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Abstract.
Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that is most prevalent in elderly
individuals, especially in developed countries, and its prevalence is now increasing in developing countries like Pakistan.
Objective: Our goal was to characterize key genes and their levels of expression and related molecular transcriptome networks
associated with AD pathogenesis in a pilot case-control study in a Pakistani population.
Methods: To obtain the spectrum of molecular networks associated with pathogenesis in AD patients in Pakistan (com-
paring cases and controls), we used high-throughput qRT-PCR (TaqMan Low-Density Array; n = 33 subjects) coupled
with Affymetrix Arrays (n = 8) and Ingenuity Pathway Analysis (IPA) to identify signature genes associated with Amyloid
processing and disease pathways.
Results: We confirmed 16 differentially expressed AD-related genes, including maximum fold changes observed in CAPNS2
and CAPN1. The global gene expression study observed that 61% and 39% of genes were significantly (p-value 0.05) up- and
downregulated, respectively, in AD patients compared to healthy controls. The key pathways include, e.g., Amyloid Processing,
Neuroinflammation Signaling, and ErbB4 Signaling. The top-scoring networks in Diseases and Disorders Development were
Neurological Disease, Organismal Injury and Abnormalities, and Psychological Disorders.
Conclusions: Our pilot study offers a non-invasive and efficient way of investigating gene expression patterns by combining
TLDA and global gene expression method in AD patients by utilizing whole blood. This provides valuable insights into
the expression status of genes related to Amyloid Processing, which could play potential role in future studies to identify
sensitive, early biomarkers of AD in general.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia, and it is defined by cogni-
tive decline coupled with extracellular deposit of
amyloid-� (A�) protein in the form of plaques and
intracellular hyperphosphorylation of the tau pro-
tein in the form of tangles [1]. The pathogenesis of
AD begins with impaired synaptic function, which
may result from extracellular deposition of the A�
in the form of senile plaques, the appearance of
intracellular neurofibrillary tangles, and cholinergic
deficit. Studies also showed that the extensive neu-
ronal loss, synaptic changes in the cerebral cortex
and hippocampus, and other areas of the brain essen-
tial for cognitive and memory functions, may also be
involved in AD progression [2].

Recent epidemiological data suggest that the
prevalence of AD is higher in developed countries
such as Western Europe and the United States com-
pared to Asia and Africa, [3]. However, there are
substantial numbers of affected individuals in South
and East Asian regions, particularly in China, Japan,
India, and Pakistan [4]. Pakistan is the sixth most pop-
ulated country in the world and has 150-200 thousand
people living with dementia [5]. The cause of contin-
ued rise of AD in the Pakistani population remains
unknown. However, researchers observed a 2% to 6%
rise in dementia cases among people over 65 years
of age, as life expectancy increases in this country
[6]. Reported studies suggest that environmental and
lifestyle factors contribute to the risk of developing
AD, especially in those who have specific genetic
alterations [7].

Diagnosis of AD often occurs when severe neu-
rodegeneration has already progressed, associated
with cognitive decline [8]. Several potential biomark-
ers are being evaluated for their ability to detect at the
early stages of AD, such as A� and tau protein levels
in cerebrospinal fluid (CSF), and brain changes (pro-
gressive cerebral atrophy) detectable by imaging [9].
Recent evidence suggests that A� and tau levels in
CSF may also change at various stages of the disease
progression [8]. Insights into disease mechanisms can
further be expanded due to the current development
of molecular diagnostics and transcriptomic analysis
[10, 11].

The use of invasive methods like obtaining CSF
requires skilled expertise and carries significant med-
ical risks [8, 9]. In contrast, whole blood is an
incredibly useful tissue sample that requires minimal
risk during collection (minimally invasive) and can be

accurately profiled due to its richness in gene expres-
sion information. [12, 13]. In our previous study,
we successfully identified signature genes associated
with Type 2 diabetes and related comorbidities in an
US African American (AA) population by analyz-
ing peripheral blood samples [12–16]. The present
study aims to investigate the expression levels of
genes involved in Amyloid Processing using periph-
eral blood tissue samples from Pakistani patients
with AD. To achieve our goal, we employed a rapid
and direct approach using the TaqMan Low-Density
Array (TLDA) method, which utilizes a preselected
set of ninety-six (96) genes, to analyze gene expres-
sion from whole blood samples. This approach will
allow us to investigate the expression levels of genes
specifically associated with Amyloid Processing.
Additionally, we aimed to explore global gene expres-
sion patterns in a pilot group, which will provide an
understanding of the associated gene networks and
their underlying pathogenetic pathways that may be
involved in this understudied population.

METHODS

Selection of participants

Participants were selected from a convenience
sample of 132 AD patients enrolled in the Pakistan
from January 2016 to February 2018 from outpatient
departments of regional hospitals in different cities
of Pakistan (Supplementary Table 1), as previously
reported [14]. Clinical diagnosis of AD was per-
formed by experienced neurologists using standard
methodologies including neurological examinations,
magnetic resonance imaging (MRI), or computed
tomography (CT) at various institutions. Detailed
medical interviews also undertaken with the con-
sent of participant’s family member, friends, or
caregivers regarding the changes in the patient’s
thinking skills as per AD Diagnostic Guidelines of
National Institute of Aging and National Institute
on Aging-Alzheimer’s Association workgroups on
diagnostic guidelines for AD [17, 18]. The Mini-
Mental State Examination (MMSE) test was further
administered for each subject and scores are recorded,
confirming the diagnosis of AD and the stage of the
disease (MMSE Score range: 19–24 = early stage;
10–20 = moderate stage; <9 severe cognitive impair-
ment in AD) [19]. In this study, only the participants
with severe cognitive impairment (MMSE < 9) were
selected among our patient’s pool (AD, n = 19, aver-
age age 76.52 ± 10.7 years). The control group
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Table 1
Characteristics of study participants

Characteristics AD participants (n = 19) Healthy control (n = 22) p

Age (y) 76.52 ± 10.72 70.02 ± 6.56 0.02
Gender (M/F) 8/11 9/13 –
BMI (kg/m2) 21.42 ± 2.15 22.03 ± 2.02 0.10
HbA1c (mmol/mol) 5.29 ± 0.52 4.94 ± 0.56 0.08
Mini-Mental State Examination score 8.71 ± 0.57 – –
Family History of AD (%) 47 None –
Hypertension (%) 79 22 <0.001
Cardiovascular disease (%) 42 18 0.093
*Smoker (%) 26 18 0.53

*Among the participants in our smoker group, smoking habit was on average 7 ± 10 years, with a daily consumption
varying between 1 and 10 cigarettes per day.

participants (n = 22, average age 70.02 ± 6.5 years)
were free from any major reported illness and had
not undergone any major surgical procedures during
the last 5 years. The cases and controls were well bal-
anced with respect to gender, body mass index and
HbA1c levels (Table 1).

The study was undertaken with prior approval of
Howard University Institutional Review Board (IRB-
17-MED-43), and informed consent was obtained
from volunteers as per the approval of the Institutional
Review Board (IRB) of Atta-ur-Rahman School of
Applied Biosciences (ASAB), National University of
Sciences and Technology (NUST) (28/IRB; dated 20
April 2016).

Informed consent was obtained from all individual
participants included in the study.

Blood collection and cDNA synthesis

Whole blood was collected in PAXgene® Blood
RNA Tubes (BD, Cat. #762165) from the outpatient
department of the hospitals by experienced phle-
botomists. RNA was extracted from the PAXgene
tubes using the PAXgene Blood RNA Kit IVD (Qia-
gen, Cat. #762164 of PreAnalytiX GmbH, Germany)
according to the manufacturer’s instructions. Con-
taminating DNA was removed with the Invitrogen
DNA-free kit (ThermoFisher, CA, Cat #AM 1906).
RNA content was determined spectrophotometrically
with nanodrop at 230, 260, and 280λ. RNA qual-
ity was also verified by Agilent bioanalyzer analysis
using an RNA 6000 nanochip prior to microarray chip
hybridization as a part of quality control measures.
After that, total RNA was reverse-transcribed to
cDNA by using High-Capacity cDNA Reverse Tran-
scription Kits (Part # 4387406; Applied Biosystems,

CA, USA) according to manufacturer’s instruction
and stored (at -20◦C) for further process [15].

High-throughput TaqMan® low-density array
(TLDA)

In the TLDA array study, a total of 33 partici-
pants were included of which fifteen (15) were in
the AD group and eighteen (18) individuals were
in the control group. We carefully considered age,
gender, BMI, HbA1c, and MMSE score in each
group (Supplementary Table 3). To investigate gene
expression profiles related to the amyloid hypothesis
in AD, we conducted a TLDA card-based profiler
array analysis using the TaqMan® Array (FAST
Plate) from Applied Biosystems (Catalog # 4418715,
Santa Clara, CA, USA) on the ABI 7900HT-Fast
Real-time PCR system for quantification. These
cards are designed with preselected ninety-six
(96) genes, including a reference gene (GAPDH
(Hs99999905 m1) and a manufacturer control (18 s
rRNA (Hs99999901 s1), specifically related to the
amyloid-� protein precursor (A�PP) processing, A�
aggregation, tau hyperphosphorylation, excitotoxic-
ity, inflammation, oxidation microglial activation and
cholesterol biosynthesis (Supplementary Table 2).
The selection of genes was based on informa-
tion obtained from publicly available databases and
relevant literature [20–27]. The TLDA data were ana-
lyzed and compared to the control using SDS Ver. 2.4
software (ABI, CA). To visualize and further expres-
sion analysis, the data were exported in plate-centric
format to RQ Manager (ABI, V 2.4) which allowed
us to look at the differential gene expression status of
each gene in the study participants compared to con-
trol subjects. We applied t-tests to assess the statistical
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Table 2
Top Canonical Pathways (Global gene expression) from IPA Results with their p-value in the AD population

Top canonical pathways p* Overlap (%) *

Amyloid Processing 1.02E-34 44.7
nNOS Signaling in Neurons 1.42E-13 23.3
ErbB4 Signaling 8.55E-16 18.1
Neuroinflammation Signaling Pathway 5. 20E-27 10.7
Molecular Mechanisms of Cancer 8.96E-13 5.4

Top Diseases and Bio functions

Diseases and Disorders

p Range #Molecules

Neurological Disease 3.90E-02 – 2.08E-27 37
Psychological Disorders 3.90E-02 – 2.08E-27 33
Organismal Injury and Abnormalities 3.90E-02 – 2.08E-27 32
Metabolic Disease 1.97E-02 – 8.85E-25 25
Skeletal and Muscular Disorders 3.90E-02 – 1.13E-08 15

Molecular and Cellular Functions

p Range #Molecules

Cell Death and Survival 4.54E-02 – 5.84E-11 18
Cell Morphology 2.35E-02 – 3.17E-08 15
Cellular Growth and Proliferation 3.90E-02 – 3.49E-08 15
Cellular Development 3.90E-02 – 3.49E-08 14
Cellular Compromise 2.62E-02 – 1.37E-08 6

Physiological System Development and Function

p #Molecules

Nervous System Development and Function 3.90E-02 – 3.17E-08 23
Tissue Development 3.90E-02 – 3.49E-08 13
Organismal Development 1.32E-02 – 1.79E-07 11
Tissue Morphology 3.26E-02 – 1.37E-08 7
Organ Development 1.32E-02 – 9.55E-06 6

*The data was generated using Ingenuity Pathway Analysis (IPA) from QIAGEN, USA, January 2023 Release, and incorporated the relative
gene expression levels measured in the patients’ group. The percentage of overlap was calculated as a statistical measure to evaluate the
enrichment of network-regulated genes in input dataset. This measure quantifies the likelihood of observing the resulting overlap between
the network-regulated genes (Ingenuity Knowledge Base) and the genes present in the dataset (observed result). The p-value was measured
to understand the likelihood that the association between a set of molecules in our dataset and a related disease or function is due to random
association. The smaller the p-value (which means a larger log of that value), the less likely that the association is random and the more
significant the association. In general, p-value s ≤ 0.05 (log = 1.3) indicate a statistically significant, non-random association. The p-value
was calculated using a right-tailed Fisher’s Exact Test. Molecules: Number of significant molecules that are associated with each function.
The percentage of overlap was calculated as a statistical measure to evaluate the enrichment of network-regulated genes in a given dataset.
This measure quantifies the likelihood of observing the resulting overlap between the network-regulated genes (Ingenuity Knowledge Base)
and the genes present in the dataset (observed result).

significance of differential expressions in between
control and patient group samples.

In the protocol, rigorous quality control was main-
tained by incorporating 18 S rRNA as an internal
control with a constant expression level across the
samples. To meet the manufacturer’s recommenda-
tion, the mean standard deviation (SD) of 18 S rRNA
�CT was kept below 1 value (18 S rRNA Aver-
age �CT –11.88 ± 0.60 (SD < 1), ensuring a reliable
measure of individual TLDA card and gene expres-
sion level. In order to ensure consistency in batch
variation, we adhered to the methodology outlined
in the study conducted by Lappan et al. (2022) [28].
Our study involved the utilization of the same sets
of TLDA cards, all of which originated from the

same production batch (TaqMan Array 96-Well Plate,
Batch No. 2106012).

Global gene expression array

In the global differential gene expression pilot
study, AD participants (n = 4) and healthy controls
(n = 4) were selected with equal numbers of males
and females in each group (Supplementary Table 3).
The oligonucleotide microarray experiments were
conducted by EpigenDx (Boston, MA) using the
Affymetrix U133 Plus 2.0 Array platform, which
has comprehensive coverage of the whole transcribed
human genome on a single array. Differentially
expressed gene sets were analyzed with microarray
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results using a one-way ANOVA model by Partek
Genomic Suites (GS- V.4.1; Partek Inc., St. Louis,
MO, USA). The probe summarization and probe
set normalization were done using the GC-RMA
algorithm, which included GC-RMA background
correction, quantile normalization, log2 transforma-
tion and median polish probe set summarization
[29]. The study outcomes maintained the false pos-
itive percentage < 5% and 0.05 significant level. To
ensure quality control in the global gene expres-
sion array, multiple measures were implemented.
These include > 4-fold cRNA amplification from total
RNA/cDNA, scaling factors kept below 2 to achieve
whole-chip normalization of 800, and visual inspec-
tion of hybridization patterns to identify any chip
defects.

To assess the uniformity of assay performance with
the array cards, multiple manufacturing lots were
tested by the manufacturer [30]. Sensitivity mea-
surements based on the spikes and reproducibility
measurements based on the non-spike, non-control
(∼54,000) probe sets were obtained for the nine lots.
The data showed relatively uniform results among
the different lots. Spike detection (96 to 100%) and
change calls (96 to 100%), as well as false change
rates (0.16 to 0.26%), produced highly consistent
results between different lots.

Identification of cellular processes and pathways
by IPA

From the differential gene expression data sets
described above, the identification of cellular pro-
cesses and pathways by IPA was performed to identify
the key genes, biological functions, and network anal-
ysis. Briefly, the data sets comprising gene identifiers
and corresponding expression values (fold change
along with p values) from the microarray experiment
was imported to the IPA [31]. Differentially expressed
gene identifiers were then mapped to related changes
in biofunctions (cut of value p < 0.05 and the ± 2-fold
changes). Networks were algorithmically generated
based on their connectivity. A score (p-score=– log10
(p-value)) according to the fit of the set of sup-
plied genes and a list of biological functions stored
in the Ingenuity Knowledge Base was generated
[32]. Networks were “marked” on the most preva-
lent functional group(s) present. Canonical Pathway
(CP) analysis identified function-specific genes sig-
nificantly present within the networks. In the CP
analysis, the percentage of overlap was calculated
as a statistical measure to evaluate the enrich-

ment of network-regulated genes in each dataset.
This measure quantifies the likelihood of observing
the resulting overlap between the network-regulated
genes (IPA Knowledge Base) and the genes present
in the dataset (observed result).

Statistical analysis

Statistical analysis was performed using the chi-
square test and t-test for comparisons between the
AD versus control group, to observe any significant
differences in clinical parameters and comorbidities.
T-tests were applied to assess the significance of
differential expressions between control and patient
group samples. Reported data were represented as
means ± SEM and figures were produced using Excel
and GraphPad Prism (version 8) software. Differ-
entially expressed gene sets were analyzed with
microarray results using a one-way ANOVA model
by Partek Genomic Suites (GS-V.4.1; Partek Inc., St.
Louis, MO, USA). We corrected the global expres-
sion data set outcome by applying the false discovery
percentage (FDR) at alpha < 5%; p-value of < 0.05
was considered significant [33–35]. Pearson correla-
tion coefficient calculation was calculated using the
RMA-normalized gene expression data in the target
data matrix. In the IPA analysis, Fisher’s exact test
was applied to measure p-value to understand the like-
lihood that the association between a set of molecules
in our dataset and a related disease or function is
due to random association. The smaller the p-value
(which means a larger –log of that value), the less
likely that the association is random and the more sig-
nificant the association. In general, p-value s ≤ 0.05
(–log = 1.3) indicate a statistically significant, non-
random association.

RESULTS

Gene expression analysis by TLDA

In the TLDA array study, 33 participants were
included (15 from the AD group, 18 from the con-
trol group). TaqMan® Array analysis was conducted
using a TLDA card-based profiler array with pres-
elected 96 genes related to amyloid hypothesis in
AD. It is known that the aberrant accumulation
of aggregated A� peptides as plaques, a hallmark
of AD [2]. Therefore, we primarily targeted genes
involved in amyloid processing. These genes were
selected based on information obtained from publicly
available databases and relevant literature [21–27].
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Fig. 1. A) Quantitative real-time PCR (qRT-PCR) validation of the selected 16 genes which were significantly up or down regulated (±10-
fold change). B) Quantitative real-time PCR (qRT-PCR) validation of 66 genes which were up- or downregulated below ± 10-fold change.
The study was performed using TaqMan low-density array (TLDA) in ABI platform (7900HT Fast Real-Time PCR System) and analyzed
(��Ct) by SDS RQ Manager Version 1.2.1. The relative quantification (RQ) of the genes showing up-/downregulation among the AD
subjects in a small population (n = 15). The RQ is calculated in contrast to healthy control samples (n = 18).

Among the set of 96 genes analyzed, we observed
amplification in 82 genes. Out of these, sixty-five
(65) genes showed upregulation, indicating higher
expression levels, while 17 genes exhibited down-
regulation, indicating lower expression levels in AD
patients compared to the control group (Fig. 1A, B).
Sixteen (16) genes (Supplementary Table 5) were sig-
nificantly up- or downregulated (p value < 0.05). The
upregulated genes were ACHE, AGER, APP, BPTF,
CAPNS2, CD5R1, CHRM1, GAL, GJB1, PSENEN,
SLC18A3, and SNCA. The downregulated genes were
CAPN1, GAP43, GRIN2A, and GRIN2B.

Gene network and canonical pathways based on
TLDA

The top canonical pathways (based on the over-
lap percentage and p-value <0.05) were Amyloid
Processing, nNOS Signaling in Neurons, ErbB4
Signaling, Neuroinflammation Signaling Pathway,
Reelin Signaling in Neurons (overlap percentages
were 42.9, 22.7, 19.2, 9.7, and 9.4 respectively).
Top Disease and Disorders (with maximum num-
ber of molecules involved therein and p-value <0.05),
were Organismal Injury and Abnormalities, Organis-
mal Injury and Abnormalities, Neurological Disease,
Psychological Disorders, and Metabolic Disease.
The top Molecular and Cellular Functions were
Cell Morphology, Cell Death and Survival, Cellu-
lar Compromise, Small Molecule Biochemistry, and
Lipid Metabolism. The top Physiological System

Development and Functions were Nervous System
Development and Function, Tissue Development,
Organismal Development, and Tissue Morphology
(Supplementary Table 4).

Global gene expression

To further examine additional potential gene
expression pattern differences associated with AD,
we performed a pilot global gene expression anal-
ysis on 4 AD subjects and 4 control subjects using
an Affymetrix gene chip. Out of a total of 53,618
transcripts on the gene chip, 31,136 genes were differ-
entially expressed in the AD subjects. Of these 31,136
genes, the differential expression of 1,657 genes were
significantly expressed when we compared between
the cases and control (p-value <0.05). The results
showed that 61% (1,017 genes) were downregulated,
and 39% (640 genes) were upregulated, with fold
changes ranging between+14 (upregulation) to -189
(downregulation) (Supplementary Figure 4). These
significantly expressed genes were analyzed by IPA
analysis to divulge their gene networks and disease
pathways.

Top biofunctions and associated diseases and
disorders

IPA analysis was used to investigate the func-
tional roles and molecular mechanisms of the
differentially expressed genes (Table 2). The top
canonical pathways (based on ≥ 2.0-fold change and
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Fig. 2. A) The stacked bar chart represents a summary of total upregulated (red) and downregulated (green) genes representing 22 important
signaling and disease pathways in AD subjects compared to controls. The output core analysis, reflecting the differential gene expressions
obtained from the microarrays (gene sets with ≥ 2-fold change, t-test, p < 0.05). B) Ingenuity Pathway Analysis (IPA)-derived Amyloid
Processing network of differentially expressed genes derived from microarray analysis. IPA analysis identified a group of genes expression
status and their potential interactive links in the context of Amyloid Processing, Neuronal Death. We noted activation of Gamma Secretase,
Beta Secretase, upregulation of ERK1/2 CK1/2 P38MAPK, PKA, PRKCE, CDK5, and CDK5R1 and downregulation of MAPT, and GSK3B.

a p-value <0.05) were Amyloid Processing, Neu-
roinflammation Signaling Pathway, ErbB4 Signaling,
nNOS Signaling in Neurons, and Molecular Mech-
anisms of Cancer. Top Diseases and Disorders,
based on ≥ 2.0-fold change and a p-value <0.05,
were Neurological Disease, Organismal Injury and
Abnormalities, Psychological Disorders, Metabolic

Disease and Skeletal and Muscular Disorders. The
top Molecular and Cellular Functions were Cell
Death and Survival, Cellular Compromise, Cell Mor-
phology, Cellular Development, and Cellular Growth
and Proliferation. The top five Physiological System
Development and Functions were Tissue Morphol-
ogy, Nervous System Development and Function,



486 T. Mondal et al. / Transcriptomic Analysis of AD Pathways in a Pakistani Population

Fig. 3. Network of differentially expressed genes in the important signaling pathways in the AD participants, relative to healthy control
subjects. Connections between differentially expressed genes were processed for those with ≥ 2-fold change, t-test, p < 0.05. Geometric
figures in red denote upregulated genes, and those that are green indicate downregulation. Canonical pathways for signaling that are highly
represented are shown within the box. Genes in uncolored notes were integrated into computational generated networks based on evidence
stored in the IPA knowledge base.

Tissue Development, Organismal Development and
Organ Development (Supplementary Figure 1). An
overall downregulation trend in gene expression was
identified according to different disease pathways,
wherein G-Protein Coupled Receptors Signaling
showed the highest number of genes involved
(n = 259), and Airway Pathology in Chronic Pul-
monary Obstructive Disease contained the lowest
number of genes involved (n = 6) (Supplementary
Figures 2 and 3).

Amyloidosis and amyloid processing pathways

The global gene expression data reveals the genes
involved in amyloidosis processes were upregulated.
We found that Amyloid Processing had the highest
percentage (43%) of similar set of up and down-
regulated genes, which overlapped with the existing
data set reported in the IPA (Fig. 2A). We also
observed significant upregulation of ERK1/2, CK1/2,
P38MAPK, PKA, PRKCE, CDK5, and CDK5R1, and

downregulation of MAPT, and GSK3B involved with
the Amyloid Processing Pathway (Fig. 2B).

Other canonical pathways (CP) and gene
ontology (GO) enrichment of biological
processes

The top canonical pathways with AD-related
Gene Networks were: 14-3-3-Mediated Signaling,
Amyloid Processing, Neuro-Inflammation Signaling
Pathway, Mitochondrial Dysfunction, Parkinson’s
Signaling, Apoptosis Signaling, Sirtuin Signaling
Pathway, and Glucocorticoid Receptor Signaling
(Fig. 3). The genes APP, APOE, CASP3, MAPT,
PSEN1, GSK3B, and TNF were all downregulated,
while LRP1, PSNEN, LAMA1, and FGF2 were upreg-
ulated (Fig. 3). The genes, e.g., APP, ATF4, CD74,
CNR1, GAP43, NOS1, NOS2, NTRK2, PCNA, PRNP,
SNCA, TNF, BAX, THY1, EIFA2K3, GFAP, and IL10
were in common with those observed in other pro-
gressive neurological disorders, such as Parkinson’s
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Fig. 4. A) Network of differentially expressed genes in the important signaling pathways of progressive neurological disorders and linked
with Parkinson’s disease in AD subjects. B) Network of differentially expressed genes in the important signaling pathways of progressive
neurological disorders linked with neuromuscular disease in AD subjects.

disease (Fig. 4A) and other neuromuscular diseases
(Fig. 4B).

DISCUSSION

Pakistan faces a significant burden of dementia,
with an estimated 150-200 thousand affected indi-

viduals [5]. The rise in AD cases among the aging
population globally necessitates a quick, dependable,
and minimally invasive diagnostic method. Biomark-
ers such as A� and tau levels in CSF and brain
imaging (MRI/CT scan) are currently being practiced
for early detection [8, 9]. Usage of whole blood sam-
ples can augment those approaches as a non-invasive
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liquid biomarker, a low-risk alternative for genetic
assessment compared to invasive procedures. Many
studies based on GWAS, NGS, and transcriptomic
expression studies on brain tissue samples have pro-
vided potential biomarker genes to predict the risk of
developing AD. Those genes included CLU, SORL1,
ABCA7, PLD3, PICALM, NME8, TREM2, AKAP9,
and ADAM10 [36]. In contrast, our study aimed to
investigate the altered expression of genes involved
in Amyloid Processing by utilizing peripheral blood
tissue samples from Pakistani patients with severe
AD. We evaluated the global gene expression pat-
terns by analyzing differentially expressed genes and
their associated canonical pathways to understand
biological mechanisms underlying AD in Pakistani
population. Notably, the study is first ever reported
from a Pakistani population.

Despite the increasing prevalence of AD in the
region, knowledge of biological pathways potentially
regulating its pathophysiology is lacking. Previous
studies suggested multifactor associations such as
hypertension, poor hygienic conditions, poverty, illit-
eracy, high prevalence of diabetes mellitus, and
cardiovascular diseases in Pakistan [37]. Recent stud-
ies suggest dyslipidemia could also be related to AD
risk as a component of metabolic syndrome [38].
The prevalence of dyslipidemia in this population
is another probable factor because the majority eats
food containing highly saturated fats [39]. Smoking
is associated with an increased risk of dementia as
it contributes to various vascular problems, such as
strokes or smaller bleeds in the brain, which are also
known risk factors for dementia [40]. A recent study
observed a significant interaction between APOE
genotype and smoking status (p = 0.002) in a Euro-
pean cohort [40]. Although we noticed that most
of the AD participants were nonsmokers, whereas
cardiovascular disease and hypertension were more
predominant in the population. Cardiovascular risk
factors have long been recognized as closely related
to the development of AD [41]. Simultaneously,
there is documented evidence that concurrent cere-
brovascular disease is more frequently observed in
AD compared to other neurodegenerative diseases
[41]. We also observed an increased number of par-
ticipants with cardiovascular disease compared to
the control group. Many studies have reported that
midlife hypertension is linked to an elevated risk
of cognitive decline and dementia, including AD
[42, 43]. Hypertension causes cerebrovascular dis-
ease that may increase the possibility for individuals
with AD encephalopathy to express dementia syn-

drome [44]. Moreover, hypertension induces changes
in the vessel walls of the brain, resulting in hypoper-
fusion, ischemia, and hypoxia, which could initiate
the pathological process of AD [44]. Recent stud-
ies indicate that hypertension may further enhance
the progression of AD through an amyloid-dependent
pathway, modulating the effects of apolipoprotein E
�4 (APOE4) in AD patients [43]. Furthermore, we
noted a significant presence of hypertension among
participants in the AD group compared to the control
group (p < 0.001).

In our TLDA study, among the amyloid pro-
cessing gene set we identified 16 genes (ACHE,
AGER, APP, BPTF, CAPNS2, CD5R1, CHRM1, GAL,
GJB1, PSENEN, SLC18A3, SNCA, CAPN1, GAP43,
GRIN2A, and GRIN2B) that showed significant up-
or downregulation compared to the control group.
Notably, CAPNS2 exhibited maximum upregulation
while CAPN1 showed a maximum downregulation.
These genes belong to the Calpains gene fam-
ily, which consists of calcium-dependent proteases
involved in various physiological and pathological
processes in AD [45]. Previous studies examining
brain tissue samples have observed consistent ele-
vation of calpain activity in most AD cases when
compared to controls [32]. This suggests that cal-
pain, a calcium-dependent protease, may play a
significant role in the development and progres-
sion of AD in our studied subjects. Additionally,
the upregulation of CAPNS2 has been found to
precede tau phosphorylation and the loss of synap-
tic proteins in the AD brain that corroborated our
blood-based transcriptomic expression which yielded
similar findings in the majority of our severe AD
patients [46].

In the global gene expression study, we observed
that more than 1,600 genes were differentially
regulated in AD patients compared to controls, and
several genes, e.g., APP, APOE, CASP3, MAPT,
LRP1, PSEN1, GSK3B, and TNF, which were
statistically significant in their expression levels. A
previous study executed brain tissue reported that
autosomal dominant transmission of the disease
in some AD cases and mutations in the specific
genes encoding PSEN1, PSEN2, and APP have been
associated with early-onset familial cases [47]. The
formation of amyloid is decreased by A�PP in AD
with the help of insulin and insulin-like growth
factor (IGF-1) [48]. The expression of APP was
downregulated in our study, and the gene networks
involve Amyloid Processing, APOE regulation,
Neuroinflammation Signaling, Mitochondrial Dys-
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function, and the Sirtuin Signaling Pathway, which
corroborated findings from previous studies [32].

The presence of the APOE4 allele, which is carried
by half of all AD patients, is one of the most signifi-
cant genetic risk factors for the disease [46]. APOE4
influences lipid metabolism by acting as a ligand
for receptors. Genetic studies suggest APOE4 allele
polymorphism is an important risk factor for AD
prevalence in the Pakistani population [46]. Individu-
als who are APOE4 allele positive (or elevated APOE
mRNA level) have a high risk of developing AD [47,
49]. Our results are in accord with those studies and
suggest that the APOE gene promotes and regulates
A�-induced neuroinflammatory response in the neu-
rons of AD patients [48]. Involvement of PSEN1 in
the A� production that cleaves APP into A� frag-
ments, thus helping in A�PP processing. Consistent
with our own results on the downregulation of this
gene, the inactivation of PSEN1 has been reported to
be associated with AD progression [50].

In addition to genes in the amyloid pathways,
several other canonical pathways and genes of inter-
est were prominent in our results. One of these is
the microtubule-associated protein tau (MAPT) gene,
which has been linked to the increased risk of devel-
oping AD [51]. The neurofibrillary tangle formation
in AD contains paired helical filaments (PHFs), and
these PHFs are made of the hyperphosphorylated
form of the MAPT gene [52]. In our study, MAPT
gene downregulation was related to the amyloid pro-
cessing and neuroinflammatory signaling pathways,
in accord with the studies [51, 52]. Recently, GWAS
studies have also confirmed the role of MAPT and its
association with the increased risk of AD [53].

In the pathway analysis, the Amyloid Processing
pathway emerged as one of the most prominent path-
ways with a high degree of overlap observed in both
gene expression studies (profiler genes and global
genes). This outcome was anticipated since A� is
widely recognized as a critical pathological factor in
the progression of AD. The accumulation and aggre-
gation of A� are known to trigger the advancement
of AD, which can be attributed to either A� over-
production or impaired clearance [54]. Nitric oxide
(NO) signaling plays a role in memory development
via neuronal NO synthase (nNOS) and contributes to
neuroinflammation through inducible NO synthase
(iNOS), which regulates inflammatory processes in
the central nervous system [55]. NO-mediated neu-
roinflammation is a fundamental characteristic of
AD, as inflammatory signaling induces the release
of immune mediators that impact neuronal functions

and contribute to neural cell death. Moreover, the
activation of nNOS Signaling leads to the synthe-
sis of nitric oxide (NO), resulting in oxidative and
nitrosative stress in neural cells [56, 57]. Reported
studies suggest that increased bioavailability of NO
is a potential risk factor for AD progression [56,
57]. This finding aligns with our pathway analy-
sis, suggesting the activation of Neuroinflammation
Signaling Pathway and nNOS Signaling in Neurons
as a shared pathway. In the ErbB4 Signaling path-
way, ErbB4 immunoreactivity is colocalized with
the Bax-mediated apoptotic signaling in hippocampal
pyramidal neurons in AD brains [58]. Those find-
ings also indicated that the upregulation of ErbB4
immunoreactivity in apoptotic neurons may play a
role in the progression of AD pathology because of
its role in cognition, learning and memory forma-
tion through the modulation of synaptic plasticity
and neuronal survival [58, 59]. Furthermore, we also
identified the ErbB4 Signaling in Neurons as a com-
mon pathway in both the global gene expression and
TLDA results.

The research approach presented in this pilot inves-
tigation provides potentially valuable insights into
the expression status of genes associated with Amy-
loid Processing, offering a better understanding of
potential mechanisms underlying AD in this spe-
cific population. By utilizing whole blood samples
and employing the TLDA method, our study suc-
cessfully identified the activation or inactivation of
amyloid processing genes and their relationship to
the pathogenesis of AD. Recent transcriptomic stud-
ies based on peripheral blood in a Korean population
revealed that COPS4, PSMA6, GTF2B, GTF2F2, and
SSB were dysregulated in AD patients [60]. Another
study reported that potential peripheral blood tran-
scriptomic biomarkers for AD, including DUSP1,
FOS, SLC7A2, RGS1, GFAP, CCL2, ANGPTL4, and
SSPN expression, matched hippocampus tissue sam-
ple expression in the same patients, suggesting the
utility of blood as an appropriate tissue for exploring
potential biomarkers of the disease [61]. The use of
whole blood as a sample source allows for a non-
invasive and efficient means of investigating gene
expression patterns. This approach holds promise for
future research and potential applications in clinical
settings.

Strengths and limitations of the study

This study has some notable strengths as well
as some limitations. The study primarily focused
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on complex and diverse mechanisms that were
associated with AD-related pathophysiology. This
global gene expression and IPA information con-
tributed to detailed information about differential
gene expression and signaling pathways associ-
ated with AD. On the other hand, our limited
sample size in this pilot study restricted us from
exploring potential links between AD-related gene
expression and environmental and sociodemographic
factors.

Conclusions

Our pilot study characterized differentially
expressed genes and their associated canonical
pathways in relation to potential drivers of AD in
a Pakistani population, utilizing blood as a less
invasive sample source. The results highlighted the
interplay of genes in the relevant biologically path-
ways in amyloid processing and neuroinflammation
signaling, among pathophysiological mechanisms,
which may help us to focus the development of early
biomarkers of AD in the future. Multi-ethnic, large-
scale population validation studies are warranted to
support and expand these early findings.
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