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Abstract.
Background: Agent Orange, an herbicide used during the Vietnam War, contains 2,4-dichlorophenoxyacetic acid (2,4-D) and
2,4,5-trichlorophenoxyacetic acid (2,4,5-T). Agent Orange has teratogenic and carcinogenic effects, and population-based
studies suggest Agent Orange exposures lead to higher rates of toxic and degenerative pathologies in the peripheral and
central nervous system (CNS).
Objective: This study examines the potential contribution of Agent Orange exposures to neurodegeneration.
Methods: Human CNS-derived neuroepithelial cells (PNET2) treated with 2,4-D and 2,4,5-T were evaluated for viability,
mitochondrial function, and Alzheimer’s disease (AD)-related proteins.
Results: Treatment with 250 �g/ml 2,4-D or 2,4,5-T significantly impaired mitochondrial function, caused degenerative
morphological changes, and reduced viability in PNET2 cells. Correspondingly, glyceraldehyde-3-phosphate dehydrogenase
expression which is insulin-regulated and marks the integrity of carbohydrate metabolism, was significantly inhibited while
4-hydroxy-2-nonenal, a marker of lipid peroxidation, was increased. Tau neuronal cytoskeletal protein was significantly
reduced by 2,4,5-T, and relative tau phosphorylation was progressively elevated by 2,4,5-T followed by 2,4-D treatment
relative to control. Amyloid-� protein precursor (A�PP) was increased by 2,4,5-T and 2,4-D, and 2,4,5-T caused a statistical
trend (0.05 < p<0.10) increase in A�. Finally, altered cholinergic function due to 2,4,5-T and 2,4-D exposures was marked by
significantly increased choline acetyltransferase and decreased acetylcholinesterase expression, corresponding with responses
in early-stage AD.
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Conclusion: Exposures to Agent Orange herbicidal chemicals rapidly damage CNS neurons, initiating a path toward AD-type
neurodegeneration. Additional research is needed to understand the permanency of these neuropathologic processes and the
added risks of developing AD in Agent Orange-exposed aging Vietnam Veterans.

Keywords: Agent Orange, Alzheimer’s disease, herbicide, neurodegeneration, neurons, pesticide, Veterans, Vietnam, 2, 4-D,
2, 4, 5-T

INTRODUCTION

Agent Orange, a potent synthetic herbicide, was
widely used to defoliate enemy territory during the
Vietnam War between 1965 and 1970 [1]. Expo-
sures were highest in Operation Ranch Hand military
personnel who carried out much of the spraying
from aircraft and in ground troops stationed within
0.5 km of treated zones [1]. Years later, increased
rates of severe birth defects, including spina bifida,
limb deformities, sensory impairments, and develop-
mental disabilities were observed in the offspring of
otherwise young, healthy Vietnamese women who
resided in regions that had been sprayed with Agent
Orange [2, 3]. Subsequent studies demonstrated
higher rates of newly diagnosed carcinomas and soft-
tissue sarcomas, as well as cardiovascular disease in
military personnel known to have been exposed to
Agent Orange [4, 5]. These population-based studies
drew attention to the long-term unintended adverse
effects of Agent Orange exposures on human health
across the lifespan.

Agent Orange is chiefly composed of a 1 : 1 ratio
of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-
trichlorophenoxyacetic acid (2,4,5-T) [1]. However,
considerable attention has been paid to the poten-
tial role of 2,3,7,8-tetrachloro-p-dioxin (TCDD) as a
mediator of human disease because TCDD is highly
toxic, and trace quantities contaminated 2,4,5-T dur-
ing its production [1]. In some respects, that concept
may have detracted from larger questions about the
teratogenic and mutagenic effects of the herbicide
toxins deliberately incorporated into Agent Orange.
Given what is already known about the toxic effects of
Agent Orange on plant life, a reasonable hypothesis is
that its constituents also contribute to mammalian cel-
lular injury and disease. Furthermore, the higher rates
of malignancies, cardiovascular diseases, and dia-
betes mellitus [5–7], years after the exposures suggest
that Agent Orange may have indirect or “second-
hit” type long-term effects that exacerbate the risk
of aging-associated diseases.

In a recent review article, potential links between
Agent Orange exposures and the later development of

peripheral nervous system (PNS) or central nervous
system (CNS) degenerative diseases were discussed
[8]. Moreover, in a cohort analysis of Vietnam War
veterans included in the Veterans Health Adminis-
tration database, significantly higher rates and earlier
onsets of dementia were correlated with presumed
Agent Orange exposures [9]. Since degenerative dis-
eases of the PNS and CNS are often aging-associated
and many of them have been linked to Type 2 diabetes
mellitus and insulin resistance [10–12], it is of inter-
est to expand our understanding of how Agent Orange
exerts its toxic and degenerative effects on human
nervous system cells [13–16]. In this regard, previ-
ous studies showed that 2,4-D had lipotoxic effects
on gangliosides, myelin, and Schwann cells [17–21].
Of note is that Schwann cells generate and main-
tain myelin, and myelin is needed for efficient neural
conductivity and function.

Although dioxins are no longer produced in the
United States, and the manufacture of polychlori-
nated biphenyl-containing products, some of which
generate dioxins, was banned by the Environmen-
tal Protection Agency in 1979, dioxins are found
throughout the world as contaminants in soil, foods
including high-fat dairy products, meat, fish, eggs,
and shellfish, and at low levels in plants, water and
air [22]. Worse yet, Agent Orange pollutants remain
in the environment for decades [23]. Besides the
increased risk of generating TCDD with the manu-
facture of 2,4-D and 2,4,5-T, compelling evidence for
the harmful effects of 2,4,5-T led to its discontinued
registered use in the United States, although informa-
tion about its global usage remains scant. In contrast,
human exposures to 2,4-D broadly impact global
populations due to its widespread inclusion in herbi-
cide and pesticide products, including in the United
States. To begin addressing questions about neuro-
toxic and degenerative responses to Agent Orange,
we examined the effects of 2,4-D and 2,4,5-T on mito-
chondrial function, viability, stress, and markers of
neurometabolic dysfunction in human PNET2 cells
using an established in vitro model. The rationale was
that significant impairments related to these indices
would provide evidence that Agent Orange expo-
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Table 1
Agent Orange herbicide chemicals used in vitro

Compound Source Catalog # M.W. Solvent Concentration

2,4-Dichloro-phenoxy
Acetic Acid (2,4-D)

Santa Cruz
Biotechnologies, Dallas,
TX USA

sc-205097 221.04 DMSO 25–250 �g/ml

2,4,5-Trichloro-
phenoxyacetic acid
(2,4,5-T)

Santa Cruz
Biotechnologies, Dallas,
TX USA

sc-209335 255.48 DMSO 25–250 �g/ml

Vehicle control cultures were treated with DMSO.

Table 2
Antibodies used for duplex ELISA studies

Antibody Source Company Type Concentration/
Dilution

RRID#

Glucose-6-Phosphate
Dehydrogenase (GAPDH)

Mouse Santa Cruz, Dallas,
TX

Monoclonal 0.2 �g/ml AB 10847862

Tau Rabbit Agilent/Dako, Santa
Clara, CA

Polyclonal 6.2 �g/ml AB 10013724

Phospho-Tau (pTau;
pT205-Tau)

Rabbit Abcam, Waltham,
MA

Polyclonal 0.8 �g/ml AB 304676

Amyloid Precursor Protein
(APP)

Rabbit Cell Signaling,
Danvers, MA

Polyclonal 0.246 �g/ml AB 10694227

Amyloid Precursor
Protein-Amyloid Beta
(APP-A�)

Mouse Novacastra (LSBio) Monoclonal 1 : 250 LS-C651578-MSS10

Choline Acetyltransferase
(ChAT)

Rabbit Abcam, Waltham,
MA

Polyclonal 1 : 3000 AB 2244866

Acetylcholinesterase (AChE) Mouse Abcam, Waltham,
MA

Monoclonal 0.25 �g/ml AB 303316

8-Hydroxydeoxyguanosine
(8-OHdG)

Mouse 21st Century
Biochemicals,
Marlborough, MA

Monoclonal 0.2 �g/ml [40]

4-Hydroxy-2-nonenal (HNE) Goat Abcam, Waltham,
MA

Polyclonal 1.0 �g/ml AB 722493

Large acidic ribosomal
protein (RPLPO)

Mouse Santa Cruz, Dallas TX Monoclonal 0.1 �g/ml [39, 41, 42]

sures establish a deleterious path toward progressive
neurodegeneration, including possibly Alzheimer’s
disease (AD).

METHODS

Materials

Dulbecco’s Modified Eagle Medium (DMEM),
Amplex UltraRed, and 4-methylumbelliferyl phos-
phate (4-MUP) were obtained from Invitrogen
(Carlsbad, CA, USA). The CYQUANT MTT
Cell Viability Assay, which is based on the
cellular conversion of 3-[4,5-dimethylthiazole-2-
yl]-2,5-diphenyltetrazolium bromide (MTT) to an
insoluble formazan product, Hoechst (H33342) dye,
and Nunc Lab Tek 8-well chamber slides were from
Thermo Fisher (Cambridge, MA USA). Alkaline
Phosphatase Conjugated to Streptavidin was pur-
chased from Vector Laboratories (Burlingame, CA,

USA). Details pertaining to the Agent Orange chem-
icals are listed in Table 1, and antibodies used
in immunoassays are listed in Table 2. All other
fine chemicals were purchased from Thermo Fisher
(Cambridge, MA USA), Sigma-Aldrich (St. Louis,
MO, USA), or CalBiochem (Carlsbad, CA, USA).

Cell culture model

Human CNS-derived primitive neuroepithelial
tumor (PNET2) cells were maintained in Dulbecco’s
Modified Eagle’s Medium (DMEM) supplemented
with 10% fetal calf serum, 2 mM glutamine, and
4.5 g/L glucose but without antibiotics. The cells were
grown at 37◦C in a standard 5% CO2 humidified
incubator.

The PNET2 cell line, established in 1993 [24],
was found to mimic many properties of immature
non-transformed CNS neurons including growth,
differentiation and cell motility and adhesion respon-
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siveness to trophic factor stimulation, the expression
of complex signal transduction networks, and sen-
sitivity to toxins such as alcohol, oxidative stress,
and mediators of neurodegeneration and neurotoxi-
city [25–30]. Only limited passage pools of PNET2
cells, i.e., 10 or fewer, were used in experiments. In
contrast, the use of non-CNS cells including SH-Sy5y
and PC12, have not reliably yielded data that could
guide subsequent in vivo brain experiments.

Fresh overnight sub-confluent cultures were
trypsinized and re-seeded into 96-well Nunc flat-
bottom plates at a density of 1.4 x 104 viable
cells/well, or 6-well plates at a density of 2.1 x 105

viable cells/well. Cell viability was assessed by Try-
pan blue exclusion. After 24 h, 16 replicate 96-well
cultures were treated with 25 �g/ml or 250 �g/ml of
2,4-D or 2,4,5-T (Table 1) Agent Orange herbicide
chemicals for 48 h. For the 6-well plates, six repli-
cate cultures were treated with 250 �g/ml of 2,4-D or
2,4,5-T for 48 h. Since 2,4-D and 2,4,5-T were sol-
ubilized in dimethyl sulfoxide (DMSO) and further
diluted with serum-free DMEM, vehicle control cul-
tures studied in parallel, were treated with the same
content of DMSO diluted in DMEM.

Initial dose-effect studies to select the 2,4-D or
2,4,5-T concentrations for use in our experiments
were guided by previous reports in which the effects
of these herbicides were evaluated in vitro with a
range of cell types [21, 31–33], but probably higher
than the concentrations used to spray the herbicides
[34]. The doses ultimately selected could not be com-
pared with historical human exposures via Agent
Orange, particularly since most of the prior research
focused on TCDD. However, the doses employed in
our experiments were considerably below the 100
or 200 mg/kg daily in vivo rodent administrations
reported previously [18, 19].

Mitochondrial and viability studies

The MTT colorimetric assay was used to mea-
sure the effects of 2,4-D and 2,4,5-T treatments
on mitochondrial function [35, 36]. Absorbances
were measured at 540 nm in a SpectraMax M5
Microplate Reader (Molecular Dynamics, Sunny-
vale, CA, USA). After discarding the supernatants
and rinsing the wells with phosphate-buffered
saline (PBS), the cells were stained with Hoechst
H33342 (10 �g/ml in PBS) (Thermo Fisher Scien-
tific, Cambridge, MA) for 15 min protected from
ambient light with aluminum foil. Fluorescence
(Ex360 nm/Em460 nm) intensity corresponding to

nuclear staining was measured in a SpectraMax M5
Microplate Reader. Although H33342 labels live
and dead cells, the PBS rinses dislodge and remove
unfixed non-viable cells, preventing their inclusion
in this component of the assay. Using this approach,
H33342 fluorescence intensity increases linearly
with viable cell culture density in 96-well plates
under non-saturated conditions [37]. The calculated
MTT/H33342 ratios were used as indices of relative
mitochondrial activity/cell viability. These assays
were performed in replicates of 16 and repeated
twice. and Hoechst H33342 fluorescence was used
as an index of cell number/viability.

Protein extraction

Immunoreactivity was measured in protein
homogenates to assess the effects of 2,4-D and
2,4,5-T treatments on PNET2 cell expression
of standard molecular biomarkers associated
with AD neurodegeneration including tau, phos-
phorylated tau (pT205-Tau), amyloid-� protein
precursor (A�PP), amyloid beta fragment of A�PP
(APP-A�), choline acetyltransferase (ChAT),
and acetylcholinesterase (AChE). In addition,
8-hydroxydeoxyguanosine (8-OHdG) and 4-
Hydroxy-2-nonenal (HNE) were measured as
indices of nucleic acid damage and lipid peroxi-
dation, respectively. Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH), an insulin-responsive
enzyme [38], served as a marker of metabolic
integrity. Large acidic ribosomal protein (RPLPO)
served as an internal loading control [39–42]. The
antibody descriptions, sources, concentrations, and
validation references are provided in Table 2.

Duplex ELISAs

We used duplex ELISAs to measure PNET2
cellular immunoreactivity such that the levels of
specific protein expression were normalized to
RPLPO measured in the same samples as previ-
ously described [43, 44]. In brief, duplex ELISAs
were performed in quadruplicate with 50 � l pre-
diluted protein homogenate aliquots containing 50 ng
of protein adsorbed to the bottom flat surfaces of
96-well MaxiSorp plates. Adsorptions were per-
formed overnight at 4◦C. After briefly rinsing in
phosphate-buffered saline (PBS), pH 7.35, non-
specific sites were blocked by a 2-h incubation with
Superblock-TBS Blocking Buffer at room temper-
ature and with gentle platform agitation. Adherent,
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Table 3
ANOVA for effects of 2,3-D on neuronal mitochondrial function

and viability

Assay F-Ratio p

MTT 38.38 <0.0001
Viability 4.77 0.0132

Inter-group comparisons were made using one-way ANOVA and
post-hoc Tukey tests with correction for multiple comparisons (See
Fig. 1). F-Ratios correspond to the measured Agent Orange herbi-
cide 2,4-D toxin effects. NS, not significant. DFn, DFd=2, 45 for
all assays.

blocked protein samples were then reacted with
primary antibodies (0.2–5.0 �g/ml) by overnight
incubation at 4◦C. Immunoreactivity was detected
with horseradish peroxidase (HRP)-conjugate sec-
ondary antibody and the soluble Amplex UltraRed
fluorophore. A SpectraMax M5 microplate reader
(Molecular Dynamics, USA) was used to measure
fluorescence intensity (Ex530 nm/Em590 nm). Then,
RPLPO immunoreactivity, which served as a sam-
ple loading control, was measured by incubating the
proteins with biotinylated anti-RPLPO followed by
streptavidin-conjugated alkaline phosphatase and 4-
MUP (Ex360 nm/Em450 nm). The calculated ratios
of the target protein to RPLPO fluorescence were
used for inter-group statistical comparisons. Six repli-

cate cultures were analyzed per group. PBS or TBS
rinses were used between procedural steps. All assays
were repeated twice.

Statistical analysis

Inter-group comparisons were made by one-way
analysis of variance (ANOVA) with Tukey post hoc
multiple comparisons tests (GraphPad Prism 9.4, San
Diego, CA). Results were graphed using scatter plots
with mean and standard deviation bars, or box plots
depicting the means (horizontal bars), 95% Confi-
dence interval limits (upper and lower borders of the
boxes), and ranges (upper and lower stems). Signif-
icant (p < 0.05) and trend-wise (0.05 < p<0.10) post
hoc test differences are shown in the tables and
graphs.

RESULTS

Effects of 2,4-D on neuronal mitochondrial
function and viability (Table 3 and Fig. 1)

At the 25 �g/ml concentration, 2,4-D produced
modest increases in mean MTT activity. However,
at the 250 �g/ml dose, 2,4-D sharply reduced MTT

Fig. 1. CNS neurotoxic effects of 2,4-D. Human PNET2 cells seeded into 96-well plates were treated with 0, 25 �g/ml, or 250 �g/ml of 2,4-D
for 48 h. A) Absorbance for MTT activity (540 nM) reflecting mitochondrial function. B) Hoechst H33342 fluorescence (Ex360/Em460)
reflecting cell number/viability. N = 16 culture well replicates per dose. Graphs depict individual sample data with means (horizontal bars)
and standard deviations (stems). Significant post hoc multiple comparison Tukey test results are shown. MTT = 3-[4,5-dimethylthiazole-2-
yl]-2,5-diphenyltetrazolium bromide.
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Fig. 2. CNS neurotoxic effects of 2,4,5-T. Human PNET2 CNS cells seeded into 96-well plates were treated with 0, 25 �g/ml, or 250 �g/ml
of 2,4,5-T for 48 h. A) Absorbance for MTT activity (540 nM) reflecting mitochondrial function. B) Hoechst H33342 fluorescence
(Ex360/Em460) reflecting viable cell number. N = 16 culture well replicates per treatment group. Graphs depict individual sample data
with means (horizontal bars) and standard deviations (stems). Significant post hoc multiple comparison Tukey test results are displayed.

Table 4
ANOVA for effects of 2,4,5-T on neuronal mitochondrial function

and viability

Assay F-Ratio p

MTT 31.76 <0.0001
Viability 243.4 <0.0001

Inter-group comparisons were made using one-way ANOVA and
post-hoc Tukey tests with correction for multiple comparisons (See
Fig. 1). F-Ratios correspond to the measured Agent Orange herbi-
cide 2,4-D toxin effects. NS, not significant. DFn, DFd=2, 45 for
all assays.

activity relative to control and the 25 �g/ml-treated
cultures (Fig. 1A). One-way ANOVA demonstrated
significant inter-group differences (Table 3A), and
the post hoc Tukey test showed that the mean level
of MTT activity was significantly lower in PNET2
cultures treated with the 250 �g /ml dose of 2,4-D
relative to control and the 25 �g/ml 2,4-D-treated
cultures (p < 0.0001) (Fig. 1A).

H33342 fluorescence provided an index of adher-
ent cell number and therefore viability since all
cultures were seeded identically and non-adherent
dead cells in the unfixed cultures were removed by
pre-rinsing with PBS. The mean levels of H33342
fluorescence progressively declined with increasing
2,4-D dose. One-way ANOVA revealed significant
inter-group differences in Hoechst H33342 fluo-
rescence (Table 3), and the post hoc Tukey test

demonstrated that viability was significantly lower
in cultures treated with 250 �g/ml of 2,4-D relative
to vehicle. Moreover, post hoc linear trend analysis
showed that the progressive decline in cell viabil-
ity with increasing 2,4-D dose was significant (R
square = 0.175; p = 0.004) (Fig. 1B).

Effects of 2,4,5-T on neuronal mitochondrial
function and viability (Table 3 and Fig. 2)

In PNET2 cells treated with 25 �g/ml 2,4,5-T,
MTT activity was elevated above the levels measured
in both control and the 250 �g/ml 2,4,5-T-treated cul-
tures, whose mean level of MTT was comparable
to control (Fig. 2A). One-way ANOVA demon-
strated significant inter-group differences (F = 31.76;
p < 0.0001) (Table 4), and the post hoc Tukey tests
showed that the differences in mean MTT activity
resulting from 25 �g/ml versus 0 or the 250 �g/ml
2,4,5-T were statistically significant (both p < 0.0001)
(Fig. 2A).

Treatment of PNET2 cultures with 2,4,5-T caused
dose-dependent declines in Hoechst H33342 flu-
orescence (Fig. 2B), reflecting cell loss. While
exposure to 25 �g/ml of 2,4,5-T led to modest
but significant reductions in cell number, treat-
ment with the 250 �g/ml dose caused a precipitous
decline in PNET2 cell viability. One-way ANOVA
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Fig. 3. Degenerative cytomorphological effects of 2,4-D and 2,4,5-T. PNET2 cells seeded into 8-well chamber slides were treated with A,
D) vehicle, B, E) 250 �g/ml 2,4-D, or C, F) 250 �g/ml 2,4,5-T for 48 h. Cells were stained with Hematoxylin after 10% formalin fixation.
Note lower cell densities, cytoplasmic vacuolations (arrows), and irregular cell process extensions (dots) in the 2,4-D and 2,4,5-T treated
cultures. Photographs were taken at A-C) 400x and D-F) 600x. Final image magnification scale bars are displayed.

demonstrated significant inter-group differences in
mean H33342 fluorescence (F = 243.4; p < 0.0001)
(Table 4), and post hoc Tukey tests revealed sig-
nificant reductions in H33342 in cells treated with
25 �g/ml of 2,4,5-T relative to control (p < 0.0001)
and significantly lower levels of H33342 fluorescence
in PNET2 cultures treated with 250 �g/ml of 2,4,5-T
relative to both control and the 25 �g/ml of 2,4,5-
T-treated cells (both p < 0.0001). Furthermore, post
hoc linear trend analysis showed that the progressive

decline in cell viability with increasing 2,4,5-T dose
was significant (R square = 0.824; p < 0.0001).

Cytopathological features of 2,4-D and 2,4,5-T
exposed PNET2 cells

Cells seeded on 8-well chamber slides and treated
with vehicle, 250 �g/ml 2,4-D, or 250 �g/ml 2,4,5-T
for 48 h were fixed in 10% neutral buffered forma-
lin, stained with Hematoxylin, and mounted under
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Table 5
Biomarkers of neurotoxicity and neurodegeneration

Biomarker F-Ratio p

GAPDH 37.12 <0.0001
8-hydroxydeoxyguanosine 0.059 N.S.
4-hydroxy-2-nonenal 5.067 0.021
Amyloid Precursor Protein 5.819 0.0135
Amyloid Precursor Protein-A� 1.722 N.S.
Tau 3.517 0.056
pTau 7.642 0.005
pTau/Tau 3.580 0.054
Choline acetyltransferase 8.228 0.004
Acetylcholinesterase 28.14 <0.0001

Biomarker immunoreactivity was measured in PNET2 cell
homogenates by Duplex ELISA. were configured to quantify
immunoreactivity in target proteins using specific unlabeled
monoclonal antibodies coupled with horseradish peroxidase-
conjugated secondary antibody and the Amplex UltraRed soluble
fluorophore. To correct for modest differences in sample load-
ing, results were normalized to large acidic ribosomal protein
(RPLPO) with biotinylated antibody, Streptavidin-conjugated
alkaline phosphatase and the 4-Methylumbelliferyl phosphate (4-
MUP) substrate. Fluorescence intensities (Amplex Red: Ex560
nm/Em590 nm; 4-MUP: Ex360/Em450) were measured in a Spec-
traMax M5. Inter-group comparisons were made using one-way
ANOVA and post-hoc Tukey tests with correction for multiple
comparisons (See Figs. 3-5). F-Ratios correspond to measured
Agent Orange herbicide toxin effects. NS, not significant. DFn,
DFd=1, 40 for all assays.

coverglass for microscopic examination. Relative to
vehicle, 2,4-D and 2,4,5-T caused cytoplasmic vacuo-
lation, shrinkage of cell bodies, and conspicuous cell
process extension (sprouting) (Fig. 3). In addition,
the cell densities were reduced, corresponding with
the H33342 results. Cell loss, sprouting and cell body
shrinkage appeared more pronounced in the 2,4,5-T
than 2,4-D treated cultures.

Neuronal function markers

Duplex ELISAs were used to compare the effects
of 250 �g/ml 2,4-D and 2,4,5-T on GAPDH, 8-
OHdG, HNE, Tau, pTau, A�PP, A�, ChAT, and
AChE immunoreactivity in human PNET2 cells. The
data were analyzed by one-way ANOVA (Table 5).
The post hoc Tukey test results (corrected for repeated
measures) are depicted graphically in Figs. 4–7.

GAPDH: This insulin-regulated enzyme has a crit-
ical role in carbohydrate metabolism [38]. Reduced
expression or enzyme activity is a feature of
CNS neurotoxic or neurodegenerative pathology
[45, 46]. One-way ANOVA demonstrated signifi-
cant inter-group differences in GAPDH expression
(p < 0.0001). Post hoc Tukey tests demonstrated sig-
nificant reductions in GAPDH in both 2,4,5-T, and

2,4-D treated PNET2 cells, and greater reductions
associated with 2,4,5-T than 2,4-D (Fig. 4A).

8-OHdG: This biomarker of oxidative stress [47] is
associated with RNA [48], mitochondrial DNA [49],
and nuclear DNA [50] damage. Following short-term
exposures, no significant effects of 2,4,5-T or 2,4-D
were observed with respect to 8-OHdG immunoreac-
tivity (Fig. 4B).

HNE: This established biomarker of lipid per-
oxidation that reflects membrane damage [51] and
is increased in various neurodegenerative or neuro-
toxic disease states [29, 52, 53], was significantly
affected by Agent Orange herbicide toxin exposures
as demonstrated by one-way ANOVA (p = 0.021).
Post-hoc Tukey tests demonstrated the highest levels
of HNE in cells exposed to 2,4,5-T with a sig-
nificant difference from the 2,4-D-exposed cultures
(p = 0.0062) (Fig. 4C).

A�PP: Amyloid precursor protein is abundantly
expressed in the brain [54], and its levels increase
with sporadic AD [55]. Proteolytic cleavage of A�PP
by beta secretase followed by gamma secretase [54]
generates C-terminal 40 or 42 amino acid length A�
peptides that can aggregate and are thought to impact
the development of AD [54]. Duplex ELISAs demon-
strated significantly altered expression of A�PP
(p = 0.01) associated with Agent Orange herbicide
toxin exposure. Post hoc tests showed significantly
elevated levels of A�PP in cells treated with 2,4,5-T
(p = 0.004) and statistical trend increases following
2,4-D exposure (p = 0.05) (Fig. 5A).

A�: The 40 or 42-amino acid long C-terminal
peptides, once accumulated, have the propensity to
aggregate or form oligomers [54]. A� deposition
is pro-inflammatory, and increased levels of A�
oligomers are neurotoxic [54]. The high levels of
A� associated with AD neurodegeneration led to the
amyloid hypothesis and subsequent development of
treatments designed to clear A� from the brain in
hope of disease remediation. The ANOVA test did
not detect significant inter-group differences. How-
ever, the graph and post hoc test revealed somewhat
higher levels of A� in the Agent Orange herbi-
cide toxin-exposed groups with a statistical trend
difference between 2,4,5-T and vehicle (p = 0.09)
(Fig. 5B).

Tau: This neuronal microtubule binding protein
functions in controlling the assembly and stability
of microtubules and impacts axonal transport and
growth cone development [56]. Tau is targeted in
a broad array of neurodegenerative diseases, includ-
ing AD. Neurotoxic injury and oxidative stress have
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been associated with tau protein fragmentation lead-
ing to its reduced levels with attendant cytoskeletal
collapse and synaptic disconnection [57]. One-way
ANOVA demonstrated a statistical trend effect of
Agent Orange herbicide toxin exposure, and signifi-
cant post hoc reduction in tau protein in cells exposed
to 2,4,5-T versus Vehicle (Fig. 6A). The differences
between 2,4-D and vehicle or 2,4,5-T were not sig-
nificant.

pTau: The pTau antibody detected the Thr205
phosphorylated epitope of tau, which is one of the
many sites contributing to tau hyperphosphorylation
in AD [58]. In addition to neurodegeneration, tau
phosphorylation occurs following hypoxic-ischemic
injury or oxidative stress and, like AD, it is largely
mediated by glycogen synthase kinase-3� (GSK-
3�) activation [59]. Under physiological conditions,
insulin and insulin-like growth factor type 1 (IGF-
1) modulate tau phosphorylation via inhibition of

GSK-3� [60], but with AD and other forms of
neurodegeneration, insulin and IGF-1 signaling are
impaired, resulting in the activation of GSK-3� and
other kinases that mediate tau hyperphosphorylation
on Ser and Thr residues [58].

Consequences of aberrant phosphorylation include
tau protein aggregation with formation of paired-
helical filament structural lesions characteristic of
AD pathology [58]. However, pTau levels are also
linked to the abundance of tau protein such that reduc-
tions in tau could lead to reductions in the measured
pTau, despite elevated levels of GSK-3� activity. In
the present study, we observed significant effects of
Agent Orange herbicide toxin exposures (p = 0.005)
by one-way ANOVA, and significant 2,4,5-T-induced
reductions in pTau relative to Vehicle and 2,4-D by
post hoc Tukey tests (Fig. 6B). Note the parallel sharp
reductions in tau and pTau in 2,4,5-T-treated PNET2
cells. On the other hand, the calculated pTau/tau ratio,

Fig. 4. Metabolic and oxidative stress indices modulated by Agent Orange herbicide toxins. Human CNS-derived PNET2 cells were
treated for 48 h with Vehicle, 250 �g/ml 2,4,5-T, or 250 �g/ml of 2,4-D. (A) GAPDH, (B) 8-OHdG, and (C) HNE immunoreactivity were
measured by duplex ELISA with results normalized to RPLPO. Each group included 6 replicate cultures. Results were analyzed by one-
way ANOVA with post hoc Tukey tests (repeated measures; See Table 5). Significant p-values are indicated within the graphs. 2,4,5-T,
2,4,5-trichlorophenoxyacetic acid; 2,4-D, 2,4-dichlorophenoxyacetic acid; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; 8-OHdG,
8-hydroxydeoxyguanosine; HNE, 4-hydroxy-2- nonenal; RPLPO, Large acidic ribosomal protein.

Fig. 5. Effects of Agent Orange herbicidal toxin exposures on A�PP and A�PP-A�. Human PNET2 cells treated for 48 h with Vehicle,
250 �g/ml 2,4,5-T or 250 �g/ml 2,4-D were analyzed for (A) A�PP, (B) A� immunoreactivity by duplex ELISA with results normalized
to large acidic ribosomal protein (RPLPO). Each group included 6 replicate cultures. Results were analyzed by one-way ANOVA (Table
5). Significant (p < 0.05) and statistical trend (0.05 < p<0.10) results of repeated measures post hoc Tukey tests are shown. 2,4,5-T, 2,4,5-
trichlorophenoxyacetic acid; 2,4-D, 2,4-dichlorophenoxyacetic acid.
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Fig. 6. Effects of Agent Orange herbicidal toxin exposures on tau expression and pTau. Human PNET2 cells treated for 48 h with Vehicle,
250 �g/ml 2,4,5-T or 250 �g/ml 2,4-D were analyzed for (A) tau and (B) pTau (pT205-Tau) immunoreactivity by duplex ELISA with
results normalized to large acidic ribosomal protein (RPLPO). C) The calculated pTau/tau ratios assessed effects on the levels of relative tau
phosphorylation. Each group included 6 replicate cultures. Results were analyzed by one-way ANOVA (Table 5). Post hoc significant (p < 0.05)
or statistical trend (0.05 < p<0.10) differences by Tukey tests (repeated measures) are displayed. 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid;
2,4-D, 2,4-dichlorophenoxyacetic acid.

Fig. 7. Effects of Agent Orange herbicidal toxin exposures on cholinergic enzyme protein expression. Human PNET2 cells treated for 48 h
with Vehicle, 250 �g/ml 2,4,5-T or 250 �g/ml 2,4-D were analyzed for (A) ChAT and (B) AChE immunoreactivity by duplex ELISA with
results normalized to large acidic ribosomal protein (RPLPO). Results were analyzed by one-way ANOVA (Table 5). Significant differences
(p < 0.05) by post hoc Tukey tests are indicated. Each group included 6 replicate cultures. 2,4,5-T, 2,4,5-trichlorophenoxyacetic acid; 2,4-D,
2,4-dichlorophenoxyacetic acid; ChAT, choline acetyltransferase; AChE, acetylcholinesterase.

reflecting relative tau phosphorylation, correcting for
altered tau protein levels, revealed a different trend
characterized by progressive elevations in relative
tau phosphorylation from Vehicle to 2,4,5-T to 2,4-
D with a significant difference between 2,4-D and
Vehicle (control) (Fig. 6C).

ChAT: Choline acetyltransferase is critical for
the synthesis of acetylcholine, a neurotransmitter
that gets reduced in AD and other neurodegenera-
tive diseases [61]. ANOVA demonstrated significant
effects of Agent Orange herbicide toxin exposure
(p = 0.004), and the graph and post hoc test revealed
significantly elevated levels of ChAT in cultures
exposed to 2,4,5-T or 2,4-D (Fig. 7A).

AChE: Acetylcholinesterase is the enzyme respon-
sible for the breakdown of acetylcholine which is
needed to terminate cholinergic neurotransmission
[62]. AChE expression is significantly reduced in AD
[63–65], yet one of the standard-of-care treatments

is acetylcholinesterase inhibitor medication that has
been purposed to preserve already reduced levels of
acetylcholine [62, 64, 66, 67]. ANOVA demonstrated
significant effects of Agent Orange herbicide toxin
exposure on AChE expression (p < 0.0001), and the
graph and post hoc test revealed significantly reduced
levels of AChE in cultures exposed to 2,4,5-T or 2,4-D
relative to vehicle (Fig. 7B).

DISCUSSION

This study examined the direct neurotoxic and
early neurodegenerative effects of the two main con-
stituents of Agent Orange, 2,4-D and 2,4,5-T, in the
absence of the proposed disease-promoting contami-
nant, TCDD. Importantly, both agents independently
impaired CNS-derived PNET2 cell function, but in
different manners. The 2,4-D caused a significant
reduction in MTT activity only at the higher dose,
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reflecting mitochondrial dysfunction, but also caused
a dose-dependent decline in cell number/viability.
Therefore, cell death occurred at the lower concentra-
tion of 2,4-D without compromise in mitochondrial
function (MTT activity). In contrast, at the higher
dose of 2,4-D, the precipitous decline in MTT vis-
à-vis gradual decline in cell viability suggests that
mitochondrial dysfunction was a major adverse effect
that contributed to PNET2 cell loss.

Treatment with 2,4,5-T had strikingly disparate
dose-dependent effects on mitochondrial function
such that the lower concentration increased whilst the
higher concentration decreased MTT activity. One
potential explanation for these seemingly paradoxi-
cal responses is that at the lower dose, increased MTT
activity reflected over-activation of mitochondrial
function related to stress, whereas the apparent nor-
malization of MTT at the higher dose corresponded
to mitochondrial dysfunction possibly due to uncou-
pling. This interpretation falls in line with the H33342
fluorescence results which showed PNET2 cell loss
vis-à-vis increased MTT activity at the 25 �g/ml
dose, and further striking PNET2 cell loss with “nor-
malization” of MTT activity at the 250 �g/ml dose.
Similar phenomena have been observed following
ethanol and nitrosamine treatment of CNS-derived
PNET2 cells [26, 46, 68, 69].

The most significant finding in this study was
that both components of Agent Orange had adverse
effects on PNET2 cell mitochondrial function and
viability, except that the 2,4-D impacted mitochon-
dria more than viability while 2,4,5-T adversely
affected both mitochondria and viability. In essence,
the results suggest that impaired CNS-derived
PNET2 cell functions caused by either 2,4-D or 2,4,5-
T exposure were likely mitochondrial-mediated and
that although both compounds caused PNET2 cell
death, 2,4,5-T is the more potent neurotoxin. Impor-
tantly, the combined effects of 2,4-D and 2,4,5-T
resulting from Agent Orange exposures may have
additive neurotoxic effects leading to substantial
impairments in energy metabolism and cell survival.

To further examine potential mechanisms of
increased cell loss and mitochondrial dysfunction,
the cells were analyzed for GAPDH, 8-OHdG,
and HNE immunoreactivity. The significant reduc-
tions in GAPDH reflect the inhibitory effects of
2,4,5-T and 2,4-D on energy metabolism. Impor-
tantly, GAPDH is an insulin-responsive gene [38],
and Agent Orange exposures correlate with higher
rates of diabetes mellitus [8]. The findings with
respect to GAPDH may reflect early impairments

in insulin-stimulated GAPDH linked to deficits in
energy metabolism via carbohydrate pathways that
are critical for neuronal function [55, 70]. The find-
ings with respect to 8-OHdG provide no evidence
that the short-term exposures to Agent Orange her-
bicidal toxins increased guanine oxidation leading
to DNA or RNA adduct formation, suggesting the
mitochondrial dysfunction marked by reductions in
MTT was functional rather than mediated by nucleic
acid structural damage. However, with prolonged
exposures, mitochondrial DNA damage would likely
ensue due to superimposed oxidative stress. HNE is a
major �,�-unsaturated aldehyde product of n-6 fatty
acid oxidation and lipid peroxidation end-product
that functions as a second messenger of oxida-
tive/electrophilic stress [71]. HNE modulates cell
survival/death via ER stress induction and promotes
cell death via apoptosis [71]. The 2,4,5-T-induced sta-
tistical trend increase in HNE suggests a role for lipid
peroxidation as a mediator of oxidative stress and
impaired PNET2 cell survival.

A�PP has important physiological roles in cell
signaling through Notch pathways which mediate a
broad range of neuronal functions including plastic-
ity, cell survival, and growth [72]. Previous studies
showed elevated levels of A�PP in brains with spo-
radic AD [65, 73], suggesting that the upregulated
expression and protein processing contribute to the
accumulation of A� cleavage products. This concept
is important for explaining any associated increases
in A� unrelated to germline mutations or the APOE4
genotype. Earlier studies also showed that A�PP
expression and A� immunoreactivity increase with
oxidative stress [57]. Similarly, in the present study,
we found that A�PP and A� immunoreactivities were
highest in 2,4,5-T-exposed cells which also had the
lowest levels of GAPDH and MTT, and the high-
est levels of HNE. The responses in 2,4-D-treated
cells were intermediate between Vehicle and 2,4,5-
T. Together, these findings support the concept that
Agent Orange herbicide toxins exert oxidative neu-
ronal injury accompanied by A�PP and A�-related
molecular pathologies that have relevance to AD-type
neurodegeneration.

The neuronal cytoskeleton is largely composed
of the microtubule-associated binding protein, tau,
which has critical roles in maintaining the cytoar-
chitecture and inter-neuronal connections [56].
Oxidative injury disrupts the neuronal cytoskeleton
and renders it vulnerable to degradation. Further
oxidative injury destabilizes tau, leading to growth
cone collapse and synaptic disconnection [74, 75].
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In AD, stress-associated increases in GSK-3� [59],
cyclin dependent kinase 5 (Cdk5) [59, 76], and
calmodulin-dependent protein kinase (CaMKII) [75]
activities contribute to tau hyper-phosphorylation on
Ser and Thr residues, rendering tau susceptible to
misfolding, aggregation, and intracellular accumula-
tion. The studies herein showed that both tau and pTau
were significantly reduced in 2,4,5-T-treated cells rel-
ative to Vehicle. Most likely, the reductions in tau
protein were mediated by oxidative stress and corre-
sponding reductions in pTau were due to the sharp
declines in cellular tau. In support of this notion,
the calculated pTau/Tau ratios showed that the Agent
Orange herbicide toxin exposures enhanced relative
tau phosphorylation, and significantly elevated the
levels in PNET2 cell cultures treated with 2,4-D. The
trend reversals for relative phosphorylation compared
with tau and pTau immunoreactivities likely reflects
enhanced activity of kinases already known to pro-
mote tau phosphorylation under stress conditions.
The finding that pTau/Tau was significantly elevated
in 2,4-D-treated cultures which exhibited a moderate
but non-significant reduction in tau yet pTau levels
that were similar to control, supports the argument
that Agent Orange herbicide toxin exposures can pro-
mote stress-related tau phosphorylation, similar to the
findings in AD.

ChAT is enzymatically responsible for the biosyn-
thesis of acetylcholine and a specific indicator of
cholinergic neuron functioning [77]. Previous stud-
ies linked reductions in ChAT to AD-associated
cognitive impairment [61], and dysregulated insulin
signaling in the brain and cultured neuronal cells
[73, 78–80]. In contrast, very early stages of
neurodegeneration that are associated with mild cog-
nitive impairment paradoxically exhibit markedly
increased ChAT activity [81], possibly suggesting a
compensatory response to evolving failure of cholin-
ergic pathways. The significantly elevated levels of
ChAT associated with 2,4,5-T and 2,4-D correspond
to increased cellular efforts to generate acetylcholine
in Agent Orange Herbicide toxin-stressed cells and
appear to be reminiscent of the very early stages of
AD.

AChE, a serine hydrolase, has a key role in
hydrolytic metabolism [82, 83]. However, apart from
its enzymatic functions, AChE has roles in mediating
axonal growth, synaptogenesis, neuronal migration
and cell adhesion [83]. Previous studies demonstrated
CNS cholinergic dysfunction marked by increased
activity surrounding senile plaques in AD [82], but
reduced expression or activity in regions that were

unrelated to plaques in AD, as well as in other neu-
rodegenerative diseases [63] or following chronic
ethanol exposure [84–86]. Inhibition of AChE may
have neurotoxic effects due to prolonged stimula-
tion. Of interest is that AChE is a specific molecular
target of organophosphate and carbamate pesticides
which inhibit enzyme activity [83]. The finding of
Agent Orange herbicide toxin-mediated inhibition of
AChE is likely significant in relation to dysregulation
of cholinergic activities as well as enzyme activity-
independent neuronal functions needed for plasticity
and repair.

Conclusions

The findings suggest that the primary herbicidal
constituents of Agent Orange are sufficient to dam-
age CNS-derived PNET2 cells, and likely cause harm
to the immature human brain [26]. The teratogenic
effects of Agent Orange on the human fetal CNS
could have been mediated by the neurotoxic effects
of Agent Orange, in the absence of TCDD trace
contamination. Our studies complement prior publi-
cations that also examined the toxic effects of 2,4-D
or 2,4,5-T using in vitro systems [21, 31, 33, 34, 87],
and support the concept that apart from TCDD, the
intended herbicide exposures have deleterious effects
on health. The findings herein are also relevant to
earlier in vitro and in vivo studies demonstrating
neurotoxic effects of 2,4-D and 2,4,5-T on myelin-
producing cells [18, 21], neuronal cells [20], and
cognitive-behavioral functions [19].

The results suggest that Agent Orange damages
CNS neuronal cells in ways that typically occur with
neurodegeneration [88–90], which could potentially
account for the suspected increased risk of neurode-
generative diseases among Vietnam Veterans. Of note
in these regards is that mitochondrial dysfunction
impairs cellular energy metabolism, which is one of
the core pathophysiological processes in both dia-
betes mellitus and neurodegeneration. The potential
contributions of Agent Orange exposure to brain atro-
phy [91] and neurodegenerative diseases have been
considered, and epidemiologic [8, 92] or biomarker
[93] links have been demonstrated in retrospective
studies.

Although the doses of 2,4-D and 2,4,5-T used cor-
respond with previous studies [21, 31–33], they were
likely higher than the levels included in Agent Orange
herbicide sprays [34]. However, the chronicity and
repeated nature of exposures, long intervals of post-
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exposure follow-up, and persistence of chemicals in
the environment and body could significantly impact
the development and nature of diseases linked to
Agent Orange. Of further importance is the grow-
ing appreciation of the broad toxic and carcinogenic
effects of 2,4-D which has taken years to prove and
still the evidence has not achieved a level that govern-
ment agencies would deem sufficient to ban its use
[94]. Currently, the widespread, uncontrolled use of
2,4-D in herbicide and pesticide products is such that
one in three Americans has biomarkers of exposure
[95]. Therefore, despite the study design’s limitations
including the inability to draw direct dose-effect com-
parisons with human exposures, the results support
the notion that both 2,4-D and 2,4-T exert alarm-
ing adverse effects on CNS-derived neuroepithelial
cell function, resulting in abnormalities reminiscent
of AD. Additional studies are needed to further char-
acterize the time course and full spectrum of Agent
Orange herbicide toxin-mediated neurodegeneration
in brain tissue, particularly in relation to insulin resis-
tance, which is a feature of diabetes mellitus and
AD-type neurodegeneration [10, 11].
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