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Abstract.

Background: Observational studies have indicated the association of alteration of adipokines with Alzheimer’s disease (AD).

However, it remains unclear whether the associations are causal.

Objective: To determine the causal associations between adipokines and AD.

Methods: A Mendelian randomization (MR) method was applied to investigate the causal relationships of adipokines,
including adiponectin and resistin, with risk of AD. Genetic proxies from genome-wide association studies (GWAS) of
adiponectin and resistin were selected as instrumental variables. GWAS summary statistics for AD were extracted as outcome.
Results: In this study, we found evidence of the causal effects of adiponectin on AD (OR: 0.850, 95% CI: 0.731-0.990,
p=0.037). However, no relationship between resistin and AD (OR: 0.936, 95% CI: 0.851-1.029, p=0.171) was detected. In
the reverse causation analysis, null associations of AD were found for adiponectin and resistin (all p >0.05).

Conclusions: This study provides evidence of causality between adiponectin and risk of AD. However, no genetic suscepti-

bility of resistin was discovered for AD.
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INTRODUCTION

Alzheimer’s disease (AD) is a typical neurode-
generative disease and the most common form of
dementia, which accounts for nearly 80% of all kinds
of dementia [1]. The earliest phase of AD starts with
the accumulation of AR and the induction of the
spread of tauopathy [2]. Several common mecha-
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nisms are responsible for AD, including imbalance
of lipid metabolism, oxidative stress and inflam-
matory responses induced by protein accumulation
[3-5]. Moreover, these pathways are also believed
to be deeply involved in obesity, by participating in
metabolic imbalance [6].

Obesity is a major health problem across the world.
It is closely related to white matter intensity and
disruption and progressive brain atrophy [7]. Some
studies have demonstrated that anti-obesity therapy
provides benefits for patients at risk of AD [8]. There-
fore, it is important to demonstrate the potential
link between obesity and AD. Studies have indicated
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that individuals with obesity are likely to present
a chronic inflammatory status [9], with the activa-
tion of immune cells surrounding adipose tissues and
the production of adipokines [10, 11]. Adipokines
include a series of components mainly produced
by adipose tissues. The dysregulation of adipokines
has been consistently accompanied with the adverse
outcomes in obesity, leading to a persistent inflam-
mation [12]. Recent studies have indicated that the
operation of adipokines could be affected during
neurodegeneration and feedback to contribute to the
neurodegenerative process. For instance, adiponectin
interacts with blood-brain barrier [13], and regulate
neurogenesis and synaptic function in hippocampus,
cortex and hypothalamus [14], through its respective
binding to adiponectin receptor 1 and 2 [14]. Resistin
is another widely studied adipokine, associated with
the integrity of brain structure. It is identified in
the hypothalamus and cortex in mouse. The neuro-
protective role of resistin was stated in AD mouse
model by Liu et al. [15]. Therefore, it is believed that
adipokines offer a window to explain the relationship
between obesity and AD. However, current reports
only provide observational findings concerning their
associations. The causality between adipokines and
AD have not been established.

Mendelian randomization (MR) approach pro-
vides a tool to estimate the causal effects of certain
exposure on an outcome [16]. It uses genetic vari-
ants as instrumental variables (IVs) of exposure, and
pools the effects of variants for effect estimation [16].
The approach diminishes the effects of potential con-
founders in observational level and overcomes the
influences of reverse causation. We here used the two-
sample MR analysis to determine the causal effects
of adipokines on risk of AD.

MATERIALS AND METHODS
Study design

A two-sample MR analysis was done to test
the causality between adipokines (adiponectin and
resistin) and risk of AD, using summary data from
GWAS consortia studies. Data sources were shown
in Table 1. To detect the potential reverse causality,
we performed an MR analysis to test the effects of
AD on circulating adipokines. All participants have
given informed consent in the respective center. An
overview of the study assumptions was displayed in
Fig. 1.

Selection of instrumental variables

Genome-wide  significant SNPs  strongly
(p<5x1078) associated with plasma adipokines,
including adiponectin were selected from the study
by Dastani et al. [17]. In that study, the authors
performed a meta-analysis of GWAS in 39,883
individuals of European ancestry to identify genes
associated with metabolic disease. SNPs, that were
associated (p<5x 10~8) with plasma resistin, were
screened in the GWAS dataset from the INTERVAL
study [18]. In the study, Sun and colleagues measured
3,622 proteins in 3,301 healthy European blood
donors. In addition, variants were further clumped
for independence using the TwoSampleMR tool. A
threashold of RZ < 0.001 and a window of 10,000 kb
were used to screen for linkage disequilibrium (LD).
F statistics above 10 was required to limit the bias
caused by weak instrumental variables. R? of each
SNP was defined by calculating with the formula:
2*EAF*(1-EAF)*B2, where B is the effect estimate
of exposure. F statistics were calculated by the for-
mula: Rz*(N—Z)/(l-R2), where N means the sample
size. Details of the SNPs associated with adiponectin
and resistin were shown in Supplementary Table 1.

Qutcome sources

GWAS statistics for AD were obtained from
a dataset released by International Genomics of
Alzheimer’s Project (IGAP) (21,982 cases and
41,944 controls) [19], which consists of data
from the Alzheimer Disease Genetics Consor-
tium (ADGC), Cohorts for Heart and Aging
Research in Genomic Epidemiology Consortium
(CHARGE), the European Alzheimer’s Disease Ini-
tiative (EADI), and Genetic and Environmental Risk
in AD/Defining Genetic, Polygenic and Environ-
mental Risk for Alzheimer’s Disease Consortium
(GERAD/PERADES). The SNPs associated with AD
were shown in Supplementary Table 2.

Statistical analyses

To detect possible SNPs that were related
to AD, SNPs associated with adiponectin and
resistin  were searched in the Phenoscanner
(http://www.phenoscanner.medschl.cam.ac.uk/)
[20]. The online web tool mRnd [21]
(http://shiny.cnsgenomics.com/mRnd/) was used to
calculate the statistical power of the MR analysis.
Inverse variance weighted (IVW), MR-Egger,
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Table 1
Characteristics of the data sources in the study
Variables Data source Authors Sample size Ancestry
adiponectin ADIPOGen Dastani et al. [17] 39,883 European
resistin INTERVAL Sun et al. [18] 3,301 European
AD IGAP Kunkle et al. [19] 63,926 European

AD, Alzheimer’s disease; IGAP, International Genomics of Alzheimer’s Project.
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Fig. 1. The key assumptions of the MR study. First, the selected
SNPs (IVs) should be significantly associated with the expo-
sure (adipokine); second, the included SNPs for the exposure
(adipokine) were not associated with any confounder; third,
the selected SNPs should only affect the outcome (risk of
AD) though the exposure (adipokine). AD, Alzheimer’s disease;
1V, instrumental variable; MR, Mendelian randomization; SNP,
single-nucleotide polymorphism.

weighted median, simple mode and weighted
mode methods were used in the study, with effect
estimates (3) and 95% confidence interval (CI).
IVW estimates were considered as the primary
MR outcomes, to provide the highest precision of
combined effects of adipokines with the assumption
of balanced pleiotrophy. Weighted median method
gave a consistent estimated effect, even when half
of the results were generated from the analysis of
invalid or weak instruments. MR-Egger regression
analysis was performed to explore the presence of
horizontal pleiotrophy by evaluating the intercept.
Simple mode and weighted mode methods were
also done to assess the robustness of the results.
An MR-PRESSO analysis was applied to detect
and adjust for horizontal pleiotrophy through
removing outliers. A leave-one-out analysis and
Cochrane Q statistic were performed to check for
any pleiotrophy affected by a single SNP. Statistical
analyses were done using the TwoSampleMR and
MRPRESSO package in R (version 4.1.3). Statistical
significance was considered when p value was less
than 0.05.

RESULTS

Genetic instruments for adiponectin and resistin

A total of 14 and 4 variants were initially identified
as I'Vs for adiponectin and resistin, respectively. The
F statistics for the SNPs were all above 10, except
for rs1597466 of adiponectin (F statistics =9.354).
For adiponectin, 11 SNPs were employed in the
main analysis of AD after further excluding 2 SNPs
(rs2980879 and rs7964945) for being palindromic
with intermediate allele frequencies. For resistin, the
F statistics for the SNPs were above 10, indicating
that the weak IV bias did not exist. Therefore, all
SNPs associated with resistin were included for MR
analysis. Phenoscanner was searched, and no SNPs
were excluded. Details of the selected SNPs were
shown in Supplementary Table 1.

Causal effects of adiponectin on AD

The analysis results of the relationship between
adiponectin and AD were displayed in Table 2. IVW
mode indicated a detrimental effect of the decreased
level of circulating adiponectin on risk of AD (OR:
0.850; 95% CI: 0.731-0.990, p=0.037). However,
such trend was not confirmed in the estimates in MR-
Egger, weighted median, simple mode and weighted
mode methods. The statistical power to detect the
causal effects of adiponectin on AD was 100%.

Cochrane’s Q test and MR-PRESSO global test
did not find obvious pleiotrophic effects (Table 3).
The MR-Egger intercept analysis did not find sig-
nificances (p=0.982), indicating no evidence of
potential pleiotrophy (Table 3).

Scatter plots, funnels plots, forest plots and leave-
one-out analysis of the MR analysis were shown
in Fig. 2. rs17366568 was discovered to be a
possible driving factor for the significant associ-
ation of adiponectin with risk of AD. Therefore,
we re-analyzed by excluding rs17366568 (Sup-
plementary Table 3). It indicated no significant
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Table 2
Causation analysis of the effects of adiponectin, resistin on AD
Exposure Outcome MR method No. of SNPs Beta SE OR 95% CI p
adiponectin AD MR Egger 11 -0.160 0.113 0.852 0.683-1.064 0.191
Weighted median 11 —0.058 0.100 0.944 0.776-1.148 0.561
Inverse variance weighted 11 -0.162 0.077 0.850 0.731-0.990 0.037*
Simple mode 11 -0.135 0.158 0.873 0.641-1.189 0.409
Weighted mode 11 —-0.088 0.111 0.915 0.736-1.139 0.445
resistin AD MR Egger 4 -0.036 0.100 0.965 0.793-1.174 0.754
Weighted median 4 —-0.056 0.056 0.946 0.848-1.056 0.321
Inverse variance weighted 4 —-0.066 0.049 0.936 0.851-1.029 0.171
Simple mode 4 —-0.039 0.082 0.962 0.819-1.129 0.666
Weighted mode 4 —0.043 0.079 0.958 0.821-1.119 0.626

AD, Alzheimer’s disease; CI, confidence interval; MR, Mendelian randomization; OR, odds ratio; SE, standard error; SNP, single-nucleotide

polymorphism.

Table 3
Results of the Cochrane’s Q test, MR-Egger intercept test and MRPRESSO Global test in the MR study
Cochrane’s Q test MR-Egger intercept test MR-PRESSO
Global test
Q-value P-Q test intercept P-intercept P-Global

Adiponectin versus AD

8.502 0.580 -0.0002 0.982 0.376
Resistin versus AD

2.010 0.570 —-0.008 0.761 0.606
AD, Alzheimer’s disease; MR, Mendelian randomization. *p <0.05.

associations between adiponectin and AD in the
IVW model.

Causal effects of resistin on AD

The OR for the associations of resistin with AD
was 0.936 (95% CI:0.851-1.029,p =0.171) (Table 2).
Null associations were also found in the MR-Egger,
weighted median, simple mode and weighted mode
methods. Moreover, we did not find significant results
in Cochrane’s Q test and MR-PRESSO global test
(Table 3). And the MR-Egger intercept test did not
reveal pleiotrophy. Power analysis using the mRnd
yielded 100% power to detect the effects of resistin
on AD.

There was no significant change in the estimates
of risk of diseases by genetically determined resistin
level in the leave-one-out analysis, demonstrating that
no specific SNP would change the results. Scatter
plots, forest plots, funnels plots and leave-one-out
sensitivity analysis were shown in Fig. 3.

Reverse causation between AD and adiponectin,
resistin

All models in reverse analysis did not suggest the
genetic prediction of the levels of adiponectin and
resistin by AD (Supplementary Table 4). Moreover,

no horizontal pleiotrophy and heterogeneity were
observed using MR-Egger intercept test, Cochrane
Q test and MR-PRESSO global test (Supplementary
Table 5). Sensitivity analysis using the leave-one-out
approach confirmed that the inverse causation was not
substantially driven by any individual SNP. In addi-
tion, scatter plots, funnels plots, forest plots and leave
one out sensitivity analysis of the reverse causation
analysis were shown in Supplementary Figure 1 and
2.

DISCUSSION

This MR study reported causal associations
between genetically determined adiponectin and AD.
Besides, the genetic susceptibility of resistin was not
responsible for the development of AD.

It is believed that there is a connection between
being overweight and AD [22]. Unwanted weight loss
usually occurs among individuals with AD before the
presence of clinical symptoms, even with unchanged
eating patterns [23]. These suggest the alteration of
adipose tissue metabolism along neurodegeneration
[24]. Studies have indicated that the metabolic status
is regulated by endocrine, paracrine and autocrine
“adipokines” [25]. The agents can interact with
blood brain barrier and participate in CNS homeosta-
sis through their control of energy metabolism and



SNP sflect on Alzheimer's diseass || id:leu-b-2

s
b

nmsse

12081272

1108842

6910075

Lt

A~ inverse variance weghted

Fig. 2. Scatter plot (A), funnel plot (B), forest plot (C), and leave-one-out sensitivity analysis (D) of the associations of adiponectin with risk of AD. AD, Alzheimer’s disease.
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Fig. 3. Scatter plot (A), funnel plot (B), forest plot (C), and leave-one-out sensitivity analysis (D) of the associations of resistin with risk of AD. AD, Alzheimer’s disease.
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immune responses [13]. Therefore, adipokines seem
to be an intermediate player between obesity and AD.

Adiponectin is secreted by adipose tissues and
participates in multiple cellular functions, includ-
ing insulin responses, antioxidation and suppression
of inflammation [14]. Accumulating evidence has
suggested the presence of hypoadiponectinemia in
metabolic disorders. Further, plasma adiponectin
concentration appears to be inversely associated with
the severity of adiposity and type 2 diabetes mel-
litus [26, 27]. Moreover, low level of adiponectin
is found in AD dementia [28], which represents
metabolic dysfunction in brain [29]. The inverse asso-
ciation between adiponectin and AD accords with
our findings using IVW model that a descending
adiponectin was associated with a higher risk of
AD. Our findings indicated a neuroprotective poten-
tial of adiponectin against Alzheimer’s pathology.
Interestingly, our findings were inconsistent with a
previous MR study [30] revealing no causal effects
of adiponectin on AD, using the same GWAS datasets
with our study. In that study, all 14 SNPs signif-
icantly associated with adiponectin were included.
However, we excluded 3 SNPsrs1597466, rs2980879
and rs7964945 for their unsatisfactory performances.
Therefore, a relatively strict analysis process ensured
the reliability of results. This may help find the poten-
tial role of promising markers in disorders.

Some studies have referred to the effects of
adiponectin against amyloid pathology. A study used
the SH-SYS5YswAPP cell line to mimic amyloid bur-
den in neuronal cells. And it found that adiponectin
could improve cellular survival [31]. Mouse with
adiponectin deficiency showed impaired memory and
learning abilities, as well as increased A3 depositions
in brain, along with the over-production of pro-
inflammatory cytokines [32]. Therefore, we proposed
that adiponectin functioned against AD through its
suppression of amyloid pathology and related inflam-
matory responses.

However, some studies have provided varied find-
ings concerning adiponectin. Increase [33], or no
change [34, 35] of adiponectin level has been found
among AD individuals. Some factors seem to be
responsible for the inconsistence. It is believed that
increased weight is associated with decreased level
of adiponectin [36]. The weight loss commonly
seen in AD patients may induce the upregulation of
adiponectin. However, the findings from the Fram-
ing Heart Study indicated elevated serum adiponectin
was still associated with increased risk of AD in
women, when adjusting for age, weight change and

BMI [37]. Most studies evaluating adiponectin in AD
patients did not take treatment details into considera-
tion. A previous study reported increased adiponectin
following donepezil application [38]. These may also
explain the null association between adiponectin and
AD without rs17366568 taking into analysis, for the
sake that the findings may be interfered by under-
lying agents. Further exploration of the effects of
adiponectin in AD should be done in the future.

Resistin is another adipokine protein derived from
adipose tissue. It is involved in the production of pro-
inflammatory cytokines, such as interleukin-6 (IL-6)
and tumor necrosis factor-a (TNF-a) [12, 39]. It
plays an important role in metabolic, inflammatory,
and autoimmune conditions [39, 40]. The effects of
resistin on AD has been reported in previous studies.
Marcinno et al. [41] found lower resistin concen-
trations in AD patients. Mooldijk et al. [42] proved
that resistin level was inversely associated with the
risk of AD. Resistin could suppress the production of
oxidative factors in Neuro2a cells transfected with the
Swedish amyloid precursor protein (swAPP) mutant
and Presenilin exon 9 deletion mutant [43], indicating
an anti-amyloidosis effect. Therefore, it is believed
that resistin should also protect against AD, like
adiponectin. However, our findings did not reveal
causal effects of resistin on AD. This echoes a pre-
vious study that higher resistin is more likely to be
associated with dementia with a vascular cause, but
not with AD dementia [44]. Further studies indicated
that resistin is involved in the regulation of mitochon-
drial function but not in APP metabolism [43].

This study explored the bidirectional relation-
ship between circulating adipokines and risk of
AD. GWAS datasets were used, and we identified
association between adiponectin and AD. Although
MR method provides a reliable tool to estimate the
causal link between an exposure and an outcome
using genetic variants, some additional caveats and
limitations should be listed. First, the varied data
sources of SNP-exposure, SNP-disease should be
non-negligible. As seen in Table 1, data used in the
study were from population of a European ances-
try. Our findings should be carefully when applied to
other population. Second, the participants with AD
may not be accordant in advancing stages and patho-
logical indications. This might bias the MR estimates
and cause the discrepancies between our findings and
previous reports. Third, adiponectin and resistin per-
fumed their intrinsic abilities via the binding with
their own receptors. Future efforts could be paid to
explore the interactive mode between receptors and
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ligands. Fourth, not all factors in adipokine family
were analyzed in the study, for the lack of adequate
GWAS data sources. Further exploration for future
datasets may help solve it.

Conclusions

The MR study provided evidence of causal asso-
ciations between reduced adiponectin level and an
increased risk of AD, indicating a potential protec-
tive effect of adiponectin on AD. Moreover, no causal
associations of resistin were indicated for the devel-
opment of AD.
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