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Abstract. Alzheimer’s disease (AD) is the most common type of dementia, which is characterised by progressive memory
loss and accumulation of hallmark markers amyloid-� (A�) and neurofibrillary tangles in the diseased brain. The current
gold standard diagnostic methods have limitations of being invasive, costly, and not easily accessible. Thus, there is a need
for new avenues, such as imaging the retina for early AD diagnosis. Sleep disruption is symptomatically frequent across
preclinical and AD subjects. As circadian activity, such as the sleep-wake cycle, is linked to the retina, analysis of their
association may be useful additions for achieving predictive AD diagnosis. In this narrative review, we provide an overview
of human retina studies concerning the deposition of A�, the role of the retina in sleep-wake cycle, the disruption of sleep
in AD, and to gather evidence for the associations between A�, the retina, and sleep. Understanding the mechanisms behind
the associations between A�, retina, and sleep could assist in the interpretation of retinal changes accurately in AD.
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INTRODUCTION

Dementia is categorized as the second most leading
cause of death in Australia [1]. Alzheimer’s disease
(AD) is the most common type of dementia and
an estimated 401,300 Australians are currently liv-
ing with dementia [1]. There are currently little to
no curative therapies for AD; therefore, prevention
through managing modifiable risk factors is a prior-
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itized endeavor [2]. Lifestyle interventions provide
a promising evidence-based AD prevention strategy,
yet the optimal time for administering these interven-
tions in the disease trajectory is still uncertain [3–7].
Although prevention hinges on the early diagnosis
of the disease, definitive diagnosis of AD is only
possible when the primary pathological features of
AD, namely plaques comprising of amyloid-� (A�)
protein and neurofibrillary tangles comprising of tau
protein, are identified during autopsy of the brain [8].
However, there is now evidence that AD related A�
pathogenesis in the brain can be witnessed 10–15
years before clinical symptoms are apparent [9].
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The current gold standard for AD diagnosis
includes measuring the A� load in the brain using
positron emission tomography (PET) or measuring
both A� and tau protein levels in the cerebrospinal
fluid (CSF) [9]. These tools are recommended for
research purposes only and have caveats in being
highly invasive, expensive, and not widely available
for use in a clinical setting [10]. The retina is the neu-
rosensory structure of the eye and is a direct extension
of the central nervous system as it is derived from the
same embryological tissue as the brain [11]. There-
fore, in the past few years, novel diagnostic avenues
such as imaging the eye have gained significant atten-
tion to identify AD related biomarkers which could
reflect the build-up of A� in the brain.

In vivo studies document AD related changes in the
retina, including a decreased thickness of the retinal
nerve fiber layer (RNFL), changes in the retinal blood
vasculature, and identification of retinal A� in the
postmortem transgenic mice and human AD retina
[12–14]. However, studies using retinal imaging to
identify A� in the live human retina have provided
inconclusive results [13, 15, 16].

Therefore, a more comprehensive tool that incor-
porates surrogate information could be more useful to
endorse AD specific retinal changes. Indeed, studies
have identified the role of the retina in sleep and circa-
dian rhythm (sleep-wake) disruption in AD [17–19].
Here, we review the crosstalk between the retina,
A�, and sleep-wake systems to evaluate sleep-wake
disturbances as surrogate markers in future retinal
imaging and early AD diagnostic studies.

METHODS

An extensive literature search was conducted
across PubMed and Google Scholar databases to

include relevant papers pertaining to studies corre-
lating aspects of the relationship between A�, retina,
and sleep-wake systems. Figure 1 displays the flow of
studies included in this review. Briefly, information
regarding sleep, dementia, and the retina was first
obtained across Google scholar databases. Secondly,
inclusive of these search terms, a combination of key-
words was applied in PubMed database: A�, retinal
A�, circadian rhythm, Alzheimer’s disease, demen-
tia, sleep, rest-wake cycle, orexin, ghrelin, leptin, and
cognition for scientific literature conducting human
or animal observational, interventional, or review
studies. Titles and abstract screening were conducted
to preliminary, or unrelated studies. Exclusion crite-
ria (see Fig. 1) were reviewed manually and applied
to the eligible papers. This search was performed and
updated through August 2020 – December 2023.

Eligible studies were published in English, peer
reviewed clinical, observational, interventional or
review studies. Each paper evaluated or measured a
variable concerning the retina, A� and sleep-wake
functions on the sample cohort or in the reviewed
literature. For the clinical, observational, and inter-
ventional studies, the sample inclusion criteria
required participants who were aged ≥ 50 years, with
an assessment of cognitive functions measured. Pub-
lications excluded from the extracted data include:
1) studies of populations with ophthalmological or
retinal diseases, 2) articles measuring vasculature or
including angiography as the only variable, 3) studies
without retinal measures, and 4) review papers.

Two reviewers (ID and TS) independently sourced
publications according to the inclusion criteria. Eli-
gible articles were then identified for the planned
narrative review. Disagreements between the review-
ers about study inclusion were resolved through
discussion. Specifically, the data extracted (see
Table 1) includes sample size, clinical diagnosis, age,

Fig. 1. Flowchart of studies included.
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Table 1
Evidence supporting the relationships between sleep, the retina, and amyloid-� in AD

Author Study Subject (n,
clinical diagnosis, age)

Technique Findings

Amyloid-Beta in AD and Retina
Koronyo et
al. [8]

(18; 8 AD, 5 probable
AD, 5 controls, 48–94
y)

Cognitive
assessments, IHC,
Microscopy

A� plaque pathology found deposited in the retina of
confirmed AD individuals and suspected early-stage AD
individuals; tissue stained with curcumin and anti-A�40
antibody.

Sharafi et
al. [13]

(46, 20 Cognitively
impaired & 26 CN,
60–85 y)

MMSE, HSI, PET Non-invasive analysis of retinal vasculature and
surrounding regions. These characteristics and image
texture features of these regions have been used to
differentiate between brain A� positive and negative status.

Hadoux et
al. [15]

(35, 15 A� positive &
20 A� negative, 60 – 76
y)

MMSE, HSI, PET,
OCT, color fundus

Composite score derived from the HSI spectral data was
able to discriminate between A� positive and A� negative
individuals.

More et al.
[22]

(35, 16 CN & 19
Cognitively impaired,
62–84 y)

HSI, MMSE The retinal HSI spectral signature; derived from the
combined constituents of retinal structures interaction with
light when imaged, differentiates different levels of
cognitive impairment.

Kayabasi
et al. [23]

(30, MCI, 66–84 y) FAF, OCT,
Curcumin

Identifies lesions of interest in the outer plexiform, ganglion
cell and nerve fiber retinal layers with curcumin stained
FAF and OCT.

Snyder et
al. [24]

(63, pre-clinical AD,
55–75 y)

Neuropsychological
assessments, OCT,
PET

CN individuals with high levels of brain amyloid have
inclusion bodies on the retina. Inclusion body surface area
is positively associated with brain A� deposition. Also
demonstrated in older individuals with brain A� have an
increased thickness in the inner plexiform retinal layer.

Eye and Sleep
Naismith
et al. [26]

(58, 30 MCI & 28
age-matched controls)

Polysomnography,
neuropsychologi-
cal assessment,
dim light
melatonin
assessment

MCI individuals present with melatonin secretion
misalignment and sleep disruption, consistent with AD.

Romagnoli
et al. [30]

(52, 26 mild -moderate
AD & 26 controls,
58–82 y)

Sleep
questionnaires,
neuro-
ophthalmological
evaluation, OCT

The mRGC’s isolated contribution to the PLR; in the AD
group, displayed a higher variability in the post-illumination
pupil response compared to the controls. The combination
also had positive effects on sleep efficiency, nocturnal
restlessness, and average duration of nocturnal awakenings.

Oh et al.
[57]

(20; pre-symptomatic
AD and healthy
controls, 64–80 y)

Actigraphy,
Questionnaires,
Chromatic
pupillometry, CSF
analysis

Pre-AD group displayed variability in PLR to blue light.
Pre-AD group presented with irregular sleep and circadian
patterns compared to controls.

Bacalini et
al. [79]

Discovery (174; 79 AD,
33 MCI & 62 controls;
57–87 y)
Validation (775; 449
AD & 326 controls;
58–83 y)

Next-generation
sequencing,
Genotyping

Identified a circadian clock gene; PER1 variant
(Rs3027178) in an Italian population which is associated
with AD risk.

Sleep and AD
Dowling et
al. [34]

(46; 17 controls & 29
cohort, AD; MMSE
score range 0–23,
60–98 y)

Actigraphy and
1-hour exposure
of bright light

Individuals with low MMSE scores or had severe AD
experienced severe impairment in rest activity showed
improvement from light therapy.

Riemersma-
van der
Lek et al.
[35]

(189, 120 probable AD
& 69 other Dementia;
98 placebo & 91 light
exposure, mean 85.8 y)

RCT for light
exposure and
melatonin,
Neuropsychiatric
assessments,
Actigraphy

Bright light has a modest benefit on cognitive deterioration,
depressive symptoms, and daily living activities. Bright
light was also able to counteract melatonin’s negative effect
on mood when used in combination compared to
individuals taking melatonin standalone.

(Continued)
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Table 1
(Continued)

Author Study Subject (n,
clinical diagnosis, age)

Technique Findings

Ju et al.
[44]

(142, CN healthy
volunteers,≥45 y)

Actigraphy, CSF
analysis,
ELISA

Participants with brain A� deposition determined by CSF
A�42 levels were associated with decreased sleep quality
and frequent napping but not sleep quantity.

Sabia et al.
[49]

(6875, Whitehall II
study cohort; 521
developed dementia,
45–75 y)

Accelerometer
analysis for sleep
duration

Risk of developing dementia is associated with short sleep
and changing sleep durations in midlife.

Naismith
et al. [50]

(1240, European
prevention of AD
longitudinal cohort;
CN,≥50 y)

CSF analysis,
PSQI
questionnaire,
MRI

Associations of sleep latency, sleep duration and sleep
efficiency with AD pathology is age dependent. The
p-tau/A�42 ratio denoting brain amyloid pathology, greatly
associates with shorter sleep durations in the 50–62 age
tertile and conversely associates with longer sleep duration
in the 70–88 age tertile.

Brown et
al. [52]

(184, CN,≥60 y) A� PET, PSQI
sleep
questionnaire

The increase in time taken to fall asleep is associated with
brain A� deposition, independent of APOE ε4 carrier status.

Lim et al.
[53]

(737, The Rush
Memory and Aging
Project cohort; 97
developed AD, mean
81.6 y)

Actigraphy,
Cognitive testing

Increased sleep fragmentation was associated with faster
decline in cognition and higher risk of developing AD.

Owen et
al. [62]

(58; 34 hippocampi &
24 brainstems, OSA,
mean 67 y)

Sleep studies,
Quantitative IHC

OSA severity is a significant predictor of A� burden in the
hippocampus. Presence of hallmark proteins in the
brainstem does not correlate with OSA severity

Sleep, Retina and Amyloid-Beta in AD
La Morgia
et al. [54]

(95; 21 AD & 74
controls, 51–85 y)

Actigraphy, OCT,
Morphology
Analysis, IHC

In AD individuals there was a reduction of RNFL thickness
in superior quadrants of the retina, reduced sleep efficacy
and circadian dysfunction. Post-mortem retinal analysis
identified optic nerve axonal loss, retinal mRGC loss and
A� deposition inside and around mRGC’s.

AD, Alzheimer’s disease; A�, amyloid-beta; IHC, immunohistochemistry; MMSE, Mini-Mental State Examination; HIS, hyperspectral
retinal imaging; PET, positron emission tomography; MCI, mild cognitive impairment; FAF, fundus auto fluorescence; OCT, opti-
cal coherence tomography; mRGC, melanopsin retinal ganglion cell; PLR, pupillary light reflex; RCT, randomized control trial; CN,
cognitively normal; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent assay; PSQI, Pittsburgh Sleep Quality Index;
MRI, magnetic resonance imaging; p-tau, phosphorylated-tau; OSA, obstructive sleep apnea; RNFL, retinal nerve fiber layer; APOE,
apolipoprotein E.

study technique/intervention, and a summary of the
main findings.

A� IN THE HUMAN RETINA

Studies utilizing postmortem transgenic AD mice
retina and human AD retina have detected A� and tau
pathology, within various tissues of the eye, includ-
ing the lens, vitreous humor, and the retina [20, 21].
A� is reported deposited earlier in the retina than
the occurrence of cognitive deficits [14, 22]. Partic-
ularly, the pioneering study by Koronyo et al. used
A� specific curcumin (L. Curcuma longa) staining
in both postmortem AD human and AD mice retina,
reporting that A� like plaques were deposited in
the retinal ganglion cell (RGC) and RNFL layers,
and vasculature in vivo [14]. In 20 participants, with

mild cognitive impairment (MCI; a high risk state
for AD) and 20 healthy controls aged 66–84 years,
Kayabasi et al. used fundus autofluorescence to detect
lesions of interest and optical coherence tomography
(OCT) to determine the retinal layer of A� deposi-
tion [23]. Identified exclusively in the MCI group,
curcumin staining’s affinity for A� increased the
fluorescence of abnormal deposits within the outer
plexiform, RGC and RNFL layers surrounding the
macula regions and retinal vasculature [23]. However,
these studies did not compare correlative brain PET
A� imaging which could demonstrate the association
of deposits within the retina to brain A� load. On the
other hand, Snyder et al. in a cross-sectional study
of 63 cognitively normal adults with a family history
of AD, investigated the comparison between brain
A� load, and retinal biomarkers identified with spec-
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tral domain OCT [24]. Deposits termed as ‘inclusion
bodies’ size and retinal layer volume was signifi-
cantly different in the inner plexiform layer (IPL) and
this relationship of deposit size and retinal layer vol-
ume increased with brain A� load [24]. However,
the major limitation to this study is the lack of con-
clusive post-mortem analysis of the inclusion bodies
containing A�.

In a review report, Shah et al. noted that retinal
A� may be present in other conditions; for instance,
drusen found in macular degeneration [9]. Therefore,
it is important to determine whether A� deposition
in the retina can be considered as a specific signa-
ture AD marker. Furthermore, Shah et al. noted that
hyperspectral imaging (HSI) may be a more sensitive
method in identifying retinal A� and assist in the dif-
ferential diagnosis from other conditions. The main
advantage of HSI appears able to detect AD related
retinal fluorophores without the need for external
labelling, as shown in Fig. 2. HSI also addresses
the limitation of non-specific staining by curcumin,
as it is not an antibody. Studies to identify retinal
A� and associated changes in the human retinas are
currently underway using this method. Sharafi et al.
reported that retinal vasculature and texture changes
could discriminate PET A� positive from A� neg-
ative subjects, with 85% accuracy, using HSI [13].
Hadoux et al. reported that the retinal reflectance
spectra measured using HSI could differentiate PET
A� positive MCI subjects from PET A� negative con-
trols [15]. More et al. have used HSI in a cohort of
19 AD participants and 16 healthy controls grouped
on the basis of their Mini-Mental State Examination
(MMSE) scores. Their findings indicated the specific
spectral signatures generated by the interaction of
light and reflective structures in the retina such as,
layers of the retina, blood supply, and AD-related A�
deposits, are feasible in detecting early stages of the
disease, i.e., MMSE score ≥ 22 [22]. However, stud-
ies using retinal imaging to identify A� in the live
human retina have provided inconclusive results as
compared with the results of Sharafi et al. and Hadoux
et al. only reporting correlative outcomes as indirect
measures of retinal A� [13, 15, 16].

Measuring sleep-wake activity and considering its
use as a biomarker is plausible due to the inci-
dence of specific patterns seen in oscillatory events,
such as slow wave activity, spindle density, and slow
oscillation-sleep spindle, being associated with the
presence of AD neuropathology [25]. In support, Nai-
smith et al. identify that MCI individuals present with
circadian misalignment and sleep disruption caused

by changes in secretion of the key sleep hormone
melatonin, which is consistent with changes seen
in AD [26]. Therefore, analyzing additional symp-
tomatic information, such as sleep-wake functions,
could help explain associated changes occurring in
the retina. Combined use of surrogate markers may
be another way to conclusively determine whether
changes in the retina can reflect the buildup of A� in
the brain in AD.

EYEING ON SLEEP

The circadian rhythm-sleep-retina link

The human body’s internal clock or circadian
rhythm is a 24-h cycle programmed to carry out
essential functions and processes. The sleep-wake
cycle, otherwise termed rest-activity cycle is one
of the most important and well-studied circadian
rhythms. In healthy individuals, the timing of sleep
is regulated by the circadian rhythm and is directly
influenced by environmental cues, including light
[27]. The circadian rhythm (including the sleep-wake
cycle) is synchronized with the central pacemaker, the
suprachiasmatic nucleus (SCN), located in the brain’s
hypothalamus. It regulates the key circadian mark-
ers, namely melatonin and cortisol. These markers,
in turn, govern the fluctuations (rise and fall) of core
body temperature which are closely tied with sleep-
wake timing [27]. Melatonin is a hormone known for
its function in inducing sleep and is mainly produced
in the pineal gland [19]. Cortisol is a hormone known
for its function in response to stress, though it also
plays a role in inducing wakefulness, and is produced
in the adrenal glands [28]. Under physiological con-
ditions, the body temperature drops, cortisol levels
decrease, and melatonin levels increase to induce noc-
turnal sleep, and vice versa for wakefulness during the
day [27]. This intrinsic system can be entrained with
external cues such as the light/dark cycle, tempera-
ture, or physical activity [27].

Literature shows that the neuronal retina plays
a role in stimulating the expression of melatonin
and therefore contributes to sleep induction [19].
Normally, light activates melanopsin in the retinal
ganglion cells (mRGCs) of the inner retina and starts
a cascade of events which results in an increased
expression of melatonin. mRGCs are intrinsically
photosensitive cells and are responsible for the non-
image forming functions, including detection of
contrast, a set of light responses that include circa-
dian entrainment, pupillary light reflex (PLR), and



1014 I.-L. De Guia et al. / The Crosstalk Between A�, Retina, and Sleep in AD

Fig. 2. Presentation of deposits in retinal imaging. A) HSI of the retina at 575 nm displaying drusen deposits in the macular region. B)
Examples of HSI between 450–580 nm showing deposits of interest outside of the macular region. C) OCT image illustrating drusen
deposition in and between the RPE and Bruch’s membrane retinal layers (1). Note: According to literature, the layers of deposition for A�
are in superior layers, including the RNFL, GCL, and IPL (2) [14], [54]. HSI, hyperspectral imaging; OCT, optical coherence tomography;
RPE, retinal pigment epithelium; RNFL, retinal nerve fiber layer; GCL, ganglion cell layer; IPL, inner plexiform layer.

the modulation of sleep/alertness, and mood [29].
The retinohypothalamic pathway, which mediates the
retinal melanopsin stimulation into neuronal signals
to the SCN, is known to become dysfunctional in age-
related ocular and neurodegenerative diseases such
as glaucoma and Parkinson’s disease due to mRGC

loss [13]. The loss of function of these cells dis-
rupts the circadian rhythm and could be a potential
cause of sleep disruption. Chromatic pupillometry
(using different wavelength light stimulus) has the
potential to assess the functions of mRGCs in vivo,
as mRGCs have the highest sensitivity to blue light
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at 480 nm [30, 31]. Although measuring the pupil
response post-illumination is considered an accurate
metric of mRGC function [32], the use of chromatic
pupillometry in the elderly population with mixed
neurodegenerative pathologies, including AD, needs
to be further investigated.

Moreover, the retina has been used as a thera-
peutic target for modulating sleep. Hanford et al.
review studies completing bright light treatment in
AD or related dementia that light treatment could
improve the duration of the sleep period, increase
daytime wakefulness, and reduce evening agitation
[33]. Similarly, in a sample of 29 institutionalized AD
individuals aged 60–98 years, Dowling et al. showed
that using one-hour of light intervention Monday
through Friday for 10 weeks improved sleep effi-
ciency, sleep duration and stabilized the most active
hours outside of typical hours of sleep in individ-
uals who had severe sleep disruptions despite the
nonsignificant improvement compared to the controls
[34]. In a sample of 189 dementia individuals living
in assisted care facilities (120 with AD) aged 80–91
years, Riemersma-van der Lek et al. identified that
bright light and melatonin were able reduce cogni-
tive decline, reduce nocturnal restlessness, increase
sleep duration and efficiency, and counteract nega-
tive impact of melatonin on mood and behavior [35].
Thus, retinal exposure to light may play a crucial
role in the sleep-wake function and circadian rhythm
function.

There are few studies examining melatonin in pre-
clinical AD. However, in people with MCI, Naismith
et al. showed that there was advanced timing of mela-
tonin secretion compared to control subjects [26].
Subsequent studies have also shown advanced tim-
ing in people with subjective cognitive complaints
[36]. A systematic review by Nous et al. analyz-
ing the limited number of studies analyzing levels
of melatonin in CSF, blood, saliva, and urine in AD
concludes that there is a decrease in nighttime mela-
tonin concentrations [37]. In postmortem AD, Liu
et al. demonstrates there is a significant decrease
in melatonin levels in the CSF, independent from
a decrease seen with age [38]. Trials of melatonin
also show promise in improving sleep, cognition, and
mood [39–41]. Whether melatonin supplementation
has any beneficial effects in at-risk individuals such as
those with MCI, preclinical AD or subjective cogni-
tive decline is unknown, but initial trials are underway
in this regard (Schrire et al. [42], 2021). While animal
studies suggest that melatonin may target A� depo-
sition, human randomized controlled trials have yet

to determine whether there are beneficial effects on
A�, tau, oxidative stress, or other neurodegenerative
markers.

SLEEP IN AD

The mechanisms behind sleep disruptions in AD
are not yet fully understood. Variability in the sleep-
wake cycle is common in individuals with AD [43].
Ju et al. reported in a preclinical AD sleep study that
participants with worse sleep quality had higher lev-
els of brain A� deposition [44]. Specifically, in 145
cognitively normal individuals, the authors measured
sleep using actigraphy for two weeks and examined
sleep quantity, efficiency (i.e., amount of time spent
in bed asleep and total time asleep), and brain A�
levels. One proposed mechanism for sleep variabil-
ity is the loss of neuronal cells in the SCN, as Stopa
et al. identified with postmortem immunostaining in
individuals with AD compared to healthy controls
[45]. In a mouse model, Kang et al. demonstrates the
circadian fluctuation of A� in the extracellular fluid,
increased levels during wakefulness and sleep depri-
vation, and orexin agonists reduce A� levels [46].
Roh et al. also identified in a mouse model of AD,
A� plaques in the brain caused a deterioration in the
levels of A� in the interstitial fluid and the sleep-wake
cycle [47]. In a review study, Wu et al. reported that
sleep deprivation could impair the clearance of brain
A� and tau, increase oxidative stress in the brain and
reduce melatonin levels, and that this association is
bidirectional [48]. Variability in sleep disruptions in
AD could be attributed to its role in influencing the
expression levels of A� in the brain.

It is also unclear whether there is a critical period
by which sleep disturbance may have a deleterious
effect on brain structure, function, and A� accumu-
lation. In a UK study, sleep disturbance at midlife was
predictive of dementia 25 years later [49]. In another
study using the European Prevention of Dementia
dataset, there were differential relationships between
various sleep disturbances and CSF-derived AD
pathology at midlife, older age, and late-life [50].
Using PET to evaluate aquaporin-4, a brain A� clear-
ance mechanism, in a sample of 222 cognitively
normal participants aged 69–81 years, Rainey-Smith
et al. identified variants and single-nucleotide poly-
morphisms that moderate the association of poorer
overall sleep quality, latency and duration on brain
A� burden [51]. In a sample of 184 cognitively
healthy participants aged at least 60 years, Brown
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et al. evidenced sleep factors including longer sleep
latency are associated with higher levels of brain A�
[52]. Thus, in addition to evidence showing that neu-
rodegeneration due to AD may contribute to sleep
disturbance, there appears to be evidence that sleep
disturbance precedes AD, as well as evidence that
those with AD and neurodegeneration decline faster
[53].

THE CROSSTALK BETWEEN
SLEEP-RETINA-A�

A sleep-retina-A� link is plausible, as PLR of the
eye and sleep regulation are both mediated by the
retina’s population of mRGCs. Table 1 provides an
overview of the studies examining the links between
sleep, the retina, and AD. A possible mechanism for
sleep-wake disruption in AD may be caused by the
deposition of retinal A� surrounding the functional
mRGCs, attenuating their role as regulators of circa-
dian rhythms [17, 53, 54]. La Morgia et al. performed
OCT in AD (n = 21) and healthy age-matched con-
trols (n = 74) to determine if there is an age-related
loss of RNFL thickness [55]. Using actigraphy, the
authors reported circadian rhythm dysfunction and
reduced sleep efficiency in the AD group. Moreover,
in postmortem analysis of horizontal retinal sections
(AD n = 17, control n = 13) using antibodies targeting
melanopsin, the authors reported axonal loss due to
age, and a loss of mRGCs independent of age. Further
analysis of the postmortem AD retinas revealed selec-
tive deposits of retinal A� surrounding the mRGCs
in the superior region [55]. However, this is an early
link as results have only been reported by one group,
and independent investigations by other researchers
are required to validate these findings.

Of interest, Oh et al. tested PLR as a function of
the mRGCs in a preclinical cohort of AD to measure
its suggested dysfunction [56]. The team did not find
statistically significant differences between the AD
subjects and control groups in terms of PLR func-
tion but noted the variability in sleep-wake function
within the preclinical AD group [57].The authors sug-
gested that there may be further subtypes of mRGCs
to account for the preserved function of PLR and
disruption in sleep-wake rhythms [57, 58]. Further
investigation may help understand the link between
mRGC function and AD symptom expression of dis-
rupted sleep.

Moreover, there is emerging literature reporting a
connection between obstructive sleep apnea (OSA),

retinal health, and AD. Ferrandez et al. reported that
peripheral vision function is reduced in individuals
with OSA when compared to age-matched controls
[59]. Brodie et al. and Schall et al. noted that individ-
uals with OSA have a higher risk for retinal diseases
such as diabetic retinopathy and age related macular
degeneration (AMD) and the effectiveness of anti-
vascular endothelial growth factor (VEGF) therapy
treatment for AMD is reduced in individuals with
OSA [60, 61]. Possible mechanisms associating OSA
to retinal health includes high or transient changes in
blood pressure due to OSA which increase sympa-
thetic nerve stimulation and reduces blood flow to the
eye, OSA-related hypoxia altering the chemical envi-
ronment or high production of VEGF being expressed
[60, 61]. Owen et al. reported that presence of tau
within the hippocampus was independent of OSA
severity, whereas A� deposition in the hippocam-
pus was highly correlated to OSA severity [62]. The
2022 American Thoracic Society workshop; a mul-
tidisciplinary perspective on OSA, cognition, and
dementia, strengthens the OSA and AD association
as they note a heterogenous improvement in cogni-
tive domains in studies of continuous positive airway
pressure (CPAP) treatment [63]. Overall, the infor-
mation and mechanisms explaining the bidirectional
relationship of various types of sleep disruption in
AD could provide surrogate biomarker evidence for
early AD diagnosis in addition to its physiological
link.

ROLE OF HORMONES

To further understand the mechanisms behind the
crosstalk between A�, the retina, and sleep in AD, it
is important to mention the role of certain circadian
hormones linked to photoentrainment (synchroniz-
ing of circadian rhythm cycles to light and dark).
Figure 3 illustrates the crosstalk between A� retina
and sleep in AD and the involvement of hormones.
Hormones such as melatonin, orexin, ghrelin, and
leptin are associated with sleep regulation and their
levels have been shown to be disrupted in AD. Fur-
thermore, the resultant A� deposition in the retina
can negatively affect retinal health. Melatonin is one
of the direct modulators of sleep quality. Orexin is
an arousal hormone and plays an important role in
sleep regulation [64]. In sleep deprivation caused by
narcolepsy, levels of orexin within the CSF have been
found to be abnormal [64]. Similarly, in animal and
cell model studies Liu et al. reported an increased
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Fig. 3. Proposed mechanism for A� in the retina to cause sleep-wake cycle and circadian hormone disruptions. A) Physiological pathway of
circadian activity. B) Normal activity of sleep hormone expression in response to light saturation in day and night. C) Changes to sleep-wake
patterns in response to AD, Retinal A� may disrupt the pathway observed in (A) in AD, thereby causing disruption in sleep quality. D)
Circadian hormones effected in AD, where CSF orexin expression is decreased and the attenuation of ghrelin and leptin’s neuroprotective
role. A�, amyloid-�; AD, Alzheimer’s disease; SCN, suprachiasmatic nucleus.

expression of orexin receptors in the presence of
A�, thereby, increasing the effectiveness of orexin
causing arousal [65]. Ligouri et al. review orexin’s
circadian regulation and the prevalence of its dys-
regulation due to AD, resulting in sleep impairment
[66]. This review highlights a similar pattern of orexin
dysregulation occurring in preclinical AD individu-
als. The circadian dysregulation causes disruption in
the expression of orexin and melatonin levels and in
turn cause alterations of the sleep cycle, secondar-
ily affecting the clearance of A� [67]. Beyond the
scope of this review, the role of transcriptomics and
genetic information including the role of clock genes
(period and cryptochrome genes) may further explain
the complex mechanisms in the crosstalk between
A�, sleep and retina. The proposed effect of AD on
the retina’s health and circadian influence, in con-
text of growing evidence of an ocular lymphatic and
glymphatic system [68] may provide insight on AD
and A�’s effect on sleep and the retinal presenta-
tion.

Other hormones of interest are ghrelin, and lep-
tin which are known as hunger hormones [66].
These peptides are recognized as important players
in metabolic dysfunction seen within AD individ-
uals and have been successfully correlated to the
risk of obesity; with excess body weight contribut-

ing to cognitive decline and developing AD [69,
70]. These hormones play additional peripheral roles
within the hippocampus, promoting learning, and
memory [71], whereby there is evidence leptin recep-
tors are expressed within the hippocampus [72, 73].
Fewlass et al. have demonstrated that leptin treatment
can modulate A� clearance [74] and therefore leptin
deficient models are suggested to have poor spa-
tial memory and downstream increases of brain A�
[75]. Ghrelin supports the maintenance of neuronal
synapse formation as Carlini et al. has demonstrated
with dose injections of ghrelin at concentrations of
0.3, 1.5, and 3 nm within a WISTAR rat model and
the step-down test, that memory retention increases
are proportionate with the level of ghrelin [76].
Moreover, the Martins et al. group reported that
both leptin and ghrelin improved hippocampal cell
survival against A� oligomer toxicity [71]. Sleep
deprivation can impact the expression of these hunger
hormones as seen within normal circadian activity
[77]. The outcomes of the study by Figueiro et al.
demonstrate that the levels of both ghrelin and leptin
in sleep restricted individuals are influenced by morn-
ing light, independent of other normal stimulants
[78]. Retinal and sleep-wake interactions influencing
hormone expression warrant further study; exploring
within AD and preclinical AD cohorts may further
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understanding on the mechanisms which connect AD
retinal pathology and sleep disruption.

CONCLUSION

Based on this review, it is suggested that the assess-
ment of sleep, circadian rhythm and related hormones
may have the potential to be used as surrogate markers
along with changes identified using retinal imaging.
The presence of sleep-wake disruption in AD, early,
preclinical and MCI stages, are well evidenced in the
literature suggesting that sleep-wake functions could
be a viable early intervention target for risk factor
modification. From the association between sleep and
mRGCs, sleep and related hormone level disruptions
may indicate retinal damage in AD might be used as
a novel diagnostic marker. Current early diagnostic
markers are invasive, expensive and cannot be used
in a clinical setting, whereby imaging of the retina
would allow us to non-invasively investigate brain
health in AD. New methods such as hyperspectral
imaging have clinical trials currently underway to
address challenges associated with imaging the live
human retina to identify signature AD biomarkers
and thereby validate a simple eye test for population
screening. There is a need for future studies using
gold standards of measuring sleep neurophysiology
to cross-sectionally and longitudinally evaluate the
extent of the retinal influence on sleep-wake changes,
cognitive decline and A� accumulation. Therefore,
the associations, synergies and crosstalk between reti-
nal health, sleep-wake functions and A� may further
inform diagnosis and screening of preclinical and AD
populations.
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