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Abstract. Alzheimer’s disease (AD) is an illness that affects the nervous system, leading to a loss in cognitive and logical
abilities. Gene regulatory expressions, which are the complex language exhibited by DNA, serve several functionalities,
including the physical and biological life cycle processes in the human body. The gene expression sequence affects the
pathology experienced by an individual, its longevity, and potential for a cure. The transcription factors, from DNA to
RNA conversion, and the binding process determine the gene expression, which varies for every human organ and disease.
This study proposes Deep convolutional neural network model that reads the gene regulatory expression sequence through
various convolutional layers encoded to detect positive spikes in transcription factors. This results in the prediction of disease
conversion probability from mild cognitive impairment to AD which is the key-requisite for affected geriatric cohorts.
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INTRODUCTION

The leading factor in Alzheimer’s disease (AD) in
adults over 65 is a significant concern. “There are cur-
rently billion individuals living in the US. By 2050, 14
million Americans will be infected.” This should be
revised to: “There are currently billions of individuals
living in the US. By 2050, 14 million Americans are
projected to be affected.” Although there is currently
no cure for AD, researchers and medical profession-
als are working to alleviate the suffering caused by
the disease, comprehend how it works, and ultimately
find solutions to halt or slow down its course. It has

∗Correspondence to: M. Rohini, Department of Computer Sci-
ence and Engineering, Sri Krishna College of Engineering and
Technology, Coimbatore, India. E-mail: rohinim@skcet.ac.in.

been demonstrated that synaptic impairment, reduced
cerebral glucose metabolism, and cerebral hypop-
erfusion occur prior to the beginning of amyloid-�
(A�). Despite its positive effects on lowering brain
A� deposition, humanized anti-monoclonal antibody
Bapineuzumab � did not enhance clinical outcomes
in AD patients in clinical trials. Thus, it may be chal-
lenging to develop clinical interventions that solely
target A�.

The proposed study aims to predict the signifi-
cant motifs that increase the vulnerability of cognitive
neurodegenerative diseases like AD. The production
and storage of A� peptides in the brain are fundamen-
tal processes in the beginning stages of AD. However,
growing evidence includes the development of ‘A�-
dependent pathways’ in the disease progression.
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Numerous diversified genome-wide association
studies and genome-wide association meta-analyses
conducted using the ADNI repository have con-
sistently identified the APOE 4 allele as the most
significant genetic risk factor, while the APOE 2 allele
has been shown to provide the strongest genetic pro-
tective factor [1]. Despite these findings, no specific
treatments targeting APOE have been developed thus
far. However, in the last five years, our understanding
of APOE pathogenesis has expanded beyond its role
in amyloid-peptide-centric mechanisms to encom-
pass tau neurofibrillary degeneration, microglia and
astrocyte responses, and disruption of the blood-brain
barrier.

Early studies have established a causal link
between APOE and amyloid-peptide aggregation and
clearance [2]. Since all these disease processes have
the potential to lead to cognitive impairment, it
becomes essential to capitalize on this newfound
knowledge to develop APOE-specific medications.
Several treatment strategies have been explored in
mice models carrying human APOE alleles.

Early onset AD

This stage of the disease affects those aged 30
to 60 (constituting 5% of all AD cases). It is also
known as familial AD, primarily attributed to hered-
itary factors. The heredity leads to individual genetic
mutations and gene regulatory patterns resulting in
inappropriate protein synthesis.

Late onset AD

The majority of AD occurs in adults over 60,
influenced by genetic, environmental, and lifestyle
factors. In-depth pathological diagnosis reveals sig-
nificant characteristics and unusual morphology in
brain regions. This is characterized by the widening of
sulci due to cerebral degeneration and significant neu-
ronal loss. Neurotic plaques, biomarkers deposited in
neurons, are found around A�40/42 types of amyloid-
� protein precursor (A�PP) derivative [3]. These are
diffuse plaques with A�42 predominance. Tau protein
types have been identified as the next major factor that
increases the deposition of neurofibrillary tangles in
cerebral regions.

Genetic factors

AD with an autosomal dominant distribution is
linked to single nucleotide polymorphisms (SNPs)

Fig. 1. Gene variants.

in the APP and PS1 genes for A�PP and prese-
nilin, respectively. Mutations in the presenilin (PS2)
gene lead to defective protein activity and improper
amyloid protein breakdown, producing damaging
amyloid plaques, a characteristic of the disease. The
precise function of the APOE gene, which encodes
a very low-density lipoprotein aiding in remov-
ing cholesterol from the bloodstream, is unknown
[4]. Varied alleles (2, 3, 4) exhibit different pheno-
types. AD risk remains unaffected by SNPs in the
gene encoding the microtubule-associated protein tau
(MAPT).

Correlation with early onset and elevated tau
proteins

Early onset is correlated with elevated tau proteins
in the cerebrospinal fluid (CSF). The gene for tumor
necrosis factor (TNF), a moderator of the risk for
APOE4 carriers as depicted in Fig. 1, is identified as
an independent risk factor for the development of the
disease.
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MATERIALS AND METHODS

Genome-wide association studies (GWASs) have
found additional gene variants, including CR1, BIN1,
CLU, and PICALM, in addition to the APOE gene.
These variants are located on human chromosome 19.
There are three common gene variants of APOE—�2,
�3, and �4—producing various disease phenotypes.
These variants are determined by two SNPs observed
in every gene expression: rs429358 and rs7412.
Rs429358 comprises the common allele morph with
T and variant allele morph with C, encoding an amino
acid change (Cys130Arg) in exon 4. Rs7412 con-
sists of the common allele morph with C and variant
allele morph with T, encoding an amino acid change
(Arg176Cys) in exon 4. The majority and increased
risk factor are linked to the APOE4 allele, which is
independent [5].

In order to develop metabolic pathway AD
therapies, it is crucial to comprehend how these A�-
independent factors lead to the disease. Recent AD
genetic wide studies show that the biomarker indi-
cating pathology in the positive spike model reveals
APOE2 carriers exist 1 year longer than APOE4 car-
riers and live 1.2 years less than those with the APOE
3/3 genotype. Further research is required; however,
given that APOE4 has been shown to both increase
the incidence of AD and accelerate the age at which
it manifests, APOE’s possible impacts on neuronal
death or chromosomal length may also affect AD risk.

Hazard ratio (HR)

A measure of how much the risk of the event (AD
onset) changes for a one-unit change in the gene
expression. HR > 1 indicates increased risk, HR < 1
indicates decreased risk [6].

95% CI for HR

The 95% confidence interval for the hazard ratio
provides a range of values within which we can be
95% confident that the true hazard ratio lies.

p-value

The p-value assesses the statistical significance
of the association. A p-value less than a chosen
significance level (e.g., 0.05) suggests a significant
association.

Survival curve

Links to Motif classification survival curves or
other relevant plots illustrating the survival differ-
ences based on gene expression levels.

Risk connected to the APOE4 variation

Each copy of the APOE4 mutation raises the risk of
getting AD, and having only one copy increases the
risk by nearly two times. The chances are boosted by
around 11 times when there are 2 alleles. Many indi-
viduals who carry the APOE4 variation never acquire
AD [7]. More than half of AD patients have zero
copies of chromosome 4. Retaining an APOE4 copy
is less important than genetic history. As people age,
there are more diagnoses; however, as a person ages,
the residual risk goes down. The impact of APOE4
on cultures outside of Europe is not widely known.

Reinforcement learning is made accessible to
computational biologists working on genomics prob-
lems as well as computational intelligence experts
interested in applications in genomics. Software
for model construction, model interpretation, and
benchmarking DNA sequence simulations are all eas-
ily accessible through the DragoNN Collections of
classes. A command-line interface enables modeling
and interpretation on user-defined data, while web-
based lessons utilizing the Jupyter framework offer
interactive model editing and visualization for inex-
perienced users.

The discussion has covered APOE isoform inde-
pendent effects on cholesterol metabolism, glucose
metabolism, mitochondrial functions, cerebrovascu-
lar system, and inflammation, which are significant
pathways as shown in Fig. 2, implicated in the etiol-
ogy of AD and cognitive functions. It is still unclear
if APOE isoforms affect any particular processes
because of their irreversible linkage. The changed
metabolic pathways may potentially be the cause
of the sex-dependent differences in APOE4-related
risk of developing AD, as sex significantly affects
metabolic homeostasis. Most intriguingly, these risk
factors have a significant impact on A� production
and/or degradation and A�-independent AD path-
ways (Fig. 2).

For instance, higher �- and �-secretase activities
speed up the generation of A� by increasing neu-
ronal cholesterol. Increased levels of insulin hinder
A� clearance in type 2 diabetes by competing with
A� for an important A�-degrading enzyme called
insulin-degrading enzyme. Since the cerebrovascular
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Table 1
Risk connected genetic parameters

Parameter Description

GWAS Variants CR1, BIN1, CLU, PICALM, and APOE gene variants located on human chromosome 19.
APOE Gene Variants APOE gene has three common variants: �2, �3, and �4. Determined by SNPs rs429358 and rs7412.
rs429358 SNP with common allele morph T and variant allele morph C, encoding amino acid change (Cys130Arg)

in exon 4.
rs7412 SNP with common allele morph C and variant allele morph T, encoding amino acid change (Arg176Cys)

in exon 4.
APOE4 Allele APOE4 allele linked to increased risk of Alzheimer’s disease (AD). Each copy raises risk; having one

copy increases risk nearly two times, and having two alleles increases risk by around 11 times.
AD Biomarker Study APOE2 carriers live 1 year longer than APOE4 carriers and 1.2 years less than APOE3/3 carriers.
APOE4 and AD Risk APOE4 increases incidence of AD and accelerates age at manifestation. Impact on neuronal death and

chromosomal length may affect AD risk.
Genetic History APOE4 carriers may not necessarily develop AD. More than half of AD patients have zero copies of

APOE4. Retaining an APOE4 copy is less important than genetic history.
Age and AD Risk Risk increases with age, but residual risk decreases as a person ages. The impact of APOE4 on cultures

outside of Europe is not widely known.
Reinforcement Learning Made accessible to computational biologists and computational intelligence experts for genomics

applications. DragoNN Collections provide tools for model construction, interpretation, and DNA
sequence simulations.

Software Tools DragoNN Collections include a command-line interface for modeling and interpretation, as well as
web-based lessons with Jupyter framework for interactive model editing and visualization.

APOE Isoform Effects Discussion covers APOE isoform independent effects on cholesterol metabolism, glucose metabolism,
mitochondrial functions, cerebrovascular system, and inflammation, all implicated in AD etiology and
cognitive functions.

Sex-Dependent Effects Unclear if APOE isoforms affect specific processes due to irreversible linkage. Changed metabolic
pathways may contribute to sex-dependent differences in APOE4-related AD risk, as sex significantly
affects metabolic homeostasis.

AD Pathways Impact APOE isoforms impact cholesterol metabolism, glucose metabolism, mitochondrial functions,
cerebrovascular system, and inflammation. Risk factors also affect A� production/degradation and
A�-independent AD pathways.

Molecular Activities �-Secretase activities increase A� generation by raising neuronal cholesterol. Increased insulin levels
hinder A� clearance in type 2 diabetes. Abnormalities in cerebrovascular cells aggravate A�
deposition in the brain.

Immunological Impact Glial cell-mediated A� clearance and A�PP processing are impacted by immunological responses
through inflammasomes and cytokines, playing a crucial role in A� deposition.

system is essential for regulating brain A� clearance,
abnormalities of cerebrovascular cells, particularly
vascular mural cells, lead to an aggravation of A�
deposition as senile plaques in the brain parenchyma
and cerebral amyloid. Antipathy is observed with
the cerebral vascular system. Additionally, glial
cell-mediated A� clearance and A�PP processing
are both significantly impacted by immunological
responses via inflammasomes and cytokines, which
play a crucial role in A� deposition.

RESULTS

Pathogenic pathways for AD are distinct for each
APOE isoform, involving both A�-dependent and
independent processes [8]. It is crucial to note that
abnormalities in these metabolic pathways worsen
A� buildup, potentially setting off a vicious cycle
in AD, as increased A� likely disrupts these path-
ways in turn. Epidemiological research indicates

that factors such as age, sex, and lifestyle (includ-
ing rest, fitness, and education) have a significant
impact on APOE-related AD etiology. APOE proba-
bly increases the risk of AD through these intricate
predictions and experiments in an isoform-dependent
manner (E4 > E3 > E2).

In contrast to “simple” negative sets, training the
models genome-wide by segmenting the genome into
small (200 bp), overlapping (stride = 50) segments
(Fig. 3) leads to improved generalization perfor-
mance on the test set. For example, it is found that
training on the entire genome performed better on test
sets for the SPI1 and CTCF tasks than using shuffled
reference negatives.

To aid model training, it is required to up-sample
positive cases in each batch due to the large class
imbalance in in vivo data [9]. The model cor-
rectly learned the motif in the CTCF and SPI1
(Fig. 4) datasets, according to interpretation with
DeepLIFT, which shows that up-sampling positives
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Fig. 2. A�-independent AD pathways.

Fig. 3. Motif scores of Alzheimer’s disease associated genes.

to make up 30% of each batch worked effectively.
We ensure whether the model still able to learn
well at up-sample ratio = 0.1? Upsample ratio = 0.5:

Does it Improve Learning? Similar tasks, such as
CTCF/ZNF143/SIX5, can perform better when per-
formed simultaneously. However, multitasking does
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Fig. 4. Gene regulatory mechanism.

Fig. 5. Significant sequence simulations.

not enhance performance on various jobs (i.e., the
SPI1 motif does not resemble the other three motifs,
so multitasking does not improve performance for the
SPI1 task).

In a Deep Regulatory CNN (DRCNN) model,
a locally connected linear unit may constitute a
Position-Specific Scoring Matrix (PSM) for the
GWAS studies obtained from ADNI. The PSM across

the sequence is multiplied, the PSM scores are under
threshold, and the maximum value is taken to create
the weighted sequence of PSM range [10].

The Deep Genome Regulatory Neural Network
constitutes a CNN model, which is a collection
of locally connected linear modules performing the
functions of convolution. At each layer, a convolu-
tional filter is applied, evaluating the PSM scores
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followed by ReLU thresholding and max-pooling. To
create and train the DRCNN model, the TensorFlow
library is combined at the backend with Keras and
include deep learning modules. DRCNN may visu-
alize a variety of genome sequence features (Fig. 5)
in a compositional manner by using many convolu-
tional layers and filters [11]. We simulate a set of
significant sequences with several motif occurrences
in the middle and a set of non-significant sequences
with numerous motif occurrences dispersed through-
out the sequence. The parameters for the TAL1 gene
expression motif density localization is defined for a
sequence around 1,000 bp long. They include a 1/4
GC fraction and 2–5 instances of the motif in the
middle 150 bp of the sequence for deriving signifi-
cant regions. A total of 3,000 significant and 3,000
non-significant sequences are simulated.

DISCUSSION

The basic DragoNN model comprises of one con-
volutional layer with 15 convolutional filters and
max-pooling of around 40 width units [12]. The
model’s inputs are 1500-character input motif reg-
ulatory regions and a 15-character filter. On the
input profile, neurons serve as informal alignments
of data. The model scans the whole input stream
in search of a certain pattern represented by the fil-
ter’s weights. Convolution filter weights around 15
specify the dimension of the filter weights. The max-
imum value of a significant motif in sliding windows
of size 40 is calculated using the maximum pool
of width. The pooling layer is included because TF
motifs often only occur in a small number of posi-
tions in DNA sequences. Using the pooling layer, we
may scale down the size of the resulting sequence
by applying the collection of GWAS datasets. Thus,
training the DRCNN for about 200 self-iterations
with pre-defined stopping conditions for every loss
in validation data, and the performance is not show-
ing improvement in every three iterations. The model
runs through the training data completely for each
epoch and modifies its weights on each gene motif to
minimize the loss, which measures the performance
and error in each DRCNN layer. The model’s per-
formance measurements on the validation data were
saved after each epoch [13].

In the significant regions example, the motif
scan produces a cluster of three high-scoring motif
alignment positions at a predetermined distance
from the gene expression’s center region. In the

non-significant region, the spacing between the high-
scoring motif alignments is random. If the randomly
spaced motifs happen to have a spacing close to the
significant example, we practice to provide another
index value to select a different region. Only by
visualizing the significant sequence, motifs are not
entirely predicted and evaluated.

Transcription factors (TF) might be able to bind to
numerous comparable but distinct sequences. Some
of the motif’s bases could be more significant than
others. The preference the TF has for each potential
base at each position inside the motif is frequently
represented as a Position-Specific Scoring Matrix.
That, however, presumes that each place inside the
theme is autonomous, which is not necessarily the
case. Even the length of a motif might change at times.
Even the DNA on each side of the motif can affect
binding; the bases within the motif are predominantly
responsible for it. Other DNA characteristics may
also be significant. The physical environment affects
numerous TFs [14]. The TF is affected and decided
by several factors, including the physical composi-
tion of the DNA and how firmly the double helix is
twisted. Methylation of the DNA may also affect TF
binding. It is studied that the majority of the DNA in
eukaryotes is tightly coiled around histones. Only the
unwinding sections are accessible to TFs.

Alternative dependencies include monitoring the
other binding components, which also perform
crucial functions [15]. TFs frequently occupy interac-
tions with each single binding component, which can
have an impact on gene regulations and expression.
For instance, a TF may build a complex with another
component by binding to it, and that complex may
subsequently bind to a different DNA motif than the
TF alone.

Conclusion

TF binding is a highly unpredictable process, and
the DNA language is as complex as natural language
processing. Therefore, a DRCNN solution would be
appropriate for predicting significant gene expression
in AD using only the sequence data, immediately
building a model for TF binding. Thus, the work
implemented the prediction of significant motifs that
increase the vulnerability of cognitive neurodegener-
ative disease stages. The production and storage of
A� peptides in the brain are fundamental processes
that are the growing evidence in the development of
‘A�-dependent pathways’ in the disease progression.
The DRCNN model uses convolutional filters and
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locally connected linear units to provide localized
pattern recognition, making it possible to identify
complex DNA motifs. The model incorporates adap-
tive parameters for motif density localization and
offers a thorough display of genomic characteris-
tics, enhanced by PSM. The model learns more
via the use of simulated sequences, and it is com-
patible with TensorFlow and Keras, which makes
training it more effective. Nevertheless, drawbacks
include motif scanning in important regions being
static, dependence on a single convolutional layer,
and possible sensitivity to motif width assumptions.
Challenges include sensitivity to starting and halt-
ing conditions and presumptions about autonomous
positions in the PSM.
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