40 ratio 1.0 1.09 ± 0.3 2.3 ± 1.8 1.2 ± 0.9
Escape Latency 77 ± 14 58 ± 15 51 ± 16 56 ± 14
BACE level percent of control 100% 82% ± 17 56% ± 23 61% ± 24

close each point within a cluster was to the points in
the neighboring clusters. Ultimately, Silhouette anal-
ysis and visual inspection confirmed that k = 4 was
optimal, resulting in four clusters labeled in Fig. 4b
as cluster 0, cluster 1, cluster 2, and cluster 3.

Unsupervised learning identified patterns from
unlabeled data. That is, clusters were not predeter-
mined based on original study experimental labels
like “wild type”, “untreated transgenic control”, or
“BACE inhibitor treated transgenic control”. Rather,
the clustering algorithm examined data-driven pat-
terns that best explained the separability of data points
based on all included explanatory features.

The continuous feature patterns of untreated trans-
genic control mice and wild type mice were relatively
easy to deduce via manual visual inspection (see
Table 2). Briefly, all untreated transgenic mice had
relatively high A� levels and increased MWM escape
latency. Conversely, all wild type mice had relatively
low A� levels and decreased MWM escape latency.
Thus, it was not unexpected that the unsupervised
clustering algorithm assigned all untreated transgenic
mice to one cluster (labeled Cluster 0 in Fig. 4b) and
all wild type mice were assigned to another cluster
(labeled Cluster 2 in Fig. 4b). What was not obvious
prior to unsupervised clustering was how many sep-
arable clusters were needed to optimally explain the
features of the BACE inhibitor treated transgenic AD
mice.

Ultimately, two of the four clusters explained the
features of the AD mice treated with substances
to lower BACE (labeled as cluster 1 and cluster 3
in Fig. 4b). The assignment of treated transgenic
AD mouse data points to either cluster 1 or clus-
ter 3 was predominantly based on differences in
A� reduction. The mean overall level of A� reduc-
tion (e.g., Overall Abeta percent of control) best
explained the variance and separability of the treated
transgenic mice data assigned to either clusters 1 or
3. The mean Overall Abeta percent of control lev-

els of cluster 1 was 75%, which corresponded to
a mean 25% reduction in A� level compared to
untreated transgenic control mice. The mean Over-
all Abeta percent of control of cluster 3 was 50%,
which corresponded to a mean 50% reduction in A�
level compared to untreated transgenic control mice.
The resultant mean A� reduction seen in cluster 1
was henceforth named “medium A� reduction” and
the A� reduction seen in cluster 3 was henceforth
named “high A� reduction”, respectively.

Follow-up t-tests with Bonferroni correction were
performed to examine the presence of significant
differences in overall A� between clusters. Indeed,
there were significantly different levels of Over-
all Abeta percent of control between all clusters
(p < 0.05). Collectively, the k-means clustering and
statistical results indicate that the medium A� reduc-
tion threshold determined by the mean of Cluster 1
and the high A� reduction threshold determined by
mean of Cluster 3 were both separable and signifi-
cantly different (p < 0.05).

The separate A�40 and A�42 levels as a per-
cent of untreated transgenic control were also
analyzed for each cluster. The cluster mean
Abeta 40 percent of control was 100% for cluster 0;
78% for cluster 1; 27% for cluster 2; and 51% for clus-
ter 3. The cluster mean Abeta42 percent of control
was 100% for cluster 0; 76% for cluster 1; 10% for
cluster 2; and 50% for cluster 3. T-tests with Bonfer-
roni correction found significantly different levels of
A�40 or A�42 between all clusters (p < 0.05).

Notably, the absolute doses and types of BACE
inhibiting or reducing substances varied widely
among the included studies. As such, there were
no pre-defined experimental labels for the quantita-
tive dose of BACE inhibitor administered. However,
this did not prevent the assessment of the asso-
ciation between BACE level and A� level. The
continuous BACE levels as a percentage of matched
untreated transgenic control groups were assessed for
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all data points assigned to each cluster. The mean
and standard deviation of BACE percent of control
in each cluster was as follows: cluster 0 was
100% of untreated transgenic control; cluster 1 was
82% ± 17% of untreated transgenic control; cluster 2
was 61% ± 24% of untreated transgenic control; and
cluster 3 was 56% ± 23% of untreated transgenic con-
trol. The BACE means were significantly different
between all clusters (p < 0.05). Nonetheless, the cor-
responding cluster standard deviations indicate that
the levels of BACE inhibitor therapy required to get
either a medium or high reduction of A� vary sub-
stantially.

The ratio of A�42 to A�40 has been considered
an important biomarker for predicting the diagnosis
and long-term outcome in clinical AD [46]. Inter-
estingly, there was not a significant difference in
the ratio of A�42 to A�40 (e.g., ratio 42 40 ratio)
between cluster 1 compared to cluster 3 (p > 0.05).
The ratio 42 40 ratio = 1.09 ± 0.3 in cluster 1, which
was primarily treated mice with a medium A� reduc-
tion. The ratio 42 40 ratio = 1.2 ± 0.9 in cluster 3,
which was primarily treated mice with a high A�
reduction. The lack of significance appears to largely
be driven by the large standard deviations in cluster 1
and 3. However, there was a significant difference in
ratio 42 40 ratio between wild type (cluster 2) and
the other three clusters (p < 0.05).

K-means clustering resulted in the identification of
two thresholds of A� reduction in treated transgenic
mice: a medium reduction threshold corresponding
to 25% A� reduction (e.g., cluster 1) and a high
reduction threshold corresponding to a 50% A�
reduction (e.g., cluster 3). Next, statistical analysis
was performed to determine if there were significant
differences between clusters. T-tests with Bonferroni
correction identified significant differences (p < 0.05)
in MWM escape latency between medium and high
reduction A�40 and A�42. Finally, Chi-square anal-
ysis was performed to test the independence of A�
reduction with MWM latency reduction. The signifi-
cant results (p < 0.05) indicated there was indeed a
significant association between A� being reduced
and MWM latency being reduced (Fig. 5). A 25%
reduction in A� using BACE inhibitors resulted in
a significant 28% improvement in MWM escape
latency compared to untreated transgenic control
mice (p < 0.05). Likewise, a 50% reduction in A�
using BACE inhibitors resulted in a significant 32%
improvement in MWM escape latency compared to
untreated transgenic control mice (p < 0.05).

Table 3 illustrates the categorical feature com-
position for each of the four clusters. Categorical
features were primarily analyzed by what percent
of data points with the relevant feature label were
present in a given cluster. Categorical features pri-
marily included the mouse genotypes (APP/PS1, wild

Fig. 5. Assessment of A� reduction thresholds and association with MWM escape latency. Normalized MWM escape latencies are shown
in seconds. Cluster 0 corresponded to untreated transgenic AD mice. Cluster 1 (light blue) corresponded to treated transgenic AD mice that
had a mean 25% overall A� reduction compared to control. Cluster 3 (purple) corresponded to treated transgenic AD mice that had a mean
50% A� reduction compared to untreated transgenic control. Cluster 2 (navy) corresponded to wild type mice, which had on average 19%
of the overall A� levels compared to control.
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Table 3
Categorical features of data points assigned to each of the four
clusters. The four clusters were determined by k-means cluster-
ing using both continuous and categorical features. Cluster 0 was
primarily untreated transgenic control mice; cluster 1 was BACE
inhibitor treated transgenic mice with a medium reduction in A�
relative to control; cluster 2 was primarily wild type mice; and
cluster 3 was primarily BACE inhibitor treated transgenic mice

with a high reduction in A� relative to control

Feature Cluster 0 Cluster 1 Cluster 2 Cluster 3

APP/PS1 37.9% 17.2% 0% 44.8%
Wild Type 0.0% 0.0% 100.0% 0.0%
Tg2576 50.0% 27.8% 0.0% 22.2%
3xTg-AD 40.0% 10.0% 33.3% 50.0%
LPS 33.3% 0.0% 0.0% 66.7%
SAMR1 50% 50% 0% 0%
SAMP8 50% 50% 0% 0%
Control 100.0% 0.0% 0.0% 0.0%
Treated 0.0% 25.0% 23.1% 51.9%
Insoluble A� 33.4% 15.6% 18.8% 31.3%
Soluble A� 37.0% 18.5% 14.8% 29.6%
Significant A�42 0% 0% 23% 77%
Significant BACE 0.0% 12.8% 28.2% 59.0%

type, Tg2575, 3xTg-Ad, LPS, SAMR1, SAMP8); the
treatment label, including control or treated [with a
BACE reducing substance]; whether the A� was sol-
uble or insoluble; and whether the data point had a
significant level of BACE reduction [compared to the
control group in its corresponding original study].
The treated transgenic mice were spread across clus-
ters 1 and 3, which indicated that mouse genotype
alone was not driving cluster separability. The only
treated mice assigned to cluster 2 were the wild type
mice treated with a BACE inhibiting substance. All
treated transgenic AD mice were assigned to either
cluster 1 or cluster 3.

Finally, supervised machine learning was per-
formed to assess how well explanatory features pre-
dict MWM escape latency. As traditional in machine
learning, a set of models was constructed to deter-
mine which model performed best for the application.
Models used the continuous and categorical features
of the dataset to predict MWM escape latency (Fig. 5).
The polynomial ridge regression model performed
the best and had a training R2 of 0.95 and a test set
R2 of 0.80. Given the relatively small sample size, it
was expected that there would be a decrease in R2

in the independent test set compared to the training
set. The learning curves (i.e., model accuracy ver-
sus training sample size) for the supervised model(s)
did not illustrate overt overfitting or underfitting.
Across all ML models, the two most impor-
tant features for predicting MWM escape latency
consistently comprised Abeta42 percent of control

Table 4
Supervised machine learning regression models assessed how
well the explanatory continuous and categorical features predicted
MWM escape latency. The most important explanatory feature was

A� level

Supervised Learning Models Training R2 Testing R2

Linear regression 0.81 0.65
Ridge Regression 0.79 0.74
Polynomial ridge regression 0.95 0.80
Decision Tree 0.96 0.70
Tuned Decision Tree 0.92 0.76

and Abeta40 percent of control. Moderately impor-
tant features included the BACE significance and
ratio 42 to 40 ratio. Categorical mouse type was not
a feature of consensus high importance across mod-
els.

DISCUSSION

Prior studies that examined the impact of amyloid-
reducing BACE inhibitors or BACE reducing
substances in transgenic AD mice had a wide dis-
tribution of results. The current study provided
new quantitative insight into the average amount
of A� reduction via reduction of BACE necessary
to obtain a meaningful improvement in transgenic
AD mouse cognition. Unsupervised learning iden-
tified 4 clusters that best explained MWM escape
latency: cluster 0, A� levels in untreated transgenic
AD control mice (100% Abeta percent of control);
cluster 1, medium A� reduction in treated transgenic
AD mice (25% Overall Abeta percent of control);
cluster 3, high A� reduction in treated transgenic
AD mice treated; cluster 2, A� levels in wild type
mice treated with BACE inhibitors (19% Over-
all Abeta percent of control). Interestingly, similar
clustering algorithms had also previously identified
4 clusters in clinical AD patients [23]. K-means clus-
tering showed a 25% mean decrease in A� led to a
28% mean decrease in MWM escape latency in trans-
genic AD mice treated with BACE inhibitors. Further,
a 50% decrease in A� led to a 32% decrease in MWM
escape latency. For reference, wild type mice had a
mean escape latency 41% lower than AD mice. There
was a significant difference in mean MWM escape
latency between the medium and high A� reduction
groups. Statistical analysis revealed there was a sig-
nificant association between A� being reduced and
MWM latency being reduced. This finding was in
line with previous research, which has shown that
BACE proteases are central to the formation of A�
and, hence, the development of AD [8, 47, 48].
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Multiple pre-clinical and clinical trials have mea-
sured the effectiveness of BACE inhibitors and
other amyloid-reducing therapies for decreasing the
rate of cognitive decline due to AD [49]. Mouse
BACE inhibitor trials have generally shown good
safety profiles with few adverse effects. However,
human BACE inhibitor trials have raised concerns
about potential side effects, particularly liver tox-
icity [49]. During previous clinical trials, BACE1
inhibitors were able to achieve up to 80–90% A�
reductions in cerebrospinal fluid; yet, these thera-
pies failed to significantly demonstrate slowing of
the cognitive decline [50]. More than seventeen dif-
ferent BACE1 inhibitors have failed in double-blind,
placebo-controlled clinical trials in patients with AD
[51]. The reasoning behind these results is unclear.
One hypothesis is that the functional AD pathology
is too advanced by the time BACE inhibitor therapy
has begun.

One promising finding shown in this study is
that a supplemental combination of the nutritional
molecules, Vitamin D and reservatol [27], fell into
cluster 1, which was the medium A� reduction clus-
ter. Additionally, the cognitive stimulation treated
Tg2576 mice fell into cluster 3, which was the high
� reduction cluster. Thus, non-traditional means of
reducing BACE and A� via diet supplementation
and behavior modification could be potential consid-
erations for asymptomatic patients who have been
identified as “at risk” for AD based on family history
or their own biomarker profiles.

One interesting finding from the present study was
that the ratio of A�42 to A�40 was not found to be
as important of a feature as the absolute reduction of
A�42 compared to control (e.g., Abeta42 percent of
control) in predicting treatment-related improve-

ments in MWM escape latency. Researchers have
contended that the ratio of A�42 to A�40 is supe-
rior to using the A�42 level when making a clinical
diagnosis of AD [52]. In particular, the ratio of A�42
to A�40 was found to be more specific for measuring
cognitive decline due to AD compare to other neuro-
logical disorders. Particularly, pooled evidence found
that mild cognitive impairment patients with lower
ratios of A�42 to A�40 were more likely to convert
to AD [46]. Notably, our prior work examining the
pooled Tg2576 transgenic AD mouse data found that
there was only a weak qualitative trend with MWM
escape latency [18]. It is possible that the present
study’s findings were influenced by the mixed popula-
tion of transgenic mice. Prior reports have concluded
that some transgenic mice have pathology primarily

driven by a change in A�42 to A�40 ratio while others
do not [7]. In short, the functional impact of the A�42
to A�40 ratio in mice compared to humans remains
inconclusive.

Future longitudinal assessment will be necessary to
determine the long-term benefits and safety profile of
BACE inhibitor, amyloid-reducing therapies, or other
non-pharmacologic therapies to reduce A�. Ideally,
patients at high risk of acquiring dementia should
be identified as early as possible. Early identifica-
tion can be made possible with cerebrospinal fluid,
genetic, and/or blood-based biomarkers combined
with machine learning-based clinical recommenda-
tion systems, which use personalized data to calculate
a specific dementia risk, dementia onset date, and
confidence interval on the prediction(s) [53, 54]. With
such upfront quantitative forecasting available in the
future, a physician could best inform at-risk asymp-
tomatic patients of the pros and cons of prophylactic
therapies aimed at preventing symptomatic AD. Note
that, at the time of this writing, lecanemab is only
FDA-approved in the US for symptomatic dementia
patients rather than at-risk asymptomatic patients.

Limitations and future directions

The present study had a few limitations that were
primarily tied to the inherent limitations of the
underlying dataset. The learning curves (i.e., model
accuracy versus training sample size) for the super-
vised model(s) did not illustrate overt overfitting
or underfitting. Nonetheless, additional sample sizes
would help to further confirm results. Additionally,
the sex and age of the mice was not included due
to too few studies including the variable. Our prior
work examining the aggregate effect of sex as a fea-
ture in experimental AD mouse found that it was
mostly insignificant except in APOE transgenic mod-
els [20]. However, APOE transgenic mice were not
included in the present work. Due to its frequent usage
in the literature, the MWM escape latency was used
as the primary assessment of mouse cognitive func-
tion in this pooled analysis. The addition of other
cognitive tests, such as the novel object recognition,
Y-maze, Barnes maze, or other tests was considered
but not possible due to sample size limitations with
respect to the other required study inclusion crite-
ria. Another possible limitation is the fact that not
all included studies sampled A� from the same brain
region, and some simply did not state from which
brain the A� was sampled. Nonetheless, the statistical
and machine learning models found no overt or study-
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specific biases that would indicate brain region or
another unincluded feature was substantively impact-
ing the aggregate results. Notably, PCA determined
that > 90% of the variance was explained by the con-
tinuous and categorical features highlighted in the
study.

Key future directions include the addition greater
sample size, more mouse model types and more
detailed features like mouse sex, age, brain region,
and inclusion of additional cognitive tests beyond
MWM escape latency. However, the most important
work moving forward is the reproducible conversion
of amyloid reduction thresholds that are applica-
ble to mouse transgenic AD models to amyloid
reduction thresholds necessary for safe and effective
anti-amyloid human therapies.

Conclusions

The key research question posed by the present
work was: What level of A� reduction is neces-
sary to meaningfully improve cognitive function?
Experimental data curated from 22 original studies
was used to address this question using a combi-
nation of machine learning and statistical analysis.
A “medium” or 25% reduction of A� was neces-
sary to achieve a 28% improvement in transgenic
AD mouse cognition as measured via MWM escape
latency, and a “high” or 50% reduction resulted in
a 32% improvement. Comparatively, wild type mice
had a mean 41% MWM latency improvement over
untreated transgenic control. These results suggest
that a 25% threshold in overall A� reduction was nec-
essary for reproducible, meaningful, and significant
improvements in transgenic mouse cognition.
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