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Abstract.
Background: Mitochondrial DNA (mtDNA) is a double-stranded circular DNA and has multiple copies in each cell. Excess
heteroplasmy, the coexistence of distinct variants in copies of mtDNA within a cell, may lead to mitochondrial impairments.
Accurate determination of heteroplasmy in whole-genome sequencing (WGS) data has posed a significant challenge because
mitochondria carrying heteroplasmic variants cannot be distinguished during library preparation. Moreover, sequencing
errors, contamination, and nuclear mtDNA segments can reduce the accuracy of heteroplasmic variant calling.
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Objective: To efficiently and accurately call mtDNA homoplasmic and heteroplasmic variants from the large-scale WGS
data generated from the Alzheimer’s Disease Sequencing Project (ADSP), and test their association with Alzheimer’s disease
(AD).
Methods: In this study, we present MitoH3—a comprehensive computational pipeline for calling mtDNA homoplasmic and
heteroplasmic variants and inferring haplogroups in the ADSP WGS data. We first applied MitoH3 to 45 technical replicates
from 6 subjects to define a threshold for detecting heteroplasmic variants. Then using the threshold of 5% ≤ variant allele
fraction ≤ 95%, we further applied MitoH3 to call heteroplasmic variants from a total of 16,113 DNA samples with 6,742
samples from cognitively normal controls and 6,183 from AD cases.
Results: This pipeline is available through the Singularity container engine. For 4,311 heteroplasmic variants identified from
16,113 samples, no significant variant count difference was observed between AD cases and controls.
Conclusions: Our streamlined pipeline, MitoH3, enables computationally efficient and accurate analysis of a large number
of samples.

Keywords: Alzheimer’s disease, haplogroup, homoplasmic and heteroplasmic variant calling, mitochondrial DNA, whole
genome sequencing

INTRODUCTION

Mitochondria are intracellular organelles and have
multiple functions beyond oxidative phosphoryla-
tion which generate energy for cells. They also play
important roles in multiple cell metabolism, signal-
ing, etc. Mitochondrial (MT) biology contributes to
complex cellular and organismal processes [1]. Mito-
chondrial impairments increase with age and are
correlated with several age-related diseases including
Alzheimer’s disease (AD) [2]. Mitochondrial DNA
(mtDNA) is a double-stranded circular DNA with
16,569 bases. Mitochondrial genes primarily encode
proteins required for oxidative phosphorylation. Hun-
dreds of mtDNA mutations have been associated
with clinical phenotypes, including multiple neurode-
generative diseases [3]. Unlike nuclear DNA which
typically has two copies, mtDNA can have multi-
ple copies in each cell. The number of copies of
mtDNA within each cell ranges from a few hun-
dred in blood cells to several thousand in neurons
or muscle cells, thus the mtDNA variants have dif-
ferent status, homoplasmy or heteroplasmy. Besides
the copy number difference, mtDNA’s mutation rate
is higher than nuclear DNA due to a relative lack
of DNA-protective histones and efficient DNA repair
mechanisms [4], it is also reported that AD brains had
an average 63% increase in heteroplasmic/somatic
mtDNA control-region mutations [5].

Furthermore, mtDNA’s circular morphology has
introduced an artificial breakpoint on the MT refer-
ence sequence. Reads that should align around the
breakpoint may be discarded when aligned to the
linear reference sequence, which may cause vari-
ant detection failure, especially in the control region.

In addition, nuclear mtDNA segments (NuMTs) can
introduce variant calling errors due to the sequence
similarity to mtDNA. Accurate identification of
NuMT reads and heteroplasmic variants is still chal-
lenging in mtDNA studies. Sample contamination is a
major issue in both nuclear DNA and mtDNA studies,
and external or cross-contamination may also intro-
duce false heteroplasmic calls [6, 7]. VerifyBamID
[8] is commonly used to detect contamination levels
in nuclear DNA, while haplocheck [9] identifies con-
tamination based on the coexistence of mitochondrial
haplogroup incompatibility, using the mitochondrial
phylogeny and the concept of haplogroups.

Accurate calling of mtDNA variants is essential for
the analysis of their association with disease and a
separate variant calling workflow from nuclear DNA
is necessary. There are multiple tools designed for
mtDNA variants calling. MToolBox [10] realigns
reads that have been mapped to mtDNA onto the
nuclear genome to discard NuMTs. mtDNA-Server
is a web-based server using Mutserve for variant call-
ing, and it performs a contamination check based on a
phylogenic tree of mtDNA variation [11]. MitoHPC
performs the second iteration of variant identification
using a sample’s unique mtDNA sequence as the ref-
erence [12] and it also claims that GATK Mutect2
outperforms Mutserve. We recently developed a
pipeline for calling mtDNA homoplasmic single
nucleotide variants (SNVs) and MT haplogroups in
whole-exome sequencing (WES) data obtained from
nearly 11,000 subjects in the Alzheimer’s Disease
Sequencing Project (ADSP) Discovery Phase cohort
with a degree of accuracy comparable to genotypes
called from whole genome sequence (WGS) data
[13]. However, it is challenging to identify mtDNA
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heteroplasmic variants and to estimate MT copy num-
bers from WES data. Indeed, because WGS data
are rapidly emerging from large studies including
the ADSP, there is an urgent need to streamline the
computational pipeline for the accurate and efficient
calling of mtDNA SNVs.

Here, we present a pipeline for calling mtDNA
homoplasmic and heteroplasmic variants, and
MT haplogroups from WGS data obtained from
approximately 17,000 participants of the ADSP
extension and FUS1.0 cohort (Release 3 dataset,
https://adsp.niagads.org/data/data-summary/). This
pipeline, named MitoH3 (Mitochondria DNA
Haplogroup, Homoplasmic and Heteroplasmic vari-
ants calling pipeline) can be applied to WGS data
obtained from as many as several hundred thou-
sand subjects. The pipeline integrates the GATK Best
Practices Mitochondrial Analysis pipeline [14] and
haplocheck [9] which are used for mtDNA variant
calling, quality control, and contamination level esti-
mation.

METHODS

Pipeline development

The MitoH3 pipeline has two main steps. First, it
generates an individual-level VCF file that includes
variants flagged with filters that they failed to pass.
Next, it retrieves variants that pass all the filters and
uses them to infer haplogroup and call heteroplasmic
and homoplasmic variants. Details of each step are
described below.

Variant calling

The pipeline code was written in WDL, a
user-friendly scripting language maintained by the
OpenWDL community and executed by Cromwell
which is an open-source workflow execution engine
that supports WDL and accepts as input a CRAM
formatted file that contains information of WGS
sequence alignment against the human reference
genome. There are multiple processing steps includ-
ing several implemented in the GATK mitochondria
pipeline. First, mtDNA paired-end reads (chrM) were
retrieved, and then reads with an unmapped mate
or mapped to other contigs were excluded. The
remaining chrM reads were mapped to two mtDNA
reference sequences, namely the human-revised
Cambridge Reference Sequence (rCRS) and a version
of the rCRS that is shifted by 8,000 base pairs called

shifted-rCRS. The use of the shifted-rCRS enhances
the quality of variant calling in the control/D-loop
region that contains the artificial break of the circular
genome. Next, GATK Mutect2 was implemented to
detect variants from both realigned mtDNA reads.
Variants called from shifted-rCRS were assigned
their original coordinates and merged with vari-
ants called from rCRS. Finally, multiple GATK [15]
filtering protocols were used to flag problematic vari-
ants including FilterMutectCalls for strand bias and
base quality, NuMTFilterTool for possible nuclear
mtDNA segments variants based on median auto-
somal coverage, MTLowHeteroplasmyFilterTool for
low heteroplasmy if the total low heteroplasmy
exceeds the default threshold of 3, and VariantFiltra-
tion for excluding sites that likely contain unwanted
artifacts. The resultant VCF file contained depths for
the reference and alternative alleles which is essen-
tial information for homoplasmic and heteroplasmic
variant calling. Variants that passed all filters were
retained for subsequent analysis.

Haplogroup inference and heteroplasmic and
homoplasmic variant calling

The haplocheck tool was employed to infer hap-
logroup and estimate the contamination status for
each sample using all variants. Next, we separated the
variants into homoplasmic and heteroplasmic groups.
The variant allele fraction (VAF) was calculated as the
proportion of alternate reads to total reads for one site
[14] and was used to group the variants into homo-
plasmic or heteroplasmic. For example, we can define
a site to be homoplasmic for the rCRS reference allele
if its VAF < 3% and a site to be homoplasmic for
alternative allele if its VAF > 97%. A site is defined
as heteroplasmic if its VAF is between 3% and 97%,
which is referred as “3 97%” for simplicity. We tested
a series of thresholds from “1 99%” to “5 95%” to
find an optimal VAF cutoff. To make the results com-
parable, under each VAF cutoff and within each set
of technical replicates of same subject, we calculated
the ratio of the number of replicates who has the
variant to total number of replicates for each vari-
ant, if the ratio is larger than 0.5, it will be replaced
by 1-ratio. This ratio is regarded as the inconsistent
ratio for the variant of one subject. After calculat-
ing the sum of inconsistent ratio for each subject,
we found that a VAF threshold of “5 95%” had the
lowest overall inconsistent ratio (Fig. 1 and Supple-
mentary Table 1) and therefore was used for calling
homoplasmic and heteroplasmic variants across all

https://adsp.niagads.org/data/data-summary/
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Fig. 1. Sum of inconsistent ratios of (A) Homoplasmic calls and (B) Heteroplasmic calls among technical replicates of each subject (n = 6)
according to 5 different VAF thresholds.

subjects in the ADSP 17k WGS data. Therefore,
variants with VAF > 95% will be homoplasmic for
the alternative allele while 5% ≤ VAF ≤ 95% will
be denoted as heteroplasmic. Of note, “5 95%” is
the same VAF threshold applied in a recent analy-
sis of the TOPMed WGS data [16]. Individual-level
VCFs were merged to create a project-level VCF file
for homoplasmic and heteroplasmic variants, respec-
tively.

Datasets

WGS data were obtained from the ADSP which is
an NIH-funded initiative to identify novel genes and
rare genetic factors associated with AD risk in a large
sample of AD cases and cognitively normal controls
from multiple ancestry populations. Details of subject
ascertainment and classification, library preparation,
and sequencing protocols were described previously
[17]. We applied the MitoH3 pipeline to WGS data
included in the ADSP Release 3 dataset that was
generated from 16,930 individuals. After excluding
239 samples that lacked phenotypic information, 168
samples showing apparent contamination based on
haplocheck results, 88 samples having low average
coverage or a high ratio of singletons (e.g., border-
line samples), 277 duplicate samples detected by IBD
analysis using the GENESIS [18], and 45 techni-
cal replicate samples included as part of the original
ADSP design, 16,113 subjects remained for further
analysis. This sample included 2,954 largely African
American Descent (AA), 3,345 genetically admixed
Caribbean Hispanics (CH), and 9,814 individuals
of largely European ancestry (EA) whose ances-
try group assignments were determined by principal

component (PC) analysis using Gaussian Mixture
Models from scikit-learn [19]. Among the 16,113
DNA samples, 12,226 were extracted from blood
and 2,314 from brain, few from cell line, saliva or
with unknown information. There are 6,742 sam-
ples from cognitively normal controls and 6,183 from
AD cases, and the remaining 3,188 samples had an
unknown disease status.

RESULTS

Determination of an optimal VAF threshold for
calling homoplasmic and heteroplasmic variants

The determination of plasmy status for a particu-
lar MT variant requires a choice of VAF threshold.
Because there is no established VAF threshold in the
literature, we leveraged technical replicate WGS data
from ADSP samples in the ADSP WGS data to dis-
cern an optimal VAF threshold. There are 45 technical
replicates from six unique subjects among the ADSP
samples. Three of these subjects (1–3) have nine tech-
nical replicates and the other three subjects (4–6) have
six technical replicates (Table 1). The VAF thresh-
old does not affect haplogroup inference since all the
variants were evaluated by haplocheck. Haplogroup
calling for the technical replicates was perfectly con-
sistent (Table 2). However, the consistency of plasmy
progressively improved with percentage increases
in the VAF threshold (Fig. 1 and Supplementary
Table 1). MitoH3 called the same number of homo-
plasmic variants in replicates for all subjects except
for Subject 4 which had one technical replicate with
37 homoplasmic variants and five technical replicates
with 38 homoplasmic variants (Table 3). As shown in
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Table 1
Characteristics of the 6 sets of technical replicates of 45 samples

Subject 1 2 3 4 5 6

Sex Female Female Female Female Female Female
Age 89 63 70 83 53 70
Mother NA Subject1 Subject1 NA NA NA
Ethnicity CH CH CH CH EA AA
# of technical replicates 9 9 9 6 6 6

Sample source Blood Blood Blood Blood Blood Brain

Sequencing Illumina HiSeq 2000 3 3 3 0 0 0
platform Illumina HiSeqX 6 6 6 6 6 6
Sequencing Center Baylor 3 3 3 2 2 2

Broad 3 3 3 2 2 2
WashU 3 3 3 2 2 2

Read length 101 bp 3 3 3 0 0 0
150 bp 6 6 6 6 6 6

PCR Free 6 6 6 6 6 6
Amplified 3 3 3 0 0 0

CH, genetically admixed Caribbean Hispanic; EA, largely European ancestry; AA, largely African American Descent; WashU, University
of Washing; PCR, polymerase chain reaction.

Table 2
Summary of mitochondrial haplogroup for 6 subjects with 45 tech-

nical replicates

Mitochondrial Haplogroup
I1a1e L0a1a2 L3b1a L3b2

Subject 1 0 0 9 0
Subject 2 0 0 9 0
Subject 3 0 0 9 0
Subject 4 0 0 0 6
Subject 5 6 0 0 0
Subject 6 0 6 0 0

Subject 1 is the mother of subject 2 and subject 3 who share the
same haplogroup

Table 3
Summary of mitochondrial homoplasmic variants for 6 subjects
with 45 technical replicates at the non-reference variant allele

fraction (VAF) threshold > 95%

Number of homoplasmic variants
37 38 42 80

Subject 1 9 0 0 0
Subject 2 9 0 0 0
Subject 3 9 0 0 0
Subject 4 1 5 0 0
Subject 5 0 0 6 0
Subject 6 0 0 0 6

Table 4, the same number of heteroplasmic variants
were called for all technical replicates for subjects
#3 and #6 (i.e., concordance rate = 100%). Hetero-
plasmic variant concordance rates were lower for the
other subjects ranging from 44.4% to 83.3%. Based
on the results from the 45 technical replicates, we
chose a VAF threshold of 5 95% for classifying vari-
ant genotypes as homoplasmic or heteroplasmic in
the remaining sample of 16,113 subjects.

Application of the pipeline using a 5 95% VAF
threshold

Haplogroups
Twenty-two known human mitochondrial hap-

logroups were assigned to each of the 16,113 subjects
who were grouped by ancestry (AA, EA, and CH) as
determined by PC analysis of nuclear genome vari-
ants. As shown in Fig. 2, each group is uniquely
characterized by the haplogroup distribution, which
is consistent with findings from a previous study [20].
For example, haplogroups A, B, C, and D are much
more abundant in the CH group. Haplogroups H,
J, K, T and U are more frequent in the EA group,
whereas Haplogroup L was observed primarily in the
AA (91.9%) and CH (41.3%) groups.

Distribution of homoplasmic and heteroplasmic
calls and variants

The VAF distribution of all the calls in the total
sample (Fig. 3A) as well as in each ancestry group
(Supplementary Figure 1A) is bimodal with a higher
proportion of homoplasmic calls in the tails of the dis-
tribution. In the total sample, 96.8% of the calls were
homoplasmic (Fig. 3B), but the proportion is slightly
higher in AAs than in the other ancestry groups
(Supplementary Figure 1B). Although in the total
sample the proportions of unique variants that were
observed only as heteroplasmic or both homoplas-
mic and heteroplasmic were roughly equal (24.2%
vs. 27.8%) and about one-half of the 8,286 unique
variants were only called as homoplastic (48.0%)
(Fig. 4A), the proportion of variants that were homo-
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Table 4
Comparison of mitochondrial heteroplasmic variants for 6 subjects with 45 technical

replicates at the 5% ≤ VAF ≤ 95%

Number of heteroplasmic variants Concordant
0 1 2 3 4 5 (Percent)

Subject 1 1 4 4 0 0 0 44.4% (4/9)
Subject 2 0 6 3 0 0 0 66.7% (6/9)
Subject 3 9 0 0 0 0 0 100.0% (9/9)
Subject 4 0 5 1 0 0 0 83.3% (5/6)
Subject 5 0 0 0 3 2 1 50.0% (3/6)
Subject 6 0 6 0 0 0 0 100.0% (6/6)

VAF, variant allele fraction.

Fig. 2. MT haplogroup distribution in African American (AA), Caribbean Hispanic (CH), and European ancestry (EA) cohorts. Bolded
numbers indicate that the haplogroup is more predominant in the particular ancestry group compared to other groups. Red-highlighted
numbers signify that the haplogroup constitutes more than 5% within the ancestry, while green-highlighted numbers indicate that the
haplogroup comprises less than 5%, yet the frequency is 5-fold greater than in other ancestral groups at least.

plasmic only was highest in the AA group (68.6%
each) and lowest in the EA group (53.0%), noting
that the number of unique variants observed in each
ancestry group is proportional to the sample size
(Supplementary Figure 2A). Most unique variants are

rare (MAF < 1%, Fig. 4B). Not surprisingly, the pro-
portion of uniquely homoplasmic or heteroplasmic
variants decreases as a function of the VAF in the total
sample (Fig. 4C) and within the EA and CH groups
(Supplementary Figure 2C). The mean number of
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Fig. 3. Among individuals in the total sample, (A) variant allele fraction (VAF) distribution of mtDNA variant calls and (B) proportion of
heteroplasmic calls and homoplasmic calls.

Fig. 4. MT variant distributions in the total sample. A) Proportion of variants by plasmy status. B) Number of variants detected according
to allele frequency strata. C) Proportion of variants by plasmy status in each frequency strata.

homoplasmic variants among individuals signifi-
cantly differed by ancestry group (AA = 54.9 ± 21.0,
CH = 44.1 ± 18.8, EA = 23.5 ± 11.2; p < 2 × 10−16)

(Fig. 5A) and was slightly greater in EA sam-
ples derived from blood (23.7 ± 11.3) compared to
brain (23.0 ± 11.0) (Fig. 5B). The mean of num-
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Fig. 5. Boxplots showing the mean number of homoplasmic calls according to (A) ancestry group and (B) tissue type among European
ancestry individuals. Bar plots show the proportion of heteroplasmic calls according to (C) ancestry group and (D) tissue type among
European ancestry individuals.

ber of heteroplasmic calls in AA individuals (1.21)
was significantly greater than in CH individuals
(1.08) and EA (1.08) individuals (ANOVA test
p = 5.61 × 10−5, Fig. 5C). The difference between
blood and brain in EA samples is also significant (t
test p-value = 0.0003, mean of blood sample = 1.06,
mean of brain sample = 1.18, Fig. 5D). However, no
significant difference of homoplasmic or heteroplas-
mic variant count was found in AD cases and controls
within each ethnic group or within the sample source.

DISCUSSION

We integrated multiple tools into a comprehensive
and flexible pipeline for calling mtDNA haplogroup
and homoplasmic/heteroplasmic variants in whole
genome sequence data. The pipeline can be imple-
mented easily, has multiple quality control features
and the ability to estimate contamination levels,

and enables computationally efficient and accurate
analysis of a large number of samples. The soft-
ware and scripts for using this pipeline are publicly
available and packaged as one singularity image
(https://github.com/MarchOnion/MitoH3).

Some of our findings are consistent with other
studies. For example, we found that haplogroup L
is primarily found in AAs and haplogroups H, I, J,
and K are more frequent in individuals of European
ancestry, patterns which are similar to those observed
in data from the 1000 Genomes Project [20]. In addi-
tion, we leveraged ADSP WGS technical replicates to
determine the optimal VAF threshold for separating
homoplasmic and heteroplasmic call sets. Applying
this information to the entire WGS sample of 16,113
individuals revealed that 96.8% of calls were homo-
plasmic, an estimate that is consistent with a recent
study using the information in the Genome Aggre-
gation Database [14]. We also found that EAs have

https://github.com/MarchOnion/MitoH3
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a slightly smaller proportion of homoplasmic calls
compared to the other ancestry groups included in our
study, a difference which could be due to the relatively
small sample size for non-EAs. The number of homo-
plasmic sites observed in blood and brain samples
was similar in the EA group although a large dif-
ference in sample size for blood versus brain, which
might be due to the complexity of brain tissues or the
high heterogeneity of brain regions.

Furthermore, we found there is no significant dif-
ference in homoplasmic or heteroplasmic variant
counts between AD cases and controls within ethnic
groups and sample sources (i.e., blood and brain).
This finding is supported by a recent study indicating
that mtDNA heteroplasmy levels do not show an asso-
ciation with AD pathologies or cognitive function;
rather, they are more strongly correlated with age.
Klein et al. also suggests that single nucleotide poly-
morphisms (SNPs) or small insertions and deletions
(indels) may not play a significant role in late-
onset neurodegenerative diseases [21]. There are also
multiple studies aimed at exploring the mechanism
underlying the association between mitochondrial
impairments and the pathogenesis of AD [22]. While
no primary MT mutations were found to be associated
with AD, many studies indicate that MT haplogroups
play a role in AD [23]. However, the same AD-
associated MT haplogroups cannot be replicated in
an independent Caucasian population study, which
could be explained by the geographic difference in
the sub-haplogroup structure of mtDNA [24]. The
technical differences including sampling, sequencing
methods, and library preparation may also contribute
to the inconsistent results across studies. Integrating
mtDNA copy number, structure variants, and hap-
logroups along with homoplasmic and heteroplasmic
levels to investigate the mechanism between mtDNA
with AD would be a potential enhancement to the
MitoH3 pipeline.

There are several notable limitations to our study.
First, it is challenging to estimate the tissue-specific
difference of homoplasmic and heteroplasmic calls
across different ancestry groups due to the smaller
sample sizes for the AA and CH groups, as well
as the small number of samples from brain com-
pared to blood. Brain samples were unavailable for
the non-EA groups. Second, we suggested mito-
chondrial heteroplasmic variants be defined at the
5% ≤ VAF ≤ 95% based on 45 technical replicates
from 6 subjects. This threshold could be adjusted for
different ancestry groups to achieve ancestry-specific
optimal results.

In summary, the pipeline described here can
efficiently provide comprehensive and accurate
information about mtDNA variants, plasmy and hap-
logroups derived from whole genome sequence data.
Further studies in larger and more diverse samples
are needed to validate our findings and suggest future
modifications to the mitoH3 pipeline.
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(R01 AG027944, R01 AG028786, R01 AG019085,
IIRG09133827, A2011048), the Multi-Institutional
Research in Alzheimer’s Genetic Epidemiology
Study (MIRAGE) (R01 AG09029, R01 AG025259),
the National Centralized Repository for Alzheimer’s
Disease and Related Dementias (NCRAD) (U24
AG021886), the National Institute on Aging Late
Onset Alzheimer’s Disease Family Study (NIA-
LOAD) (U24 AG056270), the Religious Orders

Study (ROS) (P30 AG10161, R01 AG15819), the
Texas Alzheimer’s Research and Care Consortium
(TARCC) (funded by the Darrell K Royal Texas
Alzheimer’s Initiative), Vanderbilt University/Case
Western Reserve University (VAN/CWRU) (R01
AG019757, R01 AG021547, R01 AG027944, R01
AG028786, P01 NS026630, and Alzheimer’s Asso-
ciation), the Washington Heights-Inwood Columbia
Aging Project (WHICAP) (RF1 AG054023), the
University of Washington Families (VA Research
Merit Grant, NIA: P50AG005136, R01AG041797,
NINDS: R01NS069719), the Columbia University
Hispanic Estudio Familiar de Influencia Genetica de
Alzheimer (EFIGA) (RF1 AG015473), the Univer-
sity of Toronto (UT) (funded by Wellcome Trust,
Medical Research Council, Canadian Institutes of
Health Research), and Genetic Differences (GD)
(R01 AG007584). The CHARGE cohorts are sup-
ported in part by National Heart, Lung, and Blood
Institute (NHLBI) infrastructure grant HL105756
(Psaty), RC2HL102419 (Boerwinkle) and the neu-
rology working group is supported by the National
Institute on Aging (NIA) R01 grant AG033193.

The CHARGE cohorts participating in the
ADSP include the following: Austrian Stroke
Prevention Study (ASPS), ASPS-Family study,
and the Prospective Dementia Registry-Austria
(ASPS/PRODEM-Aus), the Atherosclerosis Risk
in Communities (ARIC) Study, the Cardiovascular
Health Study (CHS), the Erasmus Rucphen Family
Study (ERF), the Framingham Heart Study (FHS),
and the Rotterdam Study (RS). ASPS is funded by
the Austrian Science Fond (FWF) grant number
P20545-P05 and P13180 and the Medical University
of Graz. The ASPS-Fam is funded by the Austrian
Science Fund (FWF) project I904), the EU Joint
Programme – Neurodegenerative Disease Research
(JPND) in frame of the BRIDGET project (Austria,
Ministry of Science) and the Medical University
of Graz and the Steiermärkische Krankenanstalten
Gesellschaft. PRODEM-Austria is supported by the
Austrian Research Promotion agency (FFG) (Project
No. 827462) and by the Austrian National Bank
(Anniversary Fund, project 15435. ARIC research
is carried out as a collaborative study supported
by NHLBI contracts (HHSN268201100005C,
HHSN268201100006C, HHSN268201100007C,
HHSN268201100008C, HHSN268201100009C,
HHSN268201100010C, HHSN268201100011C,
and HHSN268201100012C). Neurocognitive data
in ARIC is collected by U01 2U01HL096812,
2U01HL096814, 2U01HL096899, 2U01HL096902,
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2U01HL096917 from the NIH (NHLBI, NINDS,
NIA and NIDCD), and with previous brain MRI
examinations funded by R01-HL70825 from the
NHLBI. CHS research was supported by contracts
HHSN268201200036C, HHSN268200800007C,
N01HC55222, N01HC85079, N01HC85080,
N01HC85081, N01HC85082, N01HC85083,
N01HC85086, and grants U01HL080295 and
U01HL130114 from the NHLBI with addi-
tional contribution from the National Institute
of Neurological Disorders and Stroke (NINDS).
Additional support was provided by R01AG023629,
R01AG15928, and R01AG20098 from the NIA.
FHS research is supported by NHLBI contracts
N01-HC-25195 and HHSN268201500001I. This
study was also supported by additional grants
from the NIA (R01 s AG054076, AG049607 and
AG033040 and NINDS (R01 NS017950). The ERF
study as a part of EUROSPAN (European Special
Populations Research Network) was supported by
European Commission FP6 STRP grant number
018947 (LSHG-CT-2006-01947) and also received
funding from the European Community’s Seventh
Framework Programme (FP7/2007-2013)/grant
agreement HEALTH-F4- 2007-201413 by the Euro-
pean Commission under the programme “Quality of
Life and Management of the Living Resources” of
5th Framework Programme (no. QLG2-CT-2002-
01254). High-throughput analysis of the ERF data
was supported by a joint grant from the Netherlands
Organization for Scientific Research and the Rus-
sian Foundation for Basic Research (NWO-RFBR
047.017.043). The Rotterdam Study is funded by
Erasmus Medical Center and Erasmus University,
Rotterdam, the Netherlands Organization for Health
Research and Development (ZonMw), the Research
Institute for Diseases in the Elderly (RIDE), the
Ministry of Education, Culture and Science, the
Ministry for Health, Welfare and Sports, the Euro-
pean Commission (DG XII), and the municipality of
Rotterdam. Genetic data sets are also supported by
the Netherlands Organization of Scientific Research
NWO Investments (175.010.2005.011, 911-03-
012), the Genetic Laboratory of the Department
of Internal Medicine, Erasmus MC, the Research
Institute for Diseases in the Elderly (014-93-015;
RIDE2), and the Netherlands Genomics Initiative
(NGI)/Netherlands Organization for Scientific
Research (NWO) Netherlands Consortium for
Healthy Aging (NCHA), project 050-060-810. All
studies are grateful to their participants, faculty and
staff. The content of these manuscripts is solely the

responsibility of the authors and does not necessarily
represent the official views of the National Institutes
of Health or the U.S. Department of Health and
Human Services.

The FUS cohorts include: the Alzheimer’s Disease
Research Centers (ADRC) (P30 AG062429, P30
AG066468, P30 AG062421, P30 AG066509, P30
AG066514, P30 AG066530, P30 AG066507, P30
AG066444, P30 AG066518, P30 AG066512, P30
AG066462, P30 AG072979, P30 AG072972, P30
AG072976, P30 AG072975, P30 AG072978, P30
AG072977, P30 AG066519, P30 AG062677, P30
AG079280, P30 AG062422, P30 AG066511, P30
AG072946, P30 AG062715, P30 AG072973, P30
AG066506, P30 AG066508, P30 AG066515, P30
AG072947, P30 AG072931, P30 AG066546, P20
AG068024, P20 AG068053, P20 AG068077, P20
AG068082, P30 AG072958, P30 AG072959),
Alzheimer’s Disease Neuroimaging Initiative
(ADNI) (U19AG024904), Amish Protective Vari-
ant Study (RF1AG058066), Cache County Study
(R01AG11380, R01AG031272, R01AG21136,
RF1AG054052), Case Western Reserve Univer-
sity Brain Bank (CWRUBB) (P50AG008012),
Case Western Reserve University Rapid Decline
(CWRURD) (RF1AG058267, NU38CK000480),
CubanAmerican Alzheimer’s Disease Initiative
(CuAADI) (3U01AG052410), Estudio Familiar
de Influencia Genetica en Alzheimer (EFIGA)
(5R37AG015473, RF1AG015473, R56AG051876),
Genetic and Environmental Risk Factors for
Alzheimer Disease Among African Ameri-
cans Study (GenerAAtions) (2R01AG09029,
R01AG025259, 2R01AG048927), Gwangju
Alzheimer and Related Dementias Study (GARD)
(U01AG062602), Hillblom Aging Network (2014-
A-004-NET, R01AG032289, R01AG048234),
Hussman Institute for Human Genomics Brain Bank
(HIHGBB) (R01AG027944, Alzheimer’s Associa-
tion “Identification of Rare Variants in Alzheimer
Disease”), Ibadan Study of Aging (IBADAN)
(5R01AG009956), Longevity Genes Project (LGP)
and LonGenity (R01AG042188, R01AG044829,
R01AG046949, R01AG057909, R01AG061155,
P30AG038072), Mexican Health and Aging Study
(MHAS) (R01AG018016), Multi-Institutional
Research in Alzheimer’s Genetic Epidemiology
(MIRAGE) (2R01AG09029, R01AG025259,
2R01AG048927), Northern Manhattan Study
(NOMAS) (R01NS29993), Peru Alzheimer’s
Disease Initiative (PeADI) (RF1AG054074),
Puerto Rican 1066 (PR1066) (Wellcome Trust
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(GR066133/GR080002), European Research Coun-
cil (340755)), Puerto Rican Alzheimer Disease
Initiative (PRADI) (RF1AG054074), Reasons
for Geographic and Racial Differences in Stroke
(REGARDS) (U01NS041588), Research in African
American Alzheimer Disease Initiative (REAAADI)
(U01AG052410), the Religious Orders Study (ROS)
(P30 AG10161, P30 AG72975, R01 AG15819, R01
AG42210), the RUSH Memory and Aging Project
(MAP) (R01 AG017917, R01 AG42210Stanford
Extreme Phenotypes in AD (R01AG060747), Uni-
versity of Miami Brain Endowment Bank (MBB),
University of Miami/Case Western/North Car-
olina A&T African American (UM/CASE/NCAT)
(U01AG052410, R01AG028786), and Wisconsin
Registry for Alzheimer’s Prevention (WRAP)
(R01AG027161 and R01AG054047).

The four LSACs are: the Human Genome Sequenc-
ing Center at the Baylor College of Medicine
(U54 HG003273), the Broad Institute Genome
Center (U54HG003067), The American Genome
Center at the Uniformed Services University of the
Health Sciences (U01AG057659), and the Washing-
ton University Genome Institute (U54HG003079).
Genotyping and sequencing for the ADSP FUS is also
conducted at John P. Hussman Institute for Human
Genomics (HIHG) Center for Genome Technology
(CGT).

Biological samples and associated phenotypic data
used in primary data analyses were stored at Study
Investigators institutions, and at the National Cen-
tralized Repository for Alzheimer’s Disease and
Related Dementias (NCRAD, U24AG021886) at
Indiana University funded by NIA. Associated Phe-
notypic Data used in primary and secondary data
analyses were provided by Study Investigators, the
NIA funded Alzheimer’s Disease Centers (ADCs),
and the National Alzheimer’s Coordinating Center
(NACC, U24AG072122) and the National Institute
on Aging Genetics of Alzheimer’s Disease Data
Storage Site (NIAGADS, U24AG041689) at the Uni-
versity of Pennsylvania, funded by NIA. Harmonized
phenotypes were provided by the ADSP Phenotype
Harmonization Consortium (ADSP-PHC), funded
by NIA (U24 AG074855, U01 AG068057 and
R01 AG059716) and Ultrascale Machine Learn-
ing to Empower Discovery in Alzheimer’s Disease
Biobanks (AI4AD, U01 AG068057). This research
was supported in part by the Intramural Research Pro-
gram of the National Institutes of health, National
Library of Medicine. Contributors to the Genetic
Analysis Data included Study Investigators on

projects that were individually funded by NIA, and
other NIH institutes, and by private U.S. organiza-
tions, or foreign governmental or nongovernmental
organizations.
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