Systematic Review

Prognostic and Predictive Factors in Early Alzheimer's Disease: A Systematic Review

Section and Topic	Item #	Checklist item	Reported (Yes/No)
TITLE			
Title	1	Identify the report as a systematic review.	Y
BACKGROUND			
Objectives	2	Provide an explicit statement of the main objective(s) or question(s) the review addresses.	Y
METHODS			
Eligibility criteria	3	Specify the inclusion and exclusion criteria for the review.	Y
Information sources	4	Specify the information sources (e.g. databases, registers) used to identify studies and the date when each was last searched.	Y
Risk of bias	5	Specify the methods used to assess risk of bias in the included studies.	Y
Synthesis of results	6	Specify the methods used to present and synthesise results.	Y
RESULTS			
Included studies	7	Give the total number of included studies and participants and summarise relevant characteristics of studies.	Y
Synthesis of results	8	Present results for main outcomes, preferably indicating the number of included studies and participants for each. If meta-analysis was done, report the summary estimate and confidence/credible interval. If comparing groups, indicate the direction of the effect (i.e. which group is favoured).	Y
DISCUSSION			
Limitations of evidence	9	Provide a brief summary of the limitations of the evidence included in the review (e.g. study risk of bias, inconsistency and imprecision).	Y
Interpretation	10	Provide a general interpretation of the results and important implications.	Y
OTHER			
Funding	11	Specify the primary source of funding for the review.	
Registration	12	Provide the register name and registration number.	

Supplementary Table 1. PRISMA checklist for abstract

Section and Topic	Item #	Checklist item	Location where item is reported
TITLE			reported
Title	1	Identify the report as a systematic review.	Page 1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	Supplementary table 1
INTRODUCT	ION		
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	Page 5
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	Page 6
METHODS			
Eligibility	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped	Table 1, Page
criteria		for the syntheses.	7
Information	6	Specify all databases, registers, websites, organisations, reference lists and other sources	Supplementary
sources		searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	Table 3, Page 6
Search	7	Present the full search strategies for all databases, registers and websites, including any	Supplementary
strategy		filters and limits used.	Table 3
Selection	8	Specify the methods used to decide whether a study met the inclusion criteria of the	Page 6-7
process		review, including how many reviewers screened each record and each report retrieved,	
		whether they worked independently, and if applicable, details of automation tools used in the process.	
Data	9	Specify the methods used to collect data from reports, including how many reviewers	Page 7-8
collection		collected data from each report, whether they worked independently, any processes for	-
process		obtaining or confirming data from study investigators, and if applicable, details of	
		automation tools used in the process.	
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that	Table 1, Page
		were compatible with each outcome domain in each study were sought (e.g. for all	6-8
		measures, time points, analyses), and if not, the methods used to decide which results to	
		collect.	

Supplementary Table 2. PRISMA checklist for manuscript

Section and Topic	Item #	Checklist item	Location where item is reported
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	Table 1, Page 6-8
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	Page 8
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	Table 1
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	Page 8-9, 11
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	Page 8-9
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	Page 8-9, 11
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	Page 8-9
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	NA
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	NA
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	NA
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	NA
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of records identified in the search to the number of studies included in the review, ideally using a flow diagram.	Figure 1, Page 10

Section and	Itom		Location
Topic	#	Checklist item	where item is
Торіс	π		reported
	16b	Cite studies that might appear to meet the inclusion criteria, but which were excluded, and	Supplementary
		explain why they were excluded.	table 5
Study	17	Cite each included study and present its characteristics.	Table 2,
characteristics			Supplementary
			table 4
Risk of bias in	18	Present assessments of risk of bias for each included study.	Supplementary
studies			table 7 & 8
Results of	19	For all outcomes, present, for each study: (a) summary statistics for each group (where	Tables 3-5,
individual		appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible	pges 11-19
studies		interval), ideally using structured tables or plots.	
Results of	20a	For each synthesis, briefly summarise the characteristics and risk of bias among	Tables 3-5,
syntheses		contributing studies.	pges 11-19
	20b	Present results of all statistical syntheses conducted. If meta-analysis was done, present	Tables 3-5,
		for each the summary estimate and its precision (e.g. confidence/credible interval) and	pges 11-19
		measures of statistical heterogeneity. If comparing groups, describe the direction of the	
		effect.	
	20c	Present results of all investigations of possible causes of heterogeneity among study	NA
		results.	
	20d	Present results of all sensitivity analyses conducted to assess the robustness of the	NA
		synthesized results.	
Reporting	21	Present assessments of risk of bias due to missing results (arising from reporting biases)	NA
biases		for each synthesis assessed.	
Certainty of	22	Present assessments of certainty (or confidence) in the body of evidence for each outcome	Tables 3-5,
evidence		assessed.	pges 11-19
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other evidence.	Page 20-21
	23b	Discuss any limitations of the evidence included in the review.	Page 22
	23c	Discuss any limitations of the review processes used.	Page 22
	23d	Discuss implications of the results for practice, policy, and future research.	Page 21-22
OTHER INFO	RMAT	ION	

Section and Topic	Item #	Checklist item	Location where item is reported
Registration and protocol	24a	Provide registration information for the review, including register name and registration number, or state that the review was not registered.	Page 7
	24b	Indicate where the review protocol can be accessed, or state that a protocol was not prepared.	Page 7
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	NA
Support	25	Describe sources of financial or non-financial support for the review, and the role of the funders or sponsors in the review.	Page 25
Competing interests	26	Declare any competing interests of review authors.	Page 25-27
Availability of	27	Report which of the following are publicly available and where they can be found:	Page 27
data, code and other materials		analyses; analytic code; any other materials used in the review.	

Supplementary Table 3. Search Strategy Embase (Ovid): 1974 to 2022 August 02, searched 3.8.22

#	Searches	Results
1	mild cognitive impairment/	33048
2	(MCI or aMCI or mild cognit\$ impair\$ or CIND or cognitive impair\$ no dementia).ti,ab,hw.	58186
3	((early\$ or mild\$ or prodromal) adj6 (alzheimer\$ or alzeimer\$ or alzheimer\$ or alzeimer\$ or AD)).mp.	39844
4	Alzheimer disease/	228367
5	(alzheimer\$ or alzeimer\$ or alzhiemer\$ or alziemer\$ or AD).ti,ab.	347567
6	(early\$ or mild\$ or prodromal).ti,ab.	2948283
7	(dementia adj2 stage adj2 ('2' or '3' or II or III or two or three)).ti,ab.	54
8	4 and 6	54812
9	5 and 6	75234
10	1 or 2 or 3 or 7 or 8 or 9	113071
11	random*.ti,ab.	1816998
12	factorial*.ti,ab.	44342
13	(crossover* or cross over*).ti,ab.	119139
14	((doubl* or singl*) adj blind*).ti,ab.	259545
15	(assign* or allocat* or volunteer* or placebo*).ti,ab.	1183821
16	crossover procedure/	71057
17	double blind procedure/	197270
18	single blind procedure/	47071
19	randomized controlled trial/	720768
20	or/11-19	2705585
21	aducanumab/	736
22	(aducanumab or aduhelm or biib037 or "biib 037" or biib37 or biib 37).mp.	796
23	gantenerumab/	388
24	(gantenerumab or r 1450 ir r1450 or rg1450 or rg 1450 or RO4909832 or RO 490?9832).mp.	399
25	lecanemab/	114
26	(lecanemab or ban 2401 or ban2401).mp.	204
27	donanemab/	81
28	(donanemab or ly 3002813 or ly3002813 or N3pG).mp.	95
29	donepezil plus memantine/ or memantine/	11999
30	 ('1 amino 3, 5 dimethyladamantane' or '1, 3 dimethyl 5 adamantanamine' or '1, 3 dimethyl 5 aminoadamantane' or '3, 5 dimethyl 1 adamantamine' or '3, 5 dimethyl 1 adamantanamine' or '3, 5 dimethylaminoadamantane' or '5 amino 1, 3 dimethyladamantane' or 'adamantane, 5 amino 1, 3 dimethyl' or akatinol or alzantin or axura or d 145 or d145 or ebix or ebixa or ebixza or marixino or maruxa or memantine or memantine hydrochloride or memantine nitrate or memary or "mn 08" or mn08 or namenda or namenda xr or nemdatine or nsc 102290 or nsc102290 or sun y7017 or suny701) mp 	12721
31	donepezil/	14616
32	(aricept or asenta or doneliquid geriasan or donepezil or donepezil hydrochloride or e 2020 or e2020 or eranz or memory or memorit) mp	15143
33	rivastigmine/	8174

34	(alzest or ena 713 or ena713 or exelon or nimvastid or prometax or rivastigmin or	3845
	rivastigmine or sdz 212 713 or sdz 212-713 or sdz 212713 or sdz ena 713 or sdz	
	ena713 or sdz212 713 or sdz212-713 or sdz212713).ti,ab,tn.	
35	galantamine/	8201
36	(acumor or alenzo or aneprosil or bergal or consion or elmino or galantex or	1738
	galanthamine or galanthen or galanyl or galatamin\$ or galema or galnora or galsya or	
	gamyl or gatalin or gazylan or girlamen or jilkon or lotprosin or loxifren or luventa or	
	or reminyl or spegal or vertisal or zentan or zeroflog) mp	
37	exp cholinesterase inhibitor/	89506
38	(((acetylcholinesterase or cholinesterase or phosphoorganic choline esterase or ache)	46762
50	adj3 (inhibit\$ or block\$)) or anticholesterinase or anticholinesterase or	
	anticholinesterase or achei\$ or chei\$).mp.	
39	or/21-38	114162
40	10 and 20 and 39	1734
41	Clinical study/	159876
42	Case control study/	190992
43	Family study/	25668
44	Longitudinal study/	176037
45	Retrospective study/	1283450
46	Prospective study/	783517
47	Randomized controlled trials/	231273
48	46 not 47	774341
49	Cohort analysis/	874967
50	(Cohort adj (study or studies)).mp.	413549
51	(Case control adj (study or studies)).tw.	156367
52	(follow up adj (study or studies)).tw.	69923
53	(observational adj (study or studies)).tw.	222699
54	(epidemiologic\$ adj (study or studies)).tw.	116756
55	(cross sectional adj (study or studies)).tw.	296955
56	or/41-45,48-55	3502022
57	(register or registr\$).ti,ab.	507609
58	56 or 57	3850140
59	10 and 58	21383
60	40 or 59	22703
61	prognosis/ or prediction/	1066527
62	(course or prognos\$ or predict\$).ti,ab.	4021315
63	61 or 62	4217291
64	60 and 63	6436
65	limit 64 to yr="2005 -Current"	6111
66	limit 65 to conference abstract	2330
67	65 not 66	3781

	Country	Study design		Population n	Diagnos	tic criteria	Diagno	stic use	– Female: Mean			
Study	(centers)	(source)	Recruitment (Dates)		MCI due to AD	AD dementia	CSF	PET	N (%)	age (SD)	Follow up	
Chen 2018 [1]	Taiwan Single (n=1)	Retrospective cohort (Dementia care database)	Patients attending the neurological department at the MacKay Memorial Hospital Dates: January 2014 to June 2017	MCI: n=279	NIA-AA (Albert 2011)	NINCDS-ADRDA (McKhann 2011)	NR	NR	NR	NR	Mean 27.09 months (SD 15.09)*	
Chung 2021 [2]	Canada, USA (n=NR)	Retrospective cohort (ADNI)	Patients with prodromal AD who underwent a baseline MRI scan Dates: Up to June 2020	MCI: n=189	Presence of objective memory impairment without meeting the criteria for dementia	Presence of memory complaints, a global CDR score of ≥ 0.5 , and significant impairments in objective cognition and ADL	NR	Y	86 (45.5%)	72.6 (6.7)	3 years	
Cova 2016 [3]	Italy Single (n=1)	Prospective cohort (Clinical information was collected by a senior neurologist)	Consecutive subjects with MCI were recruited at the Center for Research and Treatment on Cognitive Dysfunctions, Sacco Hospital, Milan Dates: Jan 2001 to Sep 2009	MCI: n=228	Subjective cognitive impairment, objective cognitive impairment, preserved daily functioning and absence of dementia (Winblad 2004)	NINCDS-ADRDA criteria (McKhann 1984)	NR	NR	129 (56.6%)	74.0 (6.94)	2.40 years (SD:1.58)	
Degerman Gunnarsson 2016 [4]	Sweden Single (n=1)	Retrospective cohort (Memory Clinic at the Uppsala University Hospital)	Patients who underwent a lumbar puncture (LP) as part of the diagnostic procedure and were diagnosed with AD (prodromal/MCI, mild or moderate AD) Dates: 2003-2011	MCI: n=134 Mild AD dementia: n=85	NINCDS/ADRDA criteria (McKhann 1984) DSM-4 criteria (APA 1994)	NINCDS/ADRDA criteria (McKhann 1984) DSM-4 criteria (APA 1994)	NR	NR	145 (62%)	70 (46– 86)	Median 4.9 years*	
Divers 2022 [5]	USA Multicenter (n~31)	Retrospective cohort (NACC UDS)	Data on participants with a diagnosis of MCI at initial UDS appointment, English speaker, at least 50 years old, and presence of a reliable informant were acquired from the publicly available	MCI: n=2614	Diagnosis of MCI was made by a clinician or consensus conference at each ADCC	Diagnosis of AD was made by a clinician or consensus conference at each ADCC	NR	NR	1371 (52.4%)	72.71 (SD: 8.99)	3 years	

Supplementary Table 4. Prognostic factors in eAD studies with high risk of bias (deprioritized)

	Country	Study design		Population	Population Diagnostic criteria		Diagnos	<u>gnostic use</u> Female		Mean	
Study	(centers)	(source)	Recruitment (Dates)	n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
			NACC database Dates: Up to December 2018								
Galasko 2019 [6]	UCSD USA Single (n=1) ADNI Canada and USA Multiple (n=NR)	UCSD Prospective cohort (UCSD) <u>ADNI</u> Retrospective cohort (ADNI)	UCSD Patients with NC, MCI and mild AD followed at the UCSD Shirley- Marcos ADRC Dates: NR ADNI Patients with NC, MCI or AD from the ADNI Dates: NR	UCSD MCI: n=57 Mild AD dementia: n=46 <u>ADNI</u> MCI: n=140	UCSD NIA-AA but did not require a amyloid biomarker (Albert 2011) <u>ADNI</u> As reported in ADNI	<u>ADNI</u> As reported in ADNI	NR	NR	UCSD MCI: 20 (35%) eAD: 19 (41%) <u>ADNI</u> MCI: 44 (31%)	<u>UCS</u> <u>D</u> MCI: 74.3 (6.5) eAD: 70.7 (9.4) <u>ADNI</u> MCI: 74.7 (7.2)	UCSD Up to 3 years* ADNI Up to 5 years
Goukasian 2019 [7]	Canada, USA Multiple (NR)	Retrospective cohort (ADNI)	Patients from ADNI with diagnosis of MCI and available clinical, behavioral and amyloid data <i>Dates: 2003 to 2015</i>	MCI: n=599	As described in the ADNI	NINCDS-ADRDA criteria (McKhann 1984)	NR	Y	240 (42.9%)	NR	NR
Han 2021 [8]	China Multicenter (n=6)	Prospective cohort	Normal older adults, patients diagnosed with MCI and patients with probable AD <i>Dates: Oct 2010 to</i> <i>May 2016</i>	MCI: n=142 MSCI: n=47	MCI: Modified Petersen 2004 MSCI: MoCA score reduced by more than 2 points from the baseline of patients with MCI	National Institute of Related Disorders Association (Reiman 2011)	NR	NR	NR	NR	NR
Hanon 2022 [9]	France Multicenter (n=23)	Prospective cohort BALTAZAR study (NCT01315639)	Patients with MCI from the BALTAZAR study Dates NR	MCI: n=485	Petersens' criteria (Petersen 1999)	NIA–AA (McKhann 2011)	Y	NR	293 (60.4%)	77.7 (5.5)	3 years
Ito 2015 [10]	Japan Multicenter (n=9)	Prospective cohort Memory clinics specializing in AD	Patients with amnestic MCI from memory clinics across Japan Dates: January 2006 to March 2007	MCI: n=114	50 and 80 years, with an MMSE score \geq 24, a GDS score \leq 10, a WMS-R LM I score \leq 13, a LM II part A and part B score (maximum = 50) \leq 8, and a CDR memory box score equal to 0.5	NINCDS-ADRDA (no reference)	NR	Y	64 (56.1%)	70.8 (7.5)	3 years

	Country	Study design		Population n	Diagnos	Diagnostic criteria		ostic use Femal		Mean	
Study	(centers)	(source)	Recruitment (Dates)		MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
Julayanont 2014 [11]	Canada Single (n=1)	Retrospective cohort (CEDRA/Neuro Rive-Sud memory clinic)	Individuals with MCI who met MCI Peterson's criteria were selected from the review charts Dates: November 2004 and May 2011	MCI: n=165	Petersen criteria (Petersen 1999)	DSM-IV and NINCDS/ADRDA criteria (McKhann 1984)	NR	NR	17 (64.8%)	NR	18.2 (SD 1.0) month
Karikari 2020 [12]	Canada, USA Multicenter (n=NR)	Retrospective cohort (ADNI)	Patients from ADNI diagnosed with cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients with available plasma p- tau181 data Dates: 7th September 2005 to 16th June 2016	MCI: n=558	ADNI (Petersen 2010)	NINCDS/ADRDA criteria (McKhann 1984)	Y	Y	212 (43.6%)	NR	48 months *
Kim 2015 [13]	Korea Multicenter (n=NR)	Prospective cohort (CREDOS)	Patients aged 60 years or older, met the MCI criteria at baseline, and they had at least one longitudinal clinical review at least 6 months post-baseline. <i>Dates: 2005-2009</i>	MCI: n=294	Presence of memory complaints; intact function in ADL; objective cognitive impairment; CDR of 0.5; and not demented according to DSM-IV criteria	NINCDS/ADRDA criteria (McKhann 1984)	NR	NR	193 (65.6%)	72 (IQR 67- 76)	13.8 (6.0–36.0) months
Lan 2021 [14]	USA Multicenter (n=37)	Retrospective cohort (NACC's Uniform data set)	Patients who were over 50 years old at baseline, with body weight measurements from at least 3 visits, and free of clinically diagnosed dementia and stroke at the initial visit were included from 37 past and current ADRC's Dates: September 2005 and September 2020	MCI: n=2897	Modified Petersen's criteria (Winblad 2004)	NINCDS/ADRDA criteria (McKhann 2011)	NR	NR	60.9%*	72 (9)	5.5 years *

Count		Study design		Population	Diagnos	stic criteria	Diagnostic use		Fomalo	Mean	
Study	(centers)	(source)	Recruitment (Dates)	r opulation n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
Lee 2014 [15]	Canada, USA Multiple (n=NR)	Retrospective cohort (ADNI)	Participants aged 55– 90 diagnosed with aMCI enrolled in the ADNI, had at least one follow-up visit and did not have any critical missing data. <i>Dates: 2003 to July</i> 2012	MCI: n=382	Amnestic MCI: memory complaint, abnormal memory function, MMSE score of 24–30, CDR score of 0.5, and cognitive and functional impairment not severe enough to meet criteria for AD or dementia (ADNI)	NINCDS/ADRDA (McKhann 1984)	NR	NR	137 (36%)	75 (7)	Mean 2.9 years (SD: 1.1; Range: 0.5–4.0)
Lehman 2013 [16]	Canada, USA Multiple (n>50)	Retrospective cohort (ADNI)	MCI subjects from the ADNI with one 1.5 T MRI scan available (time to AD conversion analysis) and one 1.5 T MRI scan (CSF analysis) Dates 2003 to June 2011	MCI: n=192	As described in the ADNI	As described in the ADNI	NR	NR	63 (33%)	74.7 (7.4)	3 years
Liew 2021 [17]	USA Multicenter (n=39)	Retrospective cohort (NACC database)	Participants who fulfilled the following criteria at baseline: age ≥ 65 years; diagnosed with dementia; no concurrent diagnosis of delirium at baseline; had global CDR of 1 (indicating early dementia) and provided information on NPI-Q Dates: September 2005 and August 2019	eAD: n=6221	NA	McKhann 1984 criteria DSM-IV criteria or McKhann 2011 criteria	, NR	NR	3368 (54.1%)	79 (IQR 73– 83)	3.5 years
Mai 2022 [18]	Canada, USA Multiple (n=NR)	Retrospective cohort (ADNI (ADNI- 1, ADNIII-GO/2, ADNI-3))	Patients from ADNI with diagnosis of MCI made at first admission Dates: NR	MCI: n=733	As described in ADNI	NIA–AA (McKhann 2011)	NR	NR	300 (40.1%)	NR	Up to 15 years
Matsuoka 2020 [19]	Canada, USA	Retrospective cohort (ADNI)	Patients with MCI were recruited from ADNI	MCI: 237	MMSE score of 24–30, having a memory	NINCDS/ADRDA criteria (McKhann 1984), and MSME	NR	NR	100 (42.25)	NR	Converted to AD: 41.4 months (21.1) Didn't convert to

	Country	Study design	Recruitment (Dates)	Population	Diagnos	tic criteria	Diagnostic use		- Female	Mean	
Study	(centers)	(source)) ropulation n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
	Multicenter (n=NR)		Dates: Data was downloaded in July 2018		complaint, objective memory loss, a CDR of 0.5, absence of significant levels of impairment in other cognitive domains, largely preserved ADL, and an absence of dementia	score of 20–26 and clinical dementia rating of 0.5 to 1.0					AD: 41.8 months (20.4)
Mecca 2018 [20]	USA Multicenter (n=NR)	Retrospective cohort (ADNI)	Patients in the ADNI database who have MCI or AD or are cognitively normal <i>Dates: 2003 -28th</i> <i>September 2014</i>	MCI: n=869	As in ADNI**	NINCDS/ADRDA (McKhann 1984)	NR	NR	355 (40.9%)	NR	Early MCI (PSD): 21.3 months Early MCI (NSD): 19.6 months Late MCI (PSD): 20.9 months Late MCI (NSD): 20.1 months
Mielke 2017 [21]	USA Single (n=1)	Retrospective cohort (MCSA)	Participants aged 56 to 95 years from the MSCA population- based study with plasma total tau measures, A β PET imaging, and cognitive testing at the same study visit and at least 1 follow- up visit with cognitive testing. Dates: 2008 to 2013	MCI: n=123	Peterson 2004	McKhann 2011	Y	NR	45 (36.6%)	79.9 (7.4)	Median 3 years (Range: 1.1–4.9)*
Moon 2017 [22]	Canada, USA Multiple (n>50)	Retrospective cohort (ADNI)	Patients with amnestic MCI who had completed baseline [18F]AV45 PET as well as T1- weighted MRI at baseline and 2-year follow-up from ADNI database Dates: 2003 to September 2016	MCI: n=337	Petersen criteria (Petersen 1999)	As described in ADNI	NR	NR	156 (46.2%)	71.8 (1.3)	Average: 1.94 years (SD 1.3)
Morgan 2019 [23]	Cross- European Multicenter (n=NR)	Retrospective cohort (AddNeuroMed)	Plasma samples were used from the patients, selected based solely on	MCI: n=285	Peterson 2004	NINCDS/ADRDA criteria	NR	NR	NR	NR	NR

	Country	Study design		Population	Diagnos	tic criteria	Diagnos	tic use	<u>ic use</u> Female:		
Study	(centers)	(source)	Recruitment (Dates)	n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
			availability of plasma samples Dates: NR								
Muscari 2021 [24]	Italy Single (n=1)	Retrospective cohort (Medical records)	Consecutive outpatients at the CDCD of the Geriatric Unit of the S. Orsola-Malpighi Hospital in Bologna <i>April 2015 to</i> <i>January 2019</i>	MCI: n=143	Petersen's criteria (Petersen 2009)	NIA–AA (McKhann 2011)	Ν	Y	67 (46.9%)	NR	l year
Myung 2016 [25]	South Korea Multicenter (n=56)	Prospective cohort (CREDOS)	Patients from CREDOS with presence of memory complaints that raise concern about a change in cognition; intact function in ADL except performing complex functional tasks; objective cognitive impairment in more than one cognitive domain on standardized neuropsychological testing; CDR of 0.5; and not demented according to DSM- IV-TR criteria Dates: November 2005 to May 2012	MCI: n=961	MCI – criteria for the clinical and cognitive syndrome	NIA–AA (Albert 2011)	NR	NR	631 (65.7%)	71 (IQR 66- 76)	17.64 months
Palmqvist 2012 [26]	Sweden Single (n=1)	Prospective cohort Study conducted at Memory Clinic of Skane University Hospital in Malmo, Sweden	Patients referred to the Memory Clinic of Skane University Hospital in Malmo, Sweden who were diagnosed with MCI Dates: October 200 to January 2006	MCI: n=133	Peterson 2004	McKhann 1984	NR	NR	82 (61.7%)	NR	5.9 Years (Range: 3.2–8.8 years)
Pelkmans 2022 [27]	<u>Amsterdam</u> <u>Dementia</u> <u>Cohort</u> Netherlands Unclear	Retrospective cohort (Amsterdam Dementia Cohort and ADNI)	Patients who fulfilled the consensus criteria for MCI, had abnormal levels of CSFA $\beta(1-42)$, an available baseling	MCI: n=491	Albert 2011 Petersen 1999	Pre-2011: NINCDS/ADRDA criteria (McKhann 1984)	NR	NR	217 (44.2%)	NR	2 years
	(n=INK)		available baseline			2011 onwards:					

	Country	Study design		Population	Diagnos	tic criteria	Diagnos	tic use	- Female:	Mean	
Study	(centers)	(source)	Recruitment (Dates)	n	MCI due to AD	AD dementia	CSF	PET	N (%)	age (SD)	Follow up
	ADNI USA and Canada Multiple (n=NR)		structural MRI scan, and at least one follow-up neuropsychological assessment Dates: December 2005 and April 2016			NIA-AA (McKhann 2011) Van der Flier 2014					
Pyun 2021 [28]	Canada, USA Multicenter (n=NR)	Retrospective cohort (ADNI)	Data from ADNI on patients with a diagnosis of MCI who had available GWAS data, older than 60 years at baseline assessment, and had at least one or more follow-up visits Dates: 2003 to NR	MCI: n=732	Objective memory impairment but without meeting the criteria for dementia. (Aisen 2015)	As described in the ADNI	NR	NR	284 (38.8%)	NR	Up to 5 years
Qin 2019 [29]	Canada, USA Multiple (n=NR)	Retrospective cohort (ADNI)	MCI individuals from the ADNI who developed AD during the follow up period of ADNI1, ANDI2 or ADNI GO Dates: 2005 to 2014,	MCI: n=245	Gerstenecker and Mast 2014 and Petersen 2009	NINCDS/ADRDA (As described in ADNI)	NR	NR	100 (40.8%)	74.0 (5.5)	Unclear
Reija 2017 [30]	Unclear Multiple (n=NR)	Retrospective cohort DESCRIPA, KUOPIO L-MCI	DESCRIPA: MCI patients aged >55 years referred to the memory clinic for an evaluation of complaints, cognitive impairment on neuropsychological tests and absence of dementia <i>Dates: 2003 to 2005</i> KUOPIO L-MCI: memory complaint by patient, family, or physician; normal activities of daily living; normal global cognitive function; objective impairment below -1.5 SD in any cognitive domain;	MCI: n=353	Petersen 2004 Hall 2015	NINCDS-ADRDA criteria (McKhann 1984)	Y	Υ	208 (59%)	70.6 (6.9)	Average: 2.4 years (SD: 1.3)*

	Country	Study design		Population	Diagnos	tic criteria	Diagnos	tic use	Fomalo	Mean	
Study	(centers)	(source)	Recruitment (Dates)	n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
			CDR score of 0.5; and absence of dementia Dates: 1996 to 2001								
Ruthirakuha n 2019 [31]	USA Multiple (n=NR)	Prospective cohort (NACC UDS)	Patients with diagnosis of MCI at baseline and had one or more follow up visits at ADCs in the USA and provided imaging and laboratory specimens at specific ADCs September 2005 to February 2018	MCI: n=4932	No details reported	Prior 2015: NINCDS- ADRDA criteria (McKhann 1984) After 2015: NINCDS- ADRDA criteria (McKhann 2011)	NR	NR	2450 (50%)	3659	Median 23 months
Steenland 2012 [32]	USA Multiple (n=30)	Retrospective cohort (NACC UDS)	Subjects from the NACC UDS with at least two visits who were considered to have either normal cognition or MCI at baseline Dates: September 2005 to January 2011	MCI: n=3010	Presence of cognitive complaint not normal for age, cognitive decline (without dementia), and essentially normal functional activities as reported in NACC	Dementia established by clinical examination and documented by the Mini-Mental Test or some similar examination and confirmed by neuropsychological tests; deficits in two or more areas of cognition progressive worsening of memory and other cognitive functions; no disturbance of consciousness; onset between ages 40 and 90, most often after age 65; and absence of systemic disorders or other brain diseases that in and of themselves could account for the progressive deficit in memory and cognition (NINCDS/ADRDA)	NR ;	NR	1552 (52%)	74 (9)	Mean 2.5 years (SD: 1)
Sugarman 2020 [33]	USA Multicenter (n~30)	Retrospective cohort (BU ADC Clinical Core Registry)	Community- dwelling, English- speaking older adults with and without cognitive impairment who have adequate	MCI: n=185	Winblad 2004	McKhann 1984	NR	NR	108 (58.4%)	74.99 (7.24)	5.10 (SD: 2.64)

	Country	Study design		Population	Diagnos	tic criteria	Diagnos	tic use	- Female	Mean	
Study	(centers)	(source)	Recruitment (Dates)	n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
			hearing and visual acuity from the BU ADC Clinical Core Registry Dates 2008 to 2018								
Suh 2019 [34]	South Korea Single (n=1)	Retrospective cohort (Medical records)	Retrospectively reviewed the medical records of a consecutive series of patients who visited the Neurocognitive Behavioral Center of Seoul National University Bundang Hospital and were diagnosed with probable AD by the NIA–AA August 2012 to July 2016	Mild AD dementia: n=159	NA	NIA–AA (McKhann 2011)	NR	Y	91 (57.2%)	76.4 (7.70)	1 year
Tifratene 2015 [35]	France Multicenter (n=28)	Retrospective cohort BNA	Patients diagnosed with MCI by medical doctors in the BNA <i>Dates: January 2009</i> to January 2014.	MCI: n=11451	Diagnoses in the BNA are collected according to the ICD-10 (table e-1 on the Neurology® Web site at Neurology.org). The definition of MCI was based on code F06.7.	Diagnoses in the BNA are collected according to the ICD-10 (table e-1 on the Neurology® Web site at Neurology.org). The definition of AD dementia was based on the corresponding ICD- 10 code F00.9 a.	NR	NR	6,568 (57.4%)	76.5 (7.8)	Mean 1.1 years (Range 1 day to 5 years)
Van Der Mussele 2014 [36]	Belgium Single (n=1)	Prospective cohort (Ongoing prospective longitudinal study (BPSD))	Recruited from database for cognitive impairment (not demented) BPSD research purposes Dates: Since 2003	MCI: n=183	Petersen's diagnostic criteria	NINCDS/ADRDA criteria	Y	NR	106 (57.9%)	74.9 (7.5)	4 years (SD: 3.8 ± 2.3)
Vos 2013 [37]	Finland Multicenter (n=16)	Retrospective cohort (DESCRIPA)	Recruited from the Development of Screening Guidelines and Criteria for Predementia Alzheimer's Disease (DESCRIPA) cohort and Alzheimer Center of the VU	MCI: n=625	Baseline diagnosis of MCI (Petersen 2004)	DSM-IV (APA 1994) and NINCDS-ADRDA criteria (McKhann 1984)	NR	NR	335 (53.6%)	NR	Up to 5 years (Average 2.5 years, SD 1.0)*

	Country	Study design		Population	Diagnos	stic criteria	Diagnos	tic use	Famala	Mean	
Study	(centers)	(source)	Recruitment (Dates)	r opulation n	MCI due to AD	AD dementia	CSF	РЕТ	N (%)	age (SD)	Follow up
			University Medical Center (VUmc) Dates: 2003 to 2006								
Xue 2017 [38]	China Multiple (n=NR)	Prospective cohort (Face-to-face interviews and self-administered questionnaires)	Patients ≥65 years with MCI at baseline in eight communities in Taiyuan, China who were visited biannually over 5 years Face-to-face interviews and self- administered questionnaires were carried out. Dates 2010 to 2014	MCI: n=437	MoCA (Lu 2011)	NINCDS-ADRDA criteria (McKhann 1984)	NR	NR	302 (69.1%)	NR	5 years
Yi 2016 [39]	Netherlands Single (n=1)	Retrospective cohort (Review of clinical records of Amsterdam Dementia Cohort)	All patients from the Amsterdam Dementia Cohort, who visited the memory clinic for evaluation of their cognitive symptoms Dates: January 2008 and December 2011	MCI: n=201	Petersen criteria (Petersen 2004)	NINCDS-ADRDA (McKhann 1984)	NR	NR	82/201 (40.8%)	70 (9)	Mean 2.11 years (SD 0.96)
Zhou 2012 [40]	Canada, USA Multiple (n=NR)	Retrospective cohort ADNI	Patients with MCI from the ADNI database Dates: 2003 to Nov 2010	MCI: n=397	As described in the ADNI	As described in the ADNI	NR	NR	141 (35.5%)	78.4 (Rang e: 55– 90)	Up to 53 months

*Reported for broader population, ** Subjective memory concern, mildly abnormal memory performance, and preserved functional performance such that a diagnosis of AD-dementia could not be made (early MCI), or subjective memory concern, memory performance that was abnormal and below that of EMCI subjects, and preserved functional performance such that a diagnosis of AD-dementia could not be made (late MCI)

AChEI, Acetylcholinesterase inhibitor; AD, Alzheimer's Disease; ADC, Alzheimer's Disease Centers; ADCC, Alzheimer's Disease Core Centers; ADL, Activities of daily living; ADRC; Alzheimer's Disease Research Centers; ADNI, Alzheimer's Disease Neuroimaging Initiative; APA, American Psychiatric Association; AVLT: Auditory Verbal Learning Test; BNA, Banque Nationale Alzheimer (French Alzheimer Databank); BSPD, Behavioral and psychological signs and symptoms of dementia; BU ADC, Boston University Alzheimer's Disease Center; CDCD, Centre for Cognitive Disorders and Dementias; CDR, The Clinical Dementia Rating; CEDRA, Center for Diagnosis and Research on Alzheimer's disease; CREDOS Clinical Research Center for Dementia of South Korea; CSF, Cerebrospinal Fluid; CU, cognitively unimpaired; DCN, German Dementia Competence Network; DSM, Diagnostic and Statistical Manual of Mental Disorders; EMCI, early MCI; KBASE-V Korean Brain Aging Study for the Early Diagnosis and Prediction of AD; ICD, International Classification of Diseases; LOC, loss of consciousness; LMCI, late MCI; MCI, mild cognitive impairment; MCSA, Mayo Clinic Study on Aging; MoCA, The Montreal Cognitive Assessment; MMSE, Mini Mental State Examination; MSCI, Moderate/Severe Cognitive Impairment; MRI, Magnetic resonance imaging; NACC, National Alzheimer's Coordinating Center; NIA-AA, National Institute on Aging and the Alzheimer's Association criteria; NINCDS/ADRDA, National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorders Association; NPI-Q Neuropsychiatric Inventory– Questionnaire; NR, not reported; NSD, negative for sleep disturbances; PET, positron emission tomography; PSD, positive for sleep disturbances; SD, standard deviation; TBI, traumatic brain injuries; UCSD, University of California, San Diego; UDS, uniform data set

Author	Title	Journal	Year	Citation
Population n=97				
Aguilar-Navarro	Clinical and demographic predictors of conversion to dementia in Mexican	Revista de	2017	69(1):33-39.
	elderly with Mild cognitive impairment	Investigacion Clinica		
Ahman	Dual-task tests predict conversion to dementia-a prospective memory-clinic-	International Journal	2020	17(21):1-14.
	based cohort study	of Environmental		
		Research and Public		
		Health		
Angevaare	Predictors of Incident Mild Cognitive Impairment and Its Course in a Diverse	Neurology	2022	98(1):E15-E26.
	Community-Based Population			
Barca	Trajectories of depressive symptoms and their relationship to the progression	Journal of Affective	2017	222:146-152.
D	of dementia	Disorders	0.010	
Bernick	Age and rate of cognitive decline in Alzheimer disease: Implications for	Archives of Neurology	2012	69(7):901-905.
D. /	clinical trials	<u></u>	2017	0(1) (
Bertens	Unbiased estimates of cerebrospinal fluid beta-amyloid 1-42 cutoffs in a large	Alzheimer's Research	2017	9(1) (no
D1 1	memory clinic population	and Therapy	2015	pagination)(8).
Bleckwenn	Impact of coronary heart disease on cognitive decline in Alzheimer's disease:	British Journal of	2017	67(655):e111-e117.
	A prospective longitudinal cohort study in primary care	General Practice	2021	50(4) 1510 1500
Borda	Association of Malnutrition with Functional and Cognitive Trajectories in	Journal of	2021	79(4):1713-1722.
D 1	People Living with Dementia: A Five-Year Follow-Up Study	Alzheimer's Disease		
Borda	Neuropsychiatric Symptoms and Functional Decline in Alzheimer's Disease	Journal of the	2020	68(10):2257-2263.
	and Lewy Body Dementia	American Geriatrics		
		Society	0.001	
Cai	Associations of Anxiety with Amyloid, Tau, and Neurodegeneration in Older	Journal of	2021	82(1):273-283.
~	Adults without Dementia: A Longitudinal Study	Alzheimer's Disease	0.001	
Campos-	Changes in visual memory in mild cognitive impairment: a longitudinal study	Psychological	2021	51(14):2465-2475.
Magdaleno	with CANTAB	Medicine	2012	20(2) 550 550
Cao	High blood caffeine levels in mci linked to lack of progression to dementia	Journal of	2012	30(3):559-572.
~ 1		Alzheimer's Disease		
Cardoso	The Outcome of Patients with Amyloid-Negative Amnestic Mild Cognitive	Journal of	2022	86(2):629-640.
	Impairment	Alzheimer's Disease		
Chang	Mortality Risk after Diagnosis of Early-Onset Alzheimer's Disease versus	Journal of	2017	56(4):1341-1348.
	Late-Onset Alzheimer's Disease: A Propensity Score Matching Analysis	Alzheimer's Disease		
Charisis	Plasma GSH levels and Alzheimer's disease. A prospective approach.: Results	Free Radical Biology	2021	162:274-282.
	from the HELIAD study	and Medicine		
Chau	Visual Selective Attention Toward Novel Stimuli Predicts Cognitive Decline	Journal of	2017	55(4):1339-1349.
	in Alzheimer's Disease Patients	Alzheimer's Disease		

Supplementary Table 5. Excluded Studies

Author	Title	Journal	Year	Citation
Cogswell	CSF dynamics as a predictor of cognitive progression	NeuroImage	2021	232 (no
				pagination)(117899).
Connors	Mortality in mild cognitive impairment: A longitudinal study in memory	Journal of	2016	54(1):149-155.
	clinics	Alzheimer's Disease		
Conti	Odor identification deficit predicts clinical conversion from mild cognitive	Archives of Clinical	2013	28(5):391-399.
	impairment to dementia due to alzheimer's disease	Neuropsychology		
Dapic	No effect of thyroid hormones on 5-year mortality in patients with subjective	Journal of	2022	34(4) (no
_	cognitive decline, mild cognitive disorder, and Alzheimer's disease	Neuroendocrinology		pagination)(e13107).
Davis	Estimating alzheimer's disease progression rates from normal cognition	Current Alzheimer	2018	15(8):777-788.
	through mild cognitive impairment and stages of dementia	Research		
Defrancesco	Specific Neuropsychiatric Symptoms Are Associated with Faster Progression	Journal of	2020	73(1):125-133.
	in Alzheimer's Disease: Results of the Prospective Dementia Registry	Alzheimer's Disease		
	(PRODEM-Austria)			
Degerman	High tau levels in cerebrospinal fluid predict rapid decline and increased	Dementia and	2014	37(3-4):196-206.
Gunnarsson	dementia mortality in alzheimer's disease	Geriatric Cognitive		
		Disorders		
Devine	Do cerebral white matter lesions influence the rate of progression from mild	International	2013	25(1):120-127.
	cognitive impairment to dementia?	Psychogeriatrics		
Dhiman	Cerebrospinal Fluid Neurofilament Light Predicts Risk of Dementia Onset in	Biomedicines	2022	10(5):30.
	Cognitively Healthy Individuals and Rate of Cognitive Decline in Mild			
	Cognitive Impairment: A Prospective Longitudinal Study			
Dicks	Gray matter network measures are associated with cognitive decline in mild	Neurobiology of	2018	61:198-206.
	cognitive impairment	Aging		
Dong	Neutrophil hyperactivation correlates with Alzheimer's disease progression	Annals of Neurology	2018	83(2):387-405.
Donovan	Subjective cognitive concerns and neuropsychiatric predictors of progression	American Journal of	2014	22(12):1642-1651.
	to the early clinical stages of Alzheimer disease	Geriatric Psychiatry		
Duits	Four subgroups based on tau levels in Alzheimer's disease observed in two	Alzheimer's Research	2021	13(1) (no
	independent cohorts	and Therapy		pagination)(2).
Dutt	Brainstem Volumetric Integrity in Preclinical and Prodromal Alzheimer's	Journal of	2020	77(4):1579-1594.
	Disease	Alzheimer's Disease		
Dyer	Gait speed, cognition and falls in people living with mild-to-moderate	BMC geriatrics	2020	20(1):117.
	Alzheimer disease: data from NILVAD			
Gao	Mild Cognitive Impairment Reversion and Progression: Rates and Predictors	Dementia and	2018	8(2):226-237.
	in Community-Living Older Persons in the Singapore Longitudinal Ageing	Geriatric Cognitive		
	Studies Cohort	Disorders Extra	2021	2 (1) 21 25
Glynn	Clinical utility of mild cognitive impairment subtypes and number of impaired	International Journal	2021	36(1):31-37.
	cognitive domains at predicting progression to dementia: A 20-year	of Geriatric Psychiatry		
	retrospective study			

Author	Title	Journal	Year	Citation
Gottesman	Association between Early Psychotic Symptoms and Alzheimer's Disease	Journal of	2021	81(3):1131-1139.
	Prognosis in a Community-Based Cohort	Alzheimer's Disease		
Gross	Alzheimer's disease severity, objectively determined and measured	Alzheimer's and	2016	4:159-168.
		Dementia: Diagnosis,		
		Assessment and		
		Disease Monitoring		
Halminen	Early Start of Anti-Dementia Medication Delays Transition to 24-Hour Care	Journal of	2021	81(3):1103-1115.
	in Alzheimer's Disease Patients: A Finnish Nationwide Cohort Study	Alzheimer's Disease		
Hamelin	Distinct dynamic profiles of microglial activation are associated with	Brain	2018	141(6):1855-1870.
	progression of Alzheimer's disease			
Hayakawa	Orthostatic blood pressure behavior in people with mild cognitive impairment	Journal of the	2015	63(9):1868-1873.
	predicts conversion to dementia	American Geriatrics		
		Society		
Herrmann	Risk factors for progression of Alzheimer disease in a Canadian population:	Canadian Journal of	2015	60(4):189-199.
	The Canadian Outcomes Study in Dementia (COSID)	Psychiatry		
Hohman	The role of vascular endothelial growth factor in neurodegeneration and	JAMA Neurology	2015	72(5):520-529.
	cognitive decline: Exploring interactions with biomarkers of Alzheimer			
	disease			
Huang	Sleep Quality Improvement Enhances Neuropsychological Recovery and	Medicina	2021	57(12).
	Reduces Blood Abeta42/40 Ratio in Patients with Mild-Moderate Cognitive			
	Impairment			
Hughes	Engagement in social activities and progression from mild to severe cognitive	International	2013	25(4):587-595.
	impairment: the MYHAT study	Psychogeriatrics		
Jiang	Metabolomics in the Development and Progression of Dementia: A	Frontiers in	2019	13:343.
	Systematic Review	Neuroscience		
Kahle-	Dependence Levels as Interim Clinical Milestones Along the Continuum of	The journal of	2017	4(2):72-80.
Wrobleski	Alzheimer's Disease: 18-Month Results from the GERAS Observational Study	prevention of		
		Alzheimer's disease		
Katz	Subjective cognitive decline prediction of mortality: Results from the Einstein	Journal of	2018	66(1):239-248.
	aging study	Alzheimer's Disease		
Kim	The cerebellum could serve as a potential imaging biomarker of dementia	European Journal of	2021	28(5):1520-1527.
	conversion in patients with amyloid-negative amnestic mild cognitive	Neurology		
	impairment			
Kinsella	Who benefits from cognitive intervention in older age? The role of executive	The Clinical	2020	34(4):826-844.
	function	neuropsychologist		
Lauriola	Late-life depression versus amnestic mild cognitive impairment: Alzheimer's	Dementia and	2018	46(3-4):140-153.
	disease incidence in 4 years of follow-up	Geriatric Cognitive		
		Disorders		

Author	Title	Journal	Year	Citation
LeBlanc	Weight Trajectory over 20 Years and Likelihood of Mild Cognitive	Journal of the	2017	65(3):511-519.
	Impairment or Dementia Among Older Women	American Geriatrics		
		Society		
Lee	Amnestic multiple cognitive domains impairment and periventricular white	International Journal	2014	29(5):526-532.
	matter hyperintensities are independently predictive factors progression to	of Geriatric Psychiatry		
Lee	dementia in mild cognitive impairment	Discussion	2020	10(4) (
Lee	Association of plasma of concertium to establish a registry for Alphaimer's	Diagnostics	2020	10(4) (no
	disease in health screening population			pagination)(257).
Liew	Subjective cognitive decline APOF e4 allele and the risk of neurocognitive	Australian and New	2022	
Liew	disorders: Age- and sex-stratified cohort study	Zealand Journal of	2022	
		Psychiatry.		
Liew	Symptom Clusters of Neuropsychiatric Symptoms in Mild Cognitive	Journal of the	2019	20(8):1054.e1-1054.e9.
	Impairment and Their Comparative Risks of Dementia: A Cohort Study of	American Medical		
	8530 Older Persons	Directors Association		
Ma	Serum Calcium Predicts Cognitive Decline and Clinical Progression of	Neurotoxicity	2021	39(3):609-617.
	Alzheimer's Disease	Research		
Marra	Semantic Memory as an Early Cognitive Marker of Alzheimer's Disease: Role	Journal of	2021	81(2):619-627.
	of Category and Phonological Verbal Fluency Tasks	Alzheimer's Disease		
Montero-Odasso	Association of dual-task gait with incident dementia in mild cognitive	JAMA Neurology	2017	74(7):857-865.
	impairment: Results from the gait and brain study		2022	1.4/1> 10050
Morar	A study of the longitudinal changes in multiple cerebrospinal fluid and	Alzheimer's &	2022	14(1):e12258.
	volumetric magnetic resonance imaging biomarkers on converter and non-	Dementia: Diagnosis,		
	beta status	Assessment & Disease Monitoring		
Mueller	Proper names from story recall are associated with beta-amyloid in cognitively	Cortex	2020	131.137-150
Widefiel	unimpaired adults at risk for Alzheimer's disease	Contex	2020	151.157-150.
Overbeek	The Multidimensional Prognostic Index Predicts Mortality in Older	Journal of Clinical	2022	11(9):23.
	Outpatients with Cognitive Decline	Medicine		
Pacheco	Greater cortical thinning in normal older adults predicts later cognitive	Neurobiology of	2015	36(2):903-908.
	impairment	Aging		. ,
Pacyna	Rapid olfactory decline during aging predicts dementia and GMV loss in AD	Alzheimer's &	2022	28:28.
	brain regions	Dementia		
Pakhomov	A computational linguistic measure of clustering behavior on semantic verbal	Cortex	2014	55(1):97-106.
	fluency task predicts risk of future dementia in the Nun Study			
Pase	Assessment of Plasma Total Tau Level as a Predictive Biomarker for	JAMA Neurology	2019	76(5):598-606.
	Dementia and Related Endophenotypes			

Author	Title	Journal	Year	Citation
Planche	Clinical relevance of brain atrophy subtypes categorization in memory clinics	Alzheimer's and	2021	17(4):641-652.
		Dementia		
Regal	Apolipoprotein E epsilon4 is superior to apolipoprotein E epsilon2 in predicting cognitive scores over 30 months	Clinical Interventions	2013	8:1461-1465.
Romagnoli	Serum Ano Las a notential marker of conversion from mild cognitive	In Aging Journal of the	2021	127 (no
Romagnon	impairment to dementia	Neurological Sciences	2021	$\frac{127}{100}$
Romero-Sevill	Role of Inflammatory Cytokines in the Conversion of Mild Cognitive	Current Alzheimer	2022	19(1):68-75
	Impairment to Dementia: A Prospective Study	Research	2022	1)(1):00 /01
Romero-Sevilla	Vascular risk factors and lesions of vascular nature in magnetic resonance as	Current Alzheimer	2018	15(7):671-678.
	predictors of progression to dementia in patients with mild cognitive	Research		
	impairment			
Saunders	Associations between cerebrospinal fluid markers and cognition in ageing and	European Journal of	2022	25:25.
	dementia: A systematic review	Neuroscience		
Schjonning	Quantitative Electroencephalography Analyzed by Statistical Pattern	Dementia and	2018	426-438.
Nielsen	Recognition as a Diagnostic and Prognostic Tool in Mild Cognitive	Geriatric Cognitive		
	Impairment: Results from a Nordic Multicenter Cohort Study	Disorders Extra		
Shen	Causal structure discovery identifies risk factors and early brain markers	NeuroImage Clinical	2022	35:103077.
	related to evolution of white matter hyperintensities			
Shen	Plasma amyloid, tau, and neurodegeneration biomarker profiles predict	Alzheimer's &	2020	12(1):e12104.
	Alzheimer's disease pathology and clinical progression in older adults without	Dementia : Diagnosis,		
	dementia	Assessment & Disease		
		Monitoring		
Sierra-Rio	Cerebrospinal fluid biomarkers predict clinical evolution in patients with	Neurodegenerative	2016	16(1-2):69-76.
	subjective cognitive decline and mild cognitive impairment	Diseases		
Somme	Neuropsychiatric symptoms in amnestic mild cognitive impairment: Increased	Current Alzheimer	2013	10(1):86-94.
	risk and faster progression to dementia	Research		
Song	Functional MRI-Specific Alterations in Salience Network in Mild Cognitive	Frontiers in Aging	2021	13 (no
~	Impairment: An ALE Meta-Analysis	Neuroscience		pagination)(695210).
Song	Plasma apolipoprotein levels are associated with cognitive status and decline	PLoS ONE	2012	7(6) (no
	in a community cohort of older individuals		2010	pagination)(e34078).
Taillard	Non-REM sleep characteristics predict early cognitive impairment in an aging	Frontiers in	2019	10 (no
- T 1	population	Neurology	2015	pagination)(197).
Tarawneh	Cerebrospinal fluid markers of neurodegeneration and rates of brain atrophy in early Alzheimer disease	JAMA Neurology	2015	/2(0):656-665.
Tarawneh	Diagnostic and prognostic utility of the synaptic marker neurographin in	JAMA Neurology	2016	73(5):561-571
	Alzheimer disease	27 HOL 1 1 COLOIDEY	2010	, 5(5).501 5/1.
Targa	Sleep profile predicts the cognitive decline of mild-moderate Alzheimer's	Sleep	2021	44(10) (no
	disease patients			pagination)(zsab117).

Author	Title	Journal	Year	Citation
Tay	Elevations in Serum Dickkopf-1 and Disease Progression in Community- Dwelling Older Adults With Mild Cognitive Impairment and Mild-to- Moderate Alzheimer's Disease	Frontiers in Aging Neuroscience	2019	11 (no pagination)(278).
Tchalla	Predictors of Rapid Cognitive Decline in Patients with Mild-to-Moderate Alzheimer Disease: A Prospective Cohort Study with 12-Month Follow-Up Performed in Memory Clinics	Dementia and Geriatric Cognitive Disorders	2018	45(1-2):56-65.
Ten Kate	Amyloid-independent atrophy patterns predict time to progression to dementia in mild cognitive impairment	Alzheimer's Research and Therapy	2017	9(1) (no pagination)(73).
Thaipisuttikul	Rate of conversion from mild cognitive impairment to dementia in a Thai hospital-based population: A retrospective cohort	Alzheimer's & Dementia: Translational Research & Clinical Interventions	2022	8(1):e12272.
Toledo	Neuronal injury biomarkers and prognosis in ADNI subjects with normal cognition	Acta Neuropathologica Communications	2014	2:26.
Tondelli	Anosognosia in Early- and Late-Onset Dementia and Its Association With Neuropsychiatric Symptoms	Frontiers in Psychiatry	2021	12 (no pagination)(658934).
Turro-Garriga	Course and determinants of anosognosia in Alzheimer's Disease: A 12-month follow-up	Journal of Alzheimer's Disease	2016	51(2):357-366.
Vidoni	Cerebral beta-amyloid angiopathy is associated with earlier dementia onset in Alzheimer's disease	Neurodegenerative Diseases	2016	16(3-4):218-224.
Villeneuve	Latent class analysis identifies functional decline with Amsterdam IADL in preclinical Alzheimer's disease	Alzheimer's and Dementia: Translational Research and Clinical Interventions	2019	5:553-562.
Vyhnalek	Contribution of Memory Tests to Early Identification of Conversion from Amnestic Mild Cognitive Impairment to Dementia	Journal of Alzheimer's disease : JAD.	2022	28.
Watanabe	Analyses of natural courses of Japanese patients with Alzheimer's disease using placebo data from placebo-controlled, randomized clinical trials: Japanese Study on the Estimation of Clinical course of Alzheimer's disease	Alzheimer's and Dementia: Translational Research and Clinical Interventions	2019	5:398-408.
Wattmo	Cerebrospinal Fluid Biomarker Levels as Markers for Nursing Home Placement and Survival Time in Alzheimer's Disease	Current Alzheimer Research	2021	18(7):573-584.
Wattmo	Cerebro-spinal fluid biomarker levels: Phosphorylated tau (T) and total tau (N) as markers for rate of progression in Alzheimer's disease	BMC Neurology	2020	20(1) (no pagination)(10).

Author	Title	Journal	Year	Citation
Wattmo	Cholinesterase inhibitors do not alter the length of stay in nursing homes among patients with Alzheimer's disease: A prospective, observational study of factors affecting survival time from admission to death	BMC Neurology	2016	16(1) (no pagination)(156).
Xiang	Carotid atherosclerosis promotes the progression of Alzheimer's disease: A three-year prospective study	Experimental and Therapeutic Medicine	2017	14(2):1321-1326.
Xiao	Rest-activity rhythms and cognitive impairment and dementia in older women: Results from the Women's Health Initiative	Journal of the American Geriatrics Society	2022	
Zuroff	Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline	Journal of Alzheimer's Disease Reports	2022	6(1):411-430.
Language (n=2)				
Feldberg	The role of cognitive reserve in the progression from mild cognitive impairment to dementia: a cohort study	Neurologia Argentina	2021	13(1):14-23.
Lopez-Cuevas	Prognostic value of cerebrospinal fluid biomarkers in mild cognitive impairment due to Alzheimer disease	Neurologia	2020.	
Outcome (n=118)				
Acosta- Cabronero	Diffusion Tensor Metrics as Biomarkers in Alzheimer's Disease	PLoS One	2012	7(11) (no pagination)(e49072).
Allegri	Prognostic value of ATN Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer's Disease Neuroimaging Initiative	Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring	2020	12(1) (no pagination)(e12026).
Amieva	Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: A study of 20 years of cognitive decline	Brain	2014	137(4):1167-1175.
Arlt	Association between fully automated MRI-based volumetry of different brain regions and neuropsychological test performance in patients with amnestic mild cognitive impairment and Alzheimer's disease	European Archives of Psychiatry and Clinical Neuroscience	2013	263(4):335-344.
Bahnasy	Polysomnography, brain volumetry, and mismatch negativity as early biomarkers of amnestic mild cognitive impairment progression	Egyptian Journal of Neurology, Psychiatry and Neurosurgery	2018	54(1) (no pagination)(20).
Balietti	Platelet Total PLA2Activity, Serum Oxidative Level, and Plasma Cu/Zn Ratio: A Vicious Cycle with a Potential Role to Monitor MCI and Alzheimer's Disease Progression	Rejuvenation Research	2022	25(1):16-24.
Banning	Alzheimer's disease biomarkers as predictors of trajectories of depression and apathy in cognitively normal individuals, mild cognitive impairment, and Alzheimer's disease dementia	International Journal of Geriatric Psychiatry	2021	36(1):224-234.

Author	Title	Journal	Year	Citation
Begcevic	Neuronal pentraxin receptor-1 is a new cerebrospinal fluid biomarker of	F1000Research	2018	7 (no
	Alzheimer's disease progression			pagination)(1012).
Besser	Body mass index, weight change, and clinical progression in mild cognitive	Alzheimer Disease	2014	28(1):36-43.
	impairment and Alzheimer disease	and Associated		
	-	Disorders		
Blasko	Plasma phosphatidylcholines and vitamin B12/folate levels are possible	Experimental	2021	147 (no
	prognostic biomarkers for progression of Alzheimer's disease	Gerontology		pagination)(111264).
Borda	Body mass index trajectories and associations with cognitive decline in people	Health Science	2022	5(3) (no
	with Lewy body dementia and Alzheimer's disease	Reports		pagination)(e590).
Borda,	Polypharmacy is associated with functional decline in Alzheimer's disease and	Archives of	2021	96 (no
	Lewy body dementia	Gerontology and		pagination)(104459).
		Geriatrics		
Brainerd	The apolipoprotein e genotype predicts longitudinal transitions to mild	Neuropsychology	2013	27(1):86-94.
	cognitive impairment but not to Alzheimer's dementia: Findings from a			
	nationally representative study			
Breitve	A longitudinal study of neurocognition in dementia with Lewy bodies	Frontiers in	2018	9(MAR) (no
	compared to Alzheimer's disease	Neurology		pagination)(124).
Brosseron	Characterization and clinical use of inflammatory cerebrospinal fluid protein	Alzheimer's Research	2018	10(1) (no
	markers in Alzheimer's disease	and Therapy		pagination)(25).
Burnham	Longitudinal evaluation of the natural history of amyloid-beta in plasma and	Brain	2020	2(1):fcaa041.
	brain	Communications		
Carnicelli	A longitudinal study of polysomnographic variables in patients with mild	Journal of Sleep	2019	28(5) (no
	cognitive impairment converting to Alzheimer's disease	Research		pagination)(e12821).
Chang	Deterioration and predictive values of semantic networks in mild cognitive	Journal of	2022	61 (no
	impairment	Neurolinguistics		pagination)(101025).
Chatterjee	Plasma Abeta42/40 ratio, p-tau181, GFAP, and NfL across the Alzheimer's	Alzheimer's and	2022.	
	disease continuum: A cross-sectional and longitudinal study in the AIBL cohort	Dementia.		
Chen	Exploring the spectrum of subcortical hyperintensities and cognitive decline	Journal of	2018	30(2):130-138.
		Neuropsychiatry and		
		Clinical Neurosciences		
Chen	Microglial Activation, Tau Pathology, and Neurodegeneration Biomarkers	Frontiers in Aging	2022	14 (no
	Predict Longitudinal Cognitive Decline in Alzheimer's Disease Continuum	Neuroscience		pagination)(848180).
Cho	The effect of severity of white matter hyperintensities on loss of functional	Archives of	2020	87 (no
	independency in patients with mild cognitive impairment: A CREDOS-LTCI	Gerontology and		pagination)(103993).
	(clinical research center for dementia of South Korea-long term card insurance)	Geriatrics		
	study			
Cho	Higher education affects accelerated cortical thinning in Alzheimer's disease:	International	2015	27(1):111-120.
	A 5-year preliminary longitudinal study	Psychogeriatrics		

Author	Title	Journal	Year	Citation
Conde-Sala	Predictors of cognitive decline in Alzheimer's disease and mild cognitive	International	2012	24(6):948-958.
	impairment using the CAMCOG: A five-year follow-up	Psychogeriatrics		
Costa	Plasma lipids metabolism in mild cognitive impairment and Alzheimer's	World Journal of	2019	20(3):190-196.
	disease	Biological Psychiatry		
Dahbour	The effect of age on whole brain volume in controls, mild cognitive	Jordan Medical	2018	52(4):185-193.
	impairment and Alzheimer's disease patients: A prospective analysis of MRI	Journal		
	data from the ADNI data base			
Dautricourt	Longitudinal Changes in Hippocampal Network Connectivity in Alzheimer's	Annals of Neurology	2021	90(3):391-406.
	Disease			
Davda	Biomarkers in the diagnosis and prognosis of Alzheimer's disease	Journal of Neurology	2020	267(8):2475-2477
De Simone	Different deficit patterns on word lists and short stories predict conversion to	Journal of Neurology	2017	264(11):2258-2267.
	Alzheimer's disease in patients with amnestic mild cognitive impairment			
De Simone	A Lack of Practice Effects on Memory Tasks Predicts Conversion to	Journal of Geriatric	2021	34(6):582-593.
	Alzheimer Disease in Patients With Amnestic Mild Cognitive Impairment	Psychiatry and		
		Neurology		
Diouf	Cerebrospinal fluid ceruloplasmin levels predict cognitive decline and brain	Neurobiology of	2020	139 (no
	atrophy in people with underlying beta-amyloid pathology	Disease		pagination)(104810).
Diouf	Cerebrospinal fluid ferritin levels predict brain hypometabolism in people with	Neurobiology of	2019	124:335-339.
	underlying beta-amyloid pathology	Disease		
Dolcos	Mild cognitive impairment is associated with selected functional markers:	Neuropsychology	2012	26(2):209-223.
	Integrating concurrent, longitudinal, and stability effects			
Donovan	Regional cortical thinning predicts worsening apathy and hallucinations across	American Journal of	2014	22(11):1168-1179.
	the Alzheimer disease spectrum	Geriatric Psychiatry		
Dubbelman	Decline in cognitively complex everyday activities accelerates along the	Alzheimer's Research	2020	12(1) (no
	Alzheimer's disease continuum	and Therapy		pagination)(138).
Falahati	Monitoring disease progression in mild cognitive impairment: Associations	NeuroImage: Clinical	2017	16:418-428.
	between atrophy patterns, cognition, APOE and amyloid			
Femminella,	The Differential Influence of Immune, Endocytotic, and Lipid Metabolism	Journal of	2021	79(1):127-139.
	Genes on Amyloid Deposition and Neurodegeneration in Subjects at Risk of	Alzheimer's Disease		
	Alzheimer's Disease			
Fiford	High blood pressure predicts hippocampal atrophy rate in cognitively impaired	Alzheimer's and	2020	12(1) (no
	elders	Dementia: Diagnosis,		pagination)(e12035).
		Assessment and		
		Disease Monitoring	2020	1 = (1) (
Franzmeier	Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and	Molecular	2020	15(1) (no
	neurodegeneration	Neurodegeneration	2014	pagination)(57).
Gattaz	Low platelet iPLA2 activity predicts conversion from mild cognitive	Journal of Neural	2014	121(2):193-200.
	impairment to Alzheimer's disease: A 4-year follow-up study	Transmission		

Author	Title	Journal	Year	Citation
Gerstenecker	Both financial and cognitive decline predict clinical progression in MCI	Alzheimer Disease and Associated Disorders	2016	30(1):27-34.
Gomez-Tortosa	Outcome of mild cognitive impairment comparing early memory profiles	American Journal of Geriatric Psychiatry	2012	20(10):827-835.
Gugala-Iwaniuk	Dynamics of neurocognitive change in patients with mild cognitive impairment	Postepy Psychiatrii i Neurologii	2019	28(2):88-98.
Guo	Characterization of Alzheimer's tau biomarker discordance using plasma, CSF, and PET	Alzheimer's Research and Therapy	2021	13(1) (no pagination)(93).
Hallikainen	The Progression of Alzheimer's Disease Can Be Assessed with a Short Version of the CERAD Neuropsychological Battery: The Kuopio ALSOVA Study	Dementia and Geriatric Cognitive Disorders Extra	2014	4(3):494-508.
Hamilton	Prospective predictors of decline v. stability in mild cognitive impairment with Lewy bodies or Alzheimer's disease	Psychological Medicine	2021	51(15):2590-2598.
Hamilton	Slowing on quantitative EEG is associated with transition to dementia in mild cognitive impairment	International Psychogeriatrics	2021	33(12):1321-1325.
Hanseeuw	PET staging of amyloidosis using striatum	Alzheimer's and Dementia	2018	14(10):1281-1292.
Hazen	The Association between Circulating Inflammatory Markers and the Progression of Alzheimer Disease in Norwegian Memory Clinic Patients with Mild Cognitive Impairment or Dementia	Alzheimer Disease and Associated Disorders	2020	34(1):47-53.
Headley	Neurogranin as a predictor of memory and executive function decline in MCI patients	Neurology	2018	90(10):E887-E895.
Herbert	Depression as a risk factor for Alzheimer's disease: Genes, steroids, cytokines and neurogenesis - What do we need to know?	Frontiers in Neuroendocrinology	2016	41:153-171.
Heymann	The association between alcohol use and the progression of Alzheimer's disease	Current Alzheimer Research	2016	13(12):1356-1362.
Но,	Diurnal Cortisol Slope Mediates the Association Between Affect and Memory Retrieval in Older Adults With Mild Cognitive Impairment: A Path-Analytical Study	Frontiers in Aging Neuroscience	2020	12 (no pagination)(35).
Hu	Higher CSF sTNFR1-related proteins associate with better prognosis in very early Alzheimer's disease	Nature Communications	2021	12(1) (no pagination)(4001).
Jaramillo- Jimenez	Association Between Amygdala Volume and Trajectories of Neuropsychiatric Symptoms in Alzheimer's Disease and Dementia With Lewy Bodies	Frontiers in neurology [electronic resource].	2021	12:679984.
Joie	Prospective longitudinal atrophy in Alzheimer's disease correlates with the intensity and topography of baseline tau-PET	Science Translational Medicine	2020	12(524) (no pagination)(eaau5732).

Author	Title	Journal	Year	Citation
Kim	Data-driven prognostic features of cognitive trajectories in patients with amnestic mild cognitive impairments 11 Medical and Health Sciences 1103 Clinical Sciences 17 Psychology and Cognitive Sciences 1701 Psychology	Alzheimer's Research and Therapy	2019	11(1) (no pagination)(10).
Kim	Early Impairment in the Ventral Visual Pathway Can Predict Conversion to Dementia in Patients with Amyloid-negative Amnestic Mild Cognitive Impairment	Alzheimer Disease and Associated Disorders.	2021	
Kong	Predicting Alzheimer's disease using combined imaging-whole genome SNP data	Journal of Alzheimer's Disease	2015	46(3):695-702.
Koric	Cued Recall Measure Predicts the Progression of Gray Matter Atrophy in Patients with Amnesic Mild Cognitive Impairment	Dementia and Geriatric Cognitive Disorders	2013	36(3-4):197-210.
Koychev	PET tau and amyloid-beta burden in mild Alzheimer's disease: Divergent relationship with age, cognition, and cerebrospinal fluid biomarkers	Journal of Alzheimer's Disease	2017	60(1):283-293.
Lauridsen	Cerebrospinal fluid levels of amyloid beta 1-43 in patients with amnestic mild cognitive impairment or early Alzheimer's disease: A 2-year follow-up study	Frontiers in Aging Neuroscience	2016	8(MAR) (no pagination)(30).
Lee	Plasma MCP-1 and Cognitive Decline in Patients with Alzheimer's Disease and Mild Cognitive Impairment: A Two-year Follow-up Study	Scientific reports	2018	8(1):1280.
Lee	Posterior Cingulate Cortex Network Predicts Alzheimer's Disease Progression	Frontiers in Aging Neuroscience	2020	12 (no pagination)(608667).
Lin	Blood D-amino acid oxidase (DAO) levels increased with cognitive decline among people with mild cognitive impairment (MCI): a two-year prospective study	International Journal of Neuropsycho- pharmacology	2022	17.
Lin	Cerebellar Volume Is Associated with Cognitive Decline in Mild Cognitive Impairment: Results from ADNI	Cerebellum	2020	19(2):217-225.
Liu	Meta-Analysis of Neurochemical Changes Estimated via Magnetic Resonance Spectroscopy in Mild Cognitive Impairment and Alzheimer's Disease	Frontiers in Aging Neuroscience	2021	13 (no pagination)(738971).
Liu	Spatial correlation maps of the hippocampus with cerebrospinal fluid biomarkers and cognition in Alzheimer's disease: A longitudinal study	Human Brain Mapping	2021	42(9):2931-2940.
Lucey	Sleep and longitudinal cognitive performance in preclinical and early symptomatic Alzheimer's disease	Brain	2021	144(9):2852-2862.
Lutz	A genetics-based biomarker risk algorithm for predicting risk of Alzheimer's disease	Alzheimer's and Dementia: Translational Research and Clinical Interventions	2016	2(1):30-44.
Marshall	Regional cortical thinning and cerebrospinal biomarkers predict worsening daily functioning across the Alzheimer's disease spectrum	Journal of Alzheimer's Disease: JAD	2014	41(3):719-728.

Author	Title	Journal	Year	Citation	
Martyr	Predictors of perceived functional ability in early-stage dementia: Self-ratings,	International Journal	2014	29(8):852-862.	
	informant ratings and discrepancy scores	of Geriatric Psychiatry			
Mauri	Progression to dementia in a population with amnestic mild cognitive	Functional Neurology	2012	27(1):49-54.	
	impairment: Clinical variables associated with conversion				
Morbelli	18F-FDG PET diagnostic and prognostic patterns do not overlap in	European Journal of	2017	44(12):2073-2083.	
	Alzheimer's disease (AD) patients at the mild cognitive impairment (MCI)	Nuclear Medicine and			
	stage	Molecular Imaging			
Moscoso	Longitudinal Associations of Blood Phosphorylated Tau181 and	JAMA Neurology	2021	78(4):396-406.	
	Neurofilament Light Chain with Neurodegeneration in Alzheimer Disease				
Muurling	Gait Disturbances are Associated with Increased Cognitive Impairment and	Journal of	2020	76(3):1061-1070.	
	Cerebrospinal Fluid Tau Levels in a Memory Clinic Cohort	Alzheimer's Disease			
Niccolai	Neurocognitive Predictors of Declining Financial Capacity in Persons with	Clinical gerontologist	2017	40(1):14-23.	
	Mild Cognitive Impairment				
Nir	Connectivity network measures predict volumetric atrophy in mild cognitive	Neurobiology of	2015	36(S1):S113-S120.	
	impairment	Aging			
Nowrangi	Longitudinal, region-specific course of diffusion tensor imaging measures in	Alzheimer's and	2013	9(5):519-528.	
	mild cognitive impairment and Alzheimer's disease	Dementia			
Orellana	Measuring global brain atrophy with the brain volume/cerebrospinal fluid	Neurodegenerative	2016	16(1-2):77-86.	
	index: Normative values, cut-offs and clinical associations	Diseases			
Ossenkoppele	Long-term effects of amyloid, hypometabolism, and atrophy on	Neurology	2014	82(20):1768-1775.	
	neuropsychological functions				
Pocnet	Behavioral and psychological symptoms and cognitive decline in patients with	International	2015	27(8):1379-1389.	
	amnestic MCI and mild AD: A two-year follow-up study	Psychogeriatrics			
Qin	Demographic Factors and Cognitive Function Assessments Associated with	BioMed Research	2020	2020 (no	
	Mild Cognitive Impairment Progression for the Elderly	International		pagination)(3054373).	
Qing	Causal structural covariance network revealing atrophy progression in	Human Brain	2021	42(12):3950-3962.	
	Alzheimer's disease continuum	Mapping			
Reas	Associations between Microstructure, Amyloid, and Cognition in Amnestic	Journal of	2020	73(1):347-357.	
	Mild Cognitive Impairment and Dementia	Alzheimer's Disease			
Rizzi	CSF Abeta1-42 but not p-Tau181 differentiates aMCI from SCI	Brain Research	2018	1678:27-31.	
Roberto	Neuropsychiatric Profile as a Predictor of Cognitive Decline in Mild Cognitive	Frontiers in Aging	2021	13 (no	
	Impairment	Neuroscience		pagination)(718949).	
Ronat	Establishing an individualized model of conversion from normal cognition to	International Journal	2022	37(5):13.	
	Alzheimer's disease after 4 years, based on cognitive, brain morphology and	of Geriatric Psychiatry			
	neuropsychiatric characteristics				
Rowe	Tau Imaging with 18F-MK6240 across the Alzheimer's Disease spectrum	medRxiv.	2022	15.	
Ruan	Potential fluid biomarkers for pathological brain changes in Alzheimer's	Molecular Medicine	2016	14(4):3184-3198.	
	disease: Implication for the screening of cognitive frailty	Reports			

Author	Title	Journal	Year	Citation	
Sadiq	Prodromal Dementia with Lewy Bodies and Prodromal Alzheimer's Disease:	Journal of	2017	58(2):463-470.	
	A Comparison of the Cognitive and Clinical Profiles	Alzheimer's Disease			
Sendi	Disrupted Dynamic Functional Network Connectivity Among Cognitive	Brain Connectivity	2021	07:07.	
	Control Networks in the Progression of Alzheimer's Disease				
Spampinato	Gender, apolipoprotein E genotype, and mesial temporal atrophy: 2-year	Neuroradiology	2016	58(11):1143-1151.	
	follow-up in patients with stable mild cognitive impairment and with				
	progression from mild cognitive impairment to Alzheimer's disease				
Strain	Loss of white matter integrity reflects tau accumulation in Alzheimer disease	Neurology	2018	91(4):E313-E318.	
	defined regions				
Taoka	Diffusion tensor studies and voxel-based morphometry of the temporal lobe to	Springerplus	2016	5(1):1023.	
	determine the cognitive prognosis in cases of Alzheimer's disease and mild				
	cognitive impairment: Do white matter changes precede gray matter changes?				
Thomas	Objective subtle cognitive decline and plasma phosphorylated tau181: Early	Alzheimer's &	2021	13(1):e12238.	
	markers of Alzheimer's disease-related declines	Dementia: Diagnosis,			
		Assessment & Disease			
TT1 (* 11		Monitoring	2012	01	
Thurfjell	Combination of Biomarkers: PET [F]Flutemetamol Imaging and Structural	Neurodegenerative	2012	01.	
	MRI in Dementia and Mild Cognitive Impairment	Diseases.	2010	0/1) 10/01	
Iten	Plasma Transthyretin as a Predictor of Amnestic Mild Cognitive Impairment	Scientific reports	2019	9(1):18691.	
Tina	Conversion to Dementia	Cumant Alabaiman	2015	12(2),165 172	
Ting	orey matter altophy in mild cognitive impairment / early Alzheimer disease	Current Alzheimer	2013	12(2):103-172.	
Talada	Low levels of combroaning fluid complement 2 and factor H predict factor	Alzhaimar's Rasaarah	2014	6(2):26	
Toledo	cognitive decline in mild cognitive impairment	& Therapy	2014	0(3).30.	
Tondelli	Predictive value of phospho-tau/total-tau ratio in amyloid-negative Mild	Neuroscience Letters	2022.12	86811	
Tondem	Cognitive Impairment	Neuroscience Letters	2022.1.	0011.	
Trebhastoni	Altered Cortical Synaptic Plasticity in Response to 5-Hz Repetitive	Frontiers in Aging	2015	7.253	
11000ubtoini	Transcranial Magnetic Stimulation as a New Electrophysiological Finding in	Neuroscience	2010	,.2001	
	Amnestic Mild Cognitive Impairment Converting to Alzheimer's Disease:				
	Results from a 4-year Prospective Cohort Study				
Trebbastoni	Attenuation of Choroidal Thickness in Patients With Alzheimer Disease:	Alzheimer Disease	2017	31(2):128-134.	
	Evidence From an Italian Prospective Study	and Associated			
	1 2	Disorders			
Tripathi	Functional neuroimaging using F-18 FDG PET/CT in amnestic mild cognitive	Indian Journal of	2013	28(3):129-133.	
-	impairment: A preliminary study	Nuclear Medicine			
Turchetta	Forgetting Rates on the Recency Portion of a Word List Predict Conversion	Journal of	2020	73(4):1295-1304.	
	from Mild Cognitive Impairment to Alzheimer's Disease	Alzheimer's Disease			
van Maurik	2220	JAMA Neurology	2017	74(12):1481-1491.	

Author	Title	Journal	Year	Citation
Varon	Visual rating and volumetric measurement of medial temporal atrophy in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort: Baseline diagnosis and the prediction of MCI outcome	International Journal of Geriatric Psychiatry	2015	30(2):192-200.
Wang	A longitudinal study of total and phosphorylated alpha-synuclein with other biomarkers in cerebrospinal fluid of Alzheimer's disease and mild cognitive impairment	Journal of Alzheimer's Disease	2018	61(4):1541-1553.
Wei	Mapping cerebral atrophic trajectory from amnestic mild cognitive impairment to Alzheimer's disease	Cerebral Cortex	2022	03:03.
Welstead	Predictors of Mild Cognitive Impairment Stability, Progression, or Reversion in the Lothian Birth Cohort 1936	Journal of Alzheimer's disease: JAD	2021	80(1):225-232.
Wheeler	Olfactory measures as predictors of conversion to mild cognitive impairment and Alzheimer's disease	Brain Sciences	2021	11(11) (no pagination)(1391).
Witte	Association between clinical measures and florbetapir F18 PET neuroimaging in mild or moderate Alzheimer's disease dementia	Journal of Neuropsychiatry and Clinical Neurosciences	2014	26(3):214-220.
Wu	Altered gut microbial metabolites in amnestic mild cognitive impairment and Alzheimer's disease: Signals in host-microbe interplay	Nutrients	2021	13(1):1-15.
Xie	Task-enhanced arterial spin labeled perfusion MRI predicts longitudinal neurodegeneration in mild cognitive impairment	Hippocampus	2019	29(1):26-36.
Yagi	Identification of prognostic factors to predict cognitive decline of patients with early Alzheimer's disease in the Japanese Alzheimer's Disease Neuroimaging Initiative study	Alzheimer's and Dementia: Translational Research and Clinical Interventions	2019	5:364-373.
Ye	Longitudinal outcomes of amyloid positive versus negative amnestic mild cognitive impairments: a three-year longitudinal study	Scientific reports	2018	8(1):5557.
Zhao	TNF receptors are associated with tau pathology and conversion to Alzheimer's dementia in subjects with mild cognitive impairment	Neuroscience Letters	2020	738 (no pagination)(135392).
Chincarini	Integrating longitudinal information in hippocampal volume measurements for the early detection of Alzheimer's disease	NeuroImage	2016	125:834-847.
Study design n=	20			
Bolivar	Redefining Amnestic Mild Cognitive Impairment as an Early Form of Alzheimer's Disease Based on Assessment of Memory Systems	Journal of Alzheimer's Disease	2016	53(2):705-712.
Cooper	Modifiable predictors of dementia in mild cognitive impairment: A systematic review and meta-analysis	American Journal of Psychiatry	2015	172(4):323-334.
Dadar	The temporal relationships between white matter hyperintensities, neurodegeneration, amyloid beta, and cognition	Alzheimer's and Dementia: Diagnosis,	2020	12(1) (no pagination)(e12091).

Author	Title	Journal	Year	Citation
		Assessment and Disease Monitoring		
David	Trajectories of Neuropsychiatric Symptoms and Cognitive Decline in Mild Cognitive Impairment	American Journal of Geriatric Psychiatry	2016	24(1):70-80.
Fresnais	Apathy as a Predictor for Conversion From Mild Cognitive Impairment to Dementia: A Systematic Review and Meta-Analysis of Longitudinal Studies	Journal of Geriatric Psychiatry and Neurology.	2022.	
Harrison	From Polygenic Scores to Precision Medicine in Alzheimer's Disease: A Systematic Review	Journal of Alzheimer's Disease	2020	74(4):1271-1283.
Kiddle	Candidate blood proteome markers of Alzheimer's disease onset and progression: A systematic review and replication study	Journal of Alzheimer's Disease	2014	38(3):515-531.
Li	Risk factors for predicting progression from mild cognitive impairment to Alzheimer's disease: A systematic review and meta-analysis of cohort studies	Journal of Neurology, Neurosurgery and Psychiatry	2016	87(5):476-484.
Liu	Soluble TREM2 changes during the clinical course of Alzheimer's disease: A meta-analysis	Neuroscience Letters	2018	686:10-16.
Lo	Vascular burden and Alzheimer disease pathologic progression	Neurology	2012	79(13):1349-1355.
Ma	A Systematic Review and Meta-Analysis of Cerebrospinal Fluid Amyloid and Tau Levels Identifies Mild Cognitive Impairment Patients Progressing to Alzheimer's Disease	Biomedicines	2022	10(7):15.
Moscoso	Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum	Brain	2021	144(1):325-339.
Oltra-Cucarella	Using Base Rate of Low Scores to Identify Progression from Amnestic Mild Cognitive Impairment to Alzheimer's Disease	Journal of the American Geriatrics Society	2018	66(7):1360-1366.
Pfeil	Unique regional patterns of amyloid burden predict progression to prodromal and clinical stages of Alzheimer's disease	Neurobiology of Aging	2021	106:119-129.
Pillai	Temporal Ordering of Inflammatory Analytes sTNFR2 and sTREM2 in Relation to Alzheimer's Disease Biomarkers and Clinical Outcomes	Frontiers in Aging Neuroscience	2021	13 (no pagination)(676744).
Quaranta	Predicting progression of amnesic MCI: The integration of episodic memory impairment with perfusion SPECT	Psychiatry Research - Neuroimaging	2018	271:43-49.
Shen	Plasma phosphorylated-tau181 as a predictive biomarker for Alzheimer's amyloid, tau and FDG PET status	Translational Psychiatry	2021	11(1) (no pagination)(585).
Song	Risk factors of rapid cognitive decline in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis	Journal of Alzheimer's Disease	2018	66(2):497-515.
Sun	Olfactory identification testing as a predictor of the development of Alzheimer's dementia: A systematic review	Laryngoscope	2012	122(7):1455-1462.

Author	Title	Journal	Year	Citation
Zhang,	The Trajectory of Cerebrospinal Fluid Growth-Associated Protein 43 in the	Journal of	2022	85(4):1441-1452.
	Alzheimer's Disease Continuum: A Longitudinal Study	Alzheimer's Disease		
Review/editorial	n=2			
Chamberlain	Differential cognitive deterioration in dementia: A two year longitudinal study	Advances in	2015	4:107-118.
		Alzheimer's Disease		
Steenland	Late-life depression as a risk factor for mild cognitive impairment or	Advances in	2015	4:69-80.
	Alzheimer's disease in 30 US Alzheimer's disease centers	Alzheimer's Disease		

Supplementary Table 6. Deprioritized studies

Citation

Deprioritized biomarker: n=9

Baldeiras et al. Erlangen Score as a tool to predict progression from mild cognitive impairment to dementia in Alzheimer's disease. *Alzheimer's Research and Therapy*. 2019;11(1):2.

Faura et al. CCL23: A Chemokine Associated with Progression from Mild Cognitive

Impairment to Alzheimer's Disease. *Journal of Alzheimer's Disease*. 2020;73(4):1585-1595. Fernandes et al. C-reactive protein as a predictor of mild cognitive impairment conversion into

Alzheimer's disease dementia. *Experimental Gerontology* 2020;138:111004. Ito et al. Prediction of outcomes in MCI with 123I-IMP-CBF SPECT: A multicenter

prospective cohort study. Annals of Nuclear Medicine 2013;27(10):898-906.

Llano et al. VGF in Cerebrospinal Fluid Combined with Conventional Biomarkers Enhances Prediction of Conversion from MCI to AD. *Alzheimer Disease and Associated Disorders* 2019;33(4):307-314.

Sakr et al. Association of Lipidomics Signatures in Blood with Clinical Progression in Preclinical and Prodromal Alzheimer's Disease. *Journal of Alzheimer's Disease* 2022;85(3):1115-1127.

Van Rossum et al. Injury markers predict time to dementia in subjects with MCI and amyloid pathology. *Neurology* 2012;79(17):1809-1816.

Wang et al. Individual brain metabolic connectome indicator based on Kullback-Leibler Divergence Similarity Estimation predicts progression from mild cognitive impairment to Alzheimer's dementia. *European Journal of Nuclear Medicine and Molecular Imaging* 2020;47(12):2753-2764.

Yu et al. Frequency and longitudinal clinical outcomes of Alzheimer's AT(N) biomarker profiles: A longitudinal study. *Alzheimer's and Dementia* 2019;15(9):1208-1217.

Deprioritized genetic factors: n=6

Chandra et al. Aquaporin-4 polymorphisms predict amyloid burden and clinical outcome in the Alzheimer's disease spectrum. *Neurobiology of Aging*. 2021;97:1-9.

Gamarra et al. Association of the C47T Polymorphism in SOD2 with Amnestic Mild Cognitive Impairment and Alzheimer's Disease in Carriers of the APOEepsilon4 Allele. *Disease Markers* 2015;2015:746329.

Lacour et al. Genome-wide significant risk factors for Alzheimer's disease: Role in progression to dementia due to Alzheimer's disease among subjects with mild cognitive impairment. *Molecular Psychiatry* 2017;22(1):153-160.

Xi et al. Joint effect of abca7 rs4147929 and body mass index on progression from mild cognitive impairment to Alzheimer's disease: The shanghai aging study. *Current Alzheimer Research* 2020;17(2):185-195.

Xie et al. Elevation of peripheral BDNF promoter methylation predicts conversion from amnestic mild cognitive impairment to Alzheimer's disease: a 5-year longitudinal study. *Journal of Alzheimer's Disease* 2017;56(1):391-401.

Xie et al. Increased Serum miR-206 Level Predicts Conversion from Amnestic Mild Cognitive Impairment to Alzheimer's Disease: A 5-Year Follow-up Study. *Journal of Alzheimer's Disease*. 2017;55(2):509-520.

Deprioritized global performance factor: n=8

Garcia-Herranz et al. Neuropsychological predictors of conversion to probable Alzheimer disease in elderly with mild cognitive impairment. *Journal of Neuropsychology* 2016;10(2):239-255.

Jung et al. Frontal-executive dysfunction affects dementia conversion in patients with amnestic mild cognitive impairment. *Scientific Reports* 2020;10(1):772.

Nation et al. Neuropsychological decline improves prediction of dementia beyond Alzheimer's disease biomarker and mild cognitive impairment diagnoses. *Journal of Alzheimer's Disease* 2019;69(4):1171-1182.

Sala et al. Diagnostic and Prognostic Value of the Combination of Two Measures of Verbal Memory in Mild Cognitive Impairment due to Alzheimer's Disease. *Journal of Alzheimer's Disease* 2017;58(3):909-918.

Silva et al. Neuropsychological Contribution to Predict Conversion to Dementia in Patients with Mild Cognitive Impairment Due to Alzheimer's Disease. *Journal of Alzheimer's Disease* 2020;74(3):785-796.

Vaughan et al. Semantic and Phonemic Verbal Fluency Discrepancy in Mild Cognitive Impairment: Potential Predictor of Progression to Alzheimer's Disease. *Journal of the American Geriatrics Society*

2018;66(4):755-759.

Vuoksimaa et al. Modifying the minimum criteria for diagnosing amnestic MCI to improve prediction of brain atrophy and progression to Alzheimer's disease. *Brain Imaging and Behavior* 2020;14(3):787-796.

Xu et al. Short-term delayed recall of auditory verbal learning test provides equivalent value to long-term delayed recall in predicting MCI clinical outcomes: A longitudinal follow-up study. *Applied Neuropsychology Adult* 2020;27(1):73-81.

Deprioritized imaging biomarker: n=2

Jiang et al. Using radiomics-based modelling to predict individual progression from mild cognitive impairment to Alzheimer's disease. *European Journal of Nuclear Medicine and Molecular Imaging* 2022;49(7):2163-2173.

Jun et al. Quantitative Brain Amyloid Measures Predict Time-to-Progression from Amnestic Mild Cognitive Impairment to Alzheimer's Disease. *Journal of Alzheimer's Disease* 2019;70(2):475-484.

Deprioritized N<100: n=41

Agostini et al. High avidity HSV-1 antibodies correlate with absence of amnestic Mild Cognitive Impairment conversion to Alzheimer's disease. *Brain, Behavior, and Immunity* 2016;58:254-260.

Alegret et al. Cognitive, genetic, and brain perfusion factors associated with four year incidence of Alzheimer's disease from mild cognitive impairment. *Journal of Alzheimer's Disease* 2014;41(3):739-748.

Chen et al. Plasma Abeta42 and Total Tau Predict Cognitive Decline in Amnestic Mild Cognitive Impairment. *Scientific Reports* 2019;9(1):13984.

Choo et al. A Single Baseline Amyloid Positron Emission Tomography Could Be Sufficient for Predicting Alzheimer's Disease Conversion in Mild Cognitive Impairment. *Psychiatry Investigation* 2022;19(5):394-400.

Defrancesco et al. Impact of white matter lesions and cognitive deficits on conversion from mild cognitive impairment to Alzheimer's disease. *Journal of Alzheimer's Disease* 2013;34(3):665-672.

Doraiswamy et al. Amyloid-beta assessed by florbetapir F 18 PET and 18-month cognitive decline: A multicenter study. *Neurology* 2012;79(16):1636-1644.

Duan et al. Cerebral Blood Flow Predicts Conversion of Mild Cognitive Impairment into Alzheimer's Disease and Cognitive Decline: An Arterial Spin Labeling Follow-up Study. *Journal of Alzheimer's Disease* 2021;82(1):293-305.

Egli et al. Varying strength of cognitive markers and biomarkers to predict conversion and cognitive decline in an early-stage-enriched mild cognitive impairment sample. *Journal of Alzheimer's Disease* 2015;44(2):625-633.

Egli et al. Serial position effects are sensitive predictors of conversion from MCI to Alzheimer's disease dementia. *Alzheimer's and Dementia* 2014;10(5):S420-S424.

Forlenza et al. Cerebrospinal fluid biomarkers in Alzheimer's disease: Diagnostic accuracy and prediction of dementia. *Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring* 2015;1(4):455-463.

Frings et al. Amyloid load but not regional glucose metabolism predicts conversion to Alzheimer's dementia in a memory clinic population. *European Journal of Nuclear Medicine and Molecular Imaging* 2018;45(8):1442-1448.

Gallucci et al. Neuropsychological tools to predict conversion from amnestic mild cognitive impairment to dementia. The TREDEM Registry. *Neuropsychology, Development, and Cognition* 2018;25(4):550-560.

Hori et al. Visual Reproduction on the Wechsler Memory Scale-Revised as a Predictor of Alzheimer's Disease in Japanese Patients with Mild Cognitive Impairments. *Dementia and Geriatric Cognitive Disorders* 2013;35(3-4):165-176.

Jongbloed et al. Clusterin Levels in Plasma Predict Cognitive Decline and Progression to Alzheimer's Disease. *Journal of Alzheimer's Disease* 2015;46(4):1103-1110.

Kester et al. Cerebrospinal fluid VILIP-1 and YKL-40, candidate biomarkers to diagnose, predict and monitor Alzheimer's disease in a memory clinic cohort. *Alzheimer's Research and Therapy* 2015;7(1);59.

Kester et al. Neurogranin as a cerebrospinal fluid biomarker for synaptic loss in symptomatic Alzheimer disease. *JAMA Neurology* 2015;72(11):1275-1280.

Kim et al. Written Discourse Task Helps to Identify Progression from Mild Cognitive Impairment to Dementia. *Dementia and Geriatric Cognitive Disorders* 2022;50(5):446-453.

Kondo et al. Characteristics of mild cognitive impairment tending to convert into Alzheimer's disease or dementia with Lewy bodies: A follow-up study in a memory clinic. *Journal of the Neurological Sciences* 2016;369:102-108.

Kreisl et al. Odor Identification Ability Predicts PET Amyloid Status and Memory Decline in Older Adults. *Journal of Alzheimer's Disease* 2018;62(4):1759-1766.

Kvartsberg et al. Cerebrospinal fluid levels of the synaptic protein neurogranin correlates with cognitive decline in prodromal Alzheimer's disease. *Alzheimer's and Dementia* 2015;11(10):1180-1190.

Lee et al. Memory impairment, in mild cognitive impairment without significant cerebrovascular disease, predicts progression to Alzheimer's disease. *Dementia and Geriatric Cognitive Disorders*

2012;33(4):240-244.

Lemos et al. The free and cued selective reminding test for predicting progression to Alzheimer's disease in patients with mild cognitive impairment: A prospective longitudinal study. *Journal of Neuropsychology* 2017;11(1):40-55.

Lim et al. CSF neurofilament light may predict progression from amnestic mild cognitive impairment to Alzheimer's disease dementia. *Neurobiology of Aging* 2021;107:78-85.

McGuinness et al. Platelet membrane beta-secretase activity in mild cognitive impairment and conversion to dementia: A longitudinal study. *Journal of Alzheimer's Disease* 2015;49(4):1095-1103.

Naude et al. Serum and cerebrospinal fluid Neutrophil gelatinase-associated lipocalin (NGAL) levels as biomarkers for the conversion from mild cognitive impairment to Alzheimer's disease dementia. *Neurobiology of Aging* 2021;107:1-10.

Ortega et al. Usefulness of CSF biomarkers in predicting the progression of amnesic and nonamnesic mild cognitive impairment to Alzheimer's disease. *Current Aging Science* 2019;12(1):35-42.

Peavy et al. The influence of chronic stress on dementia-related diagnostic change in older adults. *Alzheimer Disease and Associated Disorders* 2012;26(3):260-266.

Persson et al. Visual Evaluation of Medial Temporal Lobe Atrophy as a Clinical Marker of Conversion from Mild Cognitive Impairment to Dementia and for Predicting Progression in Patients with Mild Cognitive Impairment and Mild Alzheimer's Disease. *Dementia and Geriatric Cognitive Disorders* 2017;44(1-2):12-24.

Rizzi et al. CSF Abeta1-42, but not p-Tau181, Predicted Progression from Amnestic MCI to Alzheimer's Disease Dementia. *NeuroMolecular Medicine* 2018;20(4):491-497.

Rizzi et al. Value of CSF Biomarkers in Predicting Risk of Progression from aMCI to ADD in a 5-Year Follow-Up Cohort. *SN Comprehensive Clinical Medicine* 2020;2(9):1543-1550.

Seo et al. Neurochemical alterations of the entorhinal cortex in amnestic mild cognitive impairment (aMCI): A three-year follow-up study. *Archives of Gerontology and Geriatrics* 2012;54(1):192-196.

Serra et al. Cognitive reserve and the risk for Alzheimer's disease: A longitudinal study. *Neurobiology of Aging* 2015;36(2):592-600.

Tarnanas et al. Five-year biomarker progression variability for Alzheimer's disease dementia prediction: Can a complex instrumental activities of daily living marker fill in the gaps? *Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring* 2015;1(4):521-532.

Teixeira et al. Decreased levels of circulating adiponectin in mild cognitive impairment and Alzheimer's disease. *NeuroMolecular Medicine* 2013;15(1):115-121.

Tondelli et al. Role of cerebrospinal fluid biomarkers to predict conversion to dementia in patients with mild cognitive impairment: A clinical cohort study *Clinical Chemistry and Laboratory Medicine* 2015;53(3):453-460

2015;53(3):453-460.

Trebbastoni et al. The Impact of Frailty on the Risk of Conversion from Mild Cognitive Impairment to Alzheimer's Disease: Evidences from a 5-Year Observational Study. *Frontiers in Medicine* 2017;4:178.

Vinceti et al. A selenium species in cerebrospinal fluid predicts conversion to Alzheimer's dementia in persons with mild cognitive impairment. *Alzheimer's Research and Therapy* 2017;9(1):100.

Zhao et al. Increased prediction value of biomarker combinations for the conversion of mild cognitive impairment to Alzheimer's dementia. *Translational Neurodegeneration* 2020;9(1):30.

Eckerstorm et al. Multimodal prediction of dementia with up to 10 years follow up: the Gothenburg MCI study. *Journal of Alzheimers Disease* 2015;44(1): 205-214.

Mielke et al. Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau- and amyloid-positron emission tomography. *Alzheimers Dementia* 2018;14(8): 989-997.

Tokuchi et al. Clinical and demographic predictors of mild cognitive impairment for converting to Alzheimer's disease and reverting to normal cognition. *Journal of the Neurological Sciences* 2014;15(346): 288-292

Deprioritized risk factor: n=3

Guo et al. The National Institute on Aging-Alzheimer's Association research criteria for mild cognitive impairment due to Alzheimer's disease: Predicting the outcome.

European Archives of Psychiatry and Clinical Neuroscience 2013;263(4):325-333.

Nielsen et al. Poor self-rated health did not increase risk of permanent nursing placement or mortality in people with mild Alzheimer's disease *BMC Geriatrics* 2016;16:87.

Roberts et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and Alzheimer disease dementia. *JAMA Neurology* 2016;73(1):93-101.

Deprioritized symptoms: n=2

Cova et al. Self-Awareness for Memory Impairment in Amnestic Mild Cognitive Impairment: A Longitudinal Study. *American Journal of Alzheimer's Disease and other Dementias* 2017;32(7):401-407.

Myung et al. Extrapyramidal signs and risk of progression from mild cognitive impairment to dementia: A clinical research center for dementia of South Korea study. *Psychiatry Investigation* 2017;14(6):754-761.

n, number

Study	1. Study Participants	2. Study Attrition	3. PF Measurement	4. Outcome Measurement	5. Study Confounding	6. Statistical Analysis and Presentation	Overall
Chen 2018 [1]	High	Low	Moderate	Moderate	Moderate	Low	High
Chung 2021 [2]	Low	Low	Moderate	Low	Moderate	Low	High
Cova 2016 [3]	High	Low	Low	Moderate	Low	Low	High
Cullen 2021 [41]	Low	Moderate	Low	Low	Low	Low	Moderate
Degerman Gunnarsson 2016 [4]	High	High	Low	Moderate	Moderate	Low	High
Divers 2022 [5]	Low	Low	Low	Moderate	High	Low	High
Goukasian 2019 [7]	Low	Moderate	Low	Low	Low	Low	High
Galasko 2019 [6]	Low	Moderate	Low	Moderate	Moderate	Low	High
Han 2021 [8]	Low	High	Moderate	Low	Low	Low	High
Hanon 2022 [9]	Moderate	High	Moderate	Low	Moderate	Low	High
Ito 2015 [10]	Low	Moderate	High	Low	Moderate	Low	High
Janelidze 2020 [42]	Low	Moderate	Moderate	Moderate	Low	Low	High
Julayanont 2014 [11]	High	Low	High	Low	Moderate	High	High
Karikari 2020 [12]	Low	High	Moderate	Low	Moderate	Low	High
Kim 2015 [13]	Low	Low	Moderate	Moderate	Moderate	Low	High
Lan 2021 [14]	Low	Low	Low	Moderate	Moderate	Low	High
Lee 2012 [43]	Low	Low	Low	Moderate	Low	Low	Moderate
Lee 2014 [15]	Low	Low	Moderate	Moderate	Moderate	Low	High
Lehman 2013 [16]	Low	Low	Low	Moderate	High	High	High
Liew 2021 [17]	Low	Low	Moderate	Moderate	Moderate	Low	High
LoBue 2018 [44]	Low	Low	Low	Moderate	Low	Low	Moderate
Mai 2022 [18]	Moderate	Low	Low	Moderate	Low	Low	High
Matsuoka 2020 [19]	Low	Low	Moderate	Moderate	Moderate	High	High
Mecca 2018 [20]	Low	High	Low	Moderate	Moderate	Low	High
Mielke 2017 [21]	High	Low	Low	Low	Low	Low	High
Moon 2017 [22]	Low	Low	Low	Moderate	Moderate	Low	High
Morgan 2019 [23]	High	High	Low	Moderate	Moderate	Low	High
Mouchet 2021 [45]	Low	Low	Low	Low	Moderate	Low	Moderate
Muscari 2021 [24]	High	Low	Low	Low	Low	Low	High
Myung 2016 [25]	Low	Low	Moderate	Moderate	Moderate	Low	High
Palmqvist 2012 [26]	High	Low	Low	Moderate	Moderate	Low	High
Palmqvist 2021 [46]	Low	Low	Low	Low	Low	Low	Low
Pelkmans 2022 [27]	Low	Low	Moderate	Moderate	Low	Low	High
Pichet Binette 2022 [47]	Low	Low	Low	Low	Low	Low	Low
Pyun 2017 [48]	Low	Low	Low	Moderate	Low	Low	Moderate
Pyun 2021 [28]	Moderate	Low	High	Moderate	Low	Low	High
Qin 2019 [29]	Low	Low	Low	Moderate	Moderate	Low	High
Reija 2017 [30]	Low	Low	High	Low	Low	Low	High

Supplementary Table 7. Risk of bias assessment (QUIPS)

Study	1. Study Participants	2. Study Attrition	3. PF Measurement	4. Outcome Measurement	5. Study Confounding	6. Statistical Analysis and Presentation	Overall
Richard 2012 [49]	Low	Low	Low	Moderate	Low	Low	Moderate
Ruthirakuhan 2019 [31]	Low	Moderate	Low	Moderate	Moderate	Low	High
Salloway 2022 [50]	Low	Low	Low	Low	Moderate	Low	Moderate
Spalletta 212 [51]	Low	Low	Low	Low	Low	Low	Low
Spencer 2019 [52]	Low	Low	Low	Moderate	Low	Low	Moderate
Steenland 2012 [32]	Low	Moderate	Low	Moderate	Low	Low	High
Sugarman 2020 [33]	Low	Low	Low	Moderate	Moderate	Low	High
Suh 2019 [34]	High	Low	Low	Low	Low	Low	High
Therriault 2021 [53]	Low	Low	Low	Moderate	Low	Low	Moderate
Tifratene 2015 [35]	Low	Low	Low	Moderate	Moderate	Low	High
Tosto 2014 [54]	Moderate	Low	Low	Low	Low	Low	Moderate
Van Der Mussele 2014 [36]	High	Low	Low	Low	Low	Low	High
Van Loenhoud 2022 [55]	High	Low	Low	Low	Low	Low	High
Vos 2013 [37]	Low	High	High	Low	Low	Low	High
Wolfsgruber 2017 [56]	Moderate	Low	Low	Low	Low	Low	Moderate
Xue 2017 [38]	Low	Low	High	Moderate	Moderate	Low	High
Xue 2020 [57]	Low	Low	Low	Moderate	Low	Low	Moderate
Yi 2016 [39]	High	Low	Low	Moderate	Low	Low	High
Zhou 2012 [40]	Low	Moderate	Low	Moderate	Low	Low	High

Study	Outcome	Randomization	Deviations from intended interventions	Missing outcome data	Measurement of the outcome	Selection of the reported result	Overall
Swanson 2021	Primary: Change from	Some concerns	Low	High	High	Low	High risk
BAN2401-G000-201	baseline in ADCOMS at						
[58]	12 months						
Budd Haeberlein	Primary: Change from	Some concerns	Low	Low	Low	Low	Some concerns
2022 EMERGE [59]	baseline in CDR-SB at						
	week 78						
Budd Haeberlein	Primary: Change from	Some concerns	Low	Low	Low	Low	Some concerns
2022 ENGAGE [59]	baseline in CDR-SB at						
	week 78						
Ostrowitzki 2017	Safety	Low	Low	Low	High	Low	High risk
Scarlet Road [60]							
Mintun 2021	Safety	Low	Low	Low	High	Low	High risk
TRAILBLAZER-							
ALZ [61]							
Sevigny 2016 [62]	Safety	Some concerns	Some concerns	Low	Some concerns	Low	Some concerns

Supplementary Table 8. Risk of bias assessment (ROB2)

ADCOMS, the Alzheimer's disease composite score; CDR-SB, clinical dementia rating score – sum of boxes

REFERENCES

- [1] Chen PH, Cheng SJ, Lin HC, Lee CY, Chou CH (2018) Risk factors for the progression of mild cognitive impairment in different types of neurodegenerative disorders. *Behav Neurol* 2018, 6929732.
- [2] Chung JK, Jang JW (2021) Comprehensive visual rating scale on magnetic resonance imaging: application to prodromal Alzheimer disease. *Ann Geriatr Med Ress* **25**, 39-44.
- [3] Cova I, Clerici F, Maggiore L, Pomati S, Cucumo V, Ghiretti R, Galimberti D, Scarpini E, Mariani C, Caracciolo B (2016) Body mass index predicts progression of mild cognitive impairment to dementia. *Dement Geriatr Cogn Disord* 41, 172-180.
- [4] Degerman Gunnarsson M, Ingelsson M, Blennow K, Basun H, Lannfelt L, Kilander L (2016) High tau levels in cerebrospinal fluid predict nursing home placement and rapid progression in Alzheimer's disease. *Alzheimers Res Ther* 8, 22.
- [5] Divers RM, De Vito AN, Pugh EA, Robinson A, Weitzner DS, Calamia MR (2023) Longitudinal predictors of informant-rated everyday function in mild cognitive impairment. J Geriatr Psychiatry Neurol 36, 18-25.
- [6] Galasko D, Xiao M, Xu D, Smirnov D, Salmon DP, Dewit N, Vanbrabant J, Jacobs D, Vanderstichele H, Vanmechelen E, Worley P (2019) Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer's disease. *Alzheimers Dement (N Y)* 5, 871-882.
- [7] Goukasian N, Hwang KS, Romero T, Grotts J, Do TM, Groh JR, Bateman DR, Apostolova LG (2019) Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: A multisite observational cohort study. *BMJ Open* 9, e031947.
- [8] Han H, Qin Y, Ge X, Cui J, Liu L, Luo Y, Yang B, Yu H (2021) Risk assessment during longitudinal progression of cognition in older adults: A community-based Bayesian networks model. *Curr Alzheimer Res* 18, 232-242.
- [9] Hanon O, Vidal JS, Lehmann S, Bombois S, Allinquant B, Baret-Rose C, Treluyer JM, Abdoul H, Gele P, Delmaire C, Blanc F, Mangin JF, Buee L, Touchon J, Hugon J, Vellas B, Galbrun E, Benetos A, Berrut G, Paillaud E, Wallon D, Castelnovo G, Volpe-Gillot L, Paccalin M, Robert P, Godefroy O, Camus V, Belmin J, Vandel P, Novella JL, Duron E, Rigaud AS, Schraen-Maschke S, Gabelle A (2022) Plasma amyloid beta predicts

conversion to dementia in subjects with mild cognitive impairment: The BALTAZAR study. *Alzheimers Dement* **18**, 2537-2550.

- Ito K, Fukuyama H, Senda M, Maeda K, Yamamoto Y, Ouchi Y, Ishii K, Okumura A, Fujiwara K, Kato T, Arahata Y, Washimi Y, Mitsuyama Y, Meguro K, Ikeda M (2015)
 Prediction of outcomes in mild cognitive impairment by using 18F-FDG-PET: a multicenter study. *J Alzheimers Dis* 45, 543-552.
- [11] Julayanont P, Brousseau M, Chertkow H, Phillips N, Nasreddine ZS (2014) Montreal Cognitive Assessment Memory Index Score (MoCA-MIS) as a predictor of conversion from mild cognitive impairment to Alzheimer's disease. J Am Geriatr Soc 62, 679-684.
- Karikari TK, Benedet AL, Ashton NJ, Lantero Rodriguez J, Snellman A, Suarez-Calvet M, Saha-Chaudhuri P, Lussier F, Kvartsberg H, Rial AM, Pascoal TA, Andreasson U, Scholl M, Weiner MW, Rosa-Neto P, Trojanowski JQ, Shaw LM, Blennow K, Zetterberg H (2021) Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative. *Mol Psychiatry* 26, 429-442.
- [13] Kim MJ, Kim S, Kang HS, Lim SW, Myung W, Lee Y, Hong CH, Choi SH, Na DL, Seo SW, Ku BD, Kim SY, Jeong JH, Park SA, Carroll BJ, Kim DK (2015) Gender differences in risk factors for transition from mild cognitive impairment to Alzheimer's disease: A CREDOS study. *Compr Psychiatry* 62, 114-122.
- [14] Lan YT, Blacker D, Yuan C, Chibnik LB, Hofman A, Ma Y (2021) Longitudinal body weight change, visit-to-visit body weight fluctuation, and cognitive decline among older adults. *J Alzheimers Dis* 84, 777-786.
- [15] Lee SJ, Ritchie CS, Yaffe K, Cenzer IS, Barnes DE (2014) A clinical index to predict progression from mild cognitive impairment to dementia due to Alzheimer's disease. *PLoS One* 9, e113535.
- [16] Lehmann M, Koedam EL, Barnes J, Bartlett JW, Barkhof F, Wattjes MP, Schott JM, Scheltens P, Fox NC, Alzheimer's Disease Neuroimaging Initiative (2013) Visual ratings of atrophy in MCI: prediction of conversion and relationship with CSF biomarkers. *Neurobiol Aging* 34, 73-82.

- [17] Liew TM (2021) Neuropsychiatric symptoms in early stage of Alzheimer's and non-Alzheimer's dementia, and the risk of progression to severe dementia. *Age Ageing* 50, 1709-1718.
- [18] Mai Y, Cao Z, Xu J, Yu Q, Yang S, Tang J, Zhao L, Fang W, Luo Y, Lei M, Mok VCT, Shi L, Liao W, Liu J (2022) AD resemblance atrophy index of brain magnetic resonance imaging in predicting the progression of mild cognitive impairment carrying apolipoprotein E-epsilon4 allele. *Front Aging Neurosci* 14, 859492.
- [19] Matsuoka T, Oya N, Yokota H, Akazawa K, Yamada K, Narumoto J (2020) Pineal volume reduction in patients with mild cognitive impairment who converted to Alzheimer's disease. *Psychiatry Clin Neurosci* 74, 587-593.
- [20] Mecca AP, Michalak HR, McDonald JW, Kemp EC, Pugh EA, Becker ML, Mecca MC, Van Dyck CH (2018) Sleep disturbance and the risk of cognitive decline or clinical conversion in the ADNI cohort. *Dement Geriatr Cogn Disord* 45, 232-242.
- [21] Mielke MM, Hagen CE, Wennberg AMV, Airey DC, Savica R, Knopman DS, Machulda MM, Roberts RO, Jack CR, Petersen RC, Dage JL (2017) Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the Mayo Clinic study on aging. *JAMA Neurol* 74, 1073-1080.
- [22] Moon B, Kim S, Park YH, Lim JS, Youn YC, Kim S, Jang JW (2017) Depressive symptoms are associated with progression to dementia in patients with amyloid-positive mild cognitive impairment. *J Alzheimers Dis.* 58, 1255 – 1264.
- [23] Morgan AR, Touchard S, Leckey C, O'Hagan C, Nevado-Holgado AJ, Barkhof F, Bertram L, Blin O, Bos I, Dobricic V, et al. (2019) Inflammatory biomarkers in Alzheimer's disease plasma. *Alzheimers Dement* 15, 776-787.
- [24] Muscari A, Clavarino F, Allegri V, Farolfi A, Macchiarulo M, Maestri L, Sessagesimi E, Spinardi L, Lunardelli ML (2021) "2-step MCI-AD": a simple scoring system to predict rapid conversion from mild cognitive impairment to Alzheimer dementia. *Arch Gerontol Geriatr* 94, 104359.
- [25] Myung W, Lee C, Park JH, Woo SY, Kim S, Chung JW, Kang HS, Lim SW, Choi J, Na DL, Lee JH, Han SH, Choi SH, Kim SY, Carroll BJ, Kim DK (2016) Occupational attainment as risk factor for progression from mild cognitive impairment to Alzheimer's disease: a CREDOS study. J Alzheimers Dis 55, 283-292.

- [26] Palmqvist S, Hertze J, Minthon L, Wattmo C, Zetterberg H, Blennow K, Londos E, Hansson O (2012) Comparison of brief cognitive tests and CSF biomarkers in predicting Alzheimer's disease in mild cognitive impairment: Six-year follow-up study. *PLoS One* 7, e38639.
- [27] Pelkmans W, Vromen EM, Dicks E, Scheltens P, Teunissen CE, Barkhof F, van der Flier WM, Tijms BM, Alzheimer's Disease Neuroimaging Initiative (2022) Grey matter network markers identify individuals with prodromal Alzheimer's disease who will show rapid clinical decline. *Brain Commun* 4, fcac026.
- [28] Pyun JM, Park YH, Lee KJ, Kim SY, Saykin AJ, Nho K (2021) Predictability of polygenic risk score for progression to dementia and its interaction with APOE epsilon4 in mild cognitive impairment. *Transl Neurodegener* 10, 32.
- [29] Qin Y, Tian Y, Han H, Liu L, Ge X, Xue H, Wang T, Zhou L, Liang R, Yu H,
 Alzheimer's Disease Neuroimaging Initiative (2019) Risk classification for conversion from mild cognitive impairment to Alzheimer's disease in primary care. *Psychiatry Res* 278, 19-26.
- [30] Reijs BLR, Vos SJB, Soininen H, Lotjonen J, Koikkalainen J, Pikkarainen M, Hall A, Vanninen R, Liu Y, Herukka SK, Freund-Levi Y, Frisoni GB, Frolich L, Nobili F, Rikkert MO, Spiru L, Tsolaki M, Wallin AK, Scheltens P, Verhey F, Visser PJ (2017) Association between later life lifestyle factors and Alzheimer's disease biomarkers in non-demented individuals: a longitudinal descriptive cohort study. *J Alzheimers Dis* 60, 1387-1395.
- [31] Ruthirakuhan M, Herrmann N, Vieira D, Gallagher D, Lanctot KL (2019) The roles of apathy and depression in predicting Alzheimer disease: a longitudinal analysis in older adults with mild cognitive impairment. *Am J Geriatr Psychiatry* 27, 873-882.
- [32] Steenland K, Karnes C, Seals R, Carnevale C, Hermida A, Levey A (2012) Late-life depression as a risk factor for mild cognitive impairment or Alzheimer's disease in 30 US Alzheimer's disease centers. *J Alzheimers Dis* 31, 265-275.
- [33] Sugarman MA, Zetterberg H, Blennow K, Tripodis Y, McKee AC, Stein TD, Martin B, Palmisano JN, Steinberg EG, Simkin I, Budson AE, Killiany R, O'Connor MK, Au R, Qiu WWQ, Goldstein LE, Kowall NW, Mez J, Stern RA, Alosco ML (2020) A

longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease. *Neurobiol Aging* **94**, 60-70.

- [34] Suh J, Park YH, Kim HR, Jang JW, Kang MJ, Yang J, Baek MJ, Kim S (2019) The usefulness of visual rating of posterior atrophy in predicting rapid cognitive decline in Alzheimer disease: A preliminary study. *Int J Geriatr Psychiatry* 34, 625-632.
- [35] Tifratene K, Robert P, Metelkina A, Pradier C, Dartigues JF (2015) Progression of mild cognitive impairment to dementia due to AD in clinical settings. *Neurology* **85**, 331-338.
- [36] Van Der Mussele S, Fransen E, Struyfs H, Luyckx J, Marien P, Saerens J, Somers N, Goeman J, De Deyn PP, Engelborghs S (2014) Depression in mild cognitive impairment is associated with progression to Alzheimer's disease: A longitudinal study. *J Alzheimers Dis* 42, 1239-1250.
- [37] Vos SJ vRI, Verhey F, Knol DL, Soininen H, Wahlund LO, Hampel H, Tsolaki M, Minthon L, Frisoni GB, Froelich L, Nobili F, van der Flier W, Blennow K, Wolz R, Scheltens P, Visser PJ (2013) Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. *Neurology* 19, 1124-1132.
- [38] Xue H, Sun Q, Liu L, Zhou L, Liang R, He R, Yu H (2017) Risk factors of transition from mild cognitive impairment to Alzheimer's disease and death: A cohort study. *Compr Psychiatry* 78, 91-97.
- [39] Yi HA, Moller C, Dieleman N, Bouwman FH, Barkhof F, Scheltens P, Van Der Flier WM, Vrenken H (2016) Relation between subcortical grey matter atrophy and conversion from mild cognitive impairment to Alzheimer's disease. *J Neurol Neurosurg Psychiatry* 87, 425-432.
- [40] Zhou B, Nakatani E, Teramukai S, Nagai Y, Fukushima M, Alzheimer's Disease Neuroimaging Initiative (2012) Risk classification in mild cognitive impairment patients for developing Alzheimer's disease. *J Alzheimers Dis* 30, 367-375.
- [41] Cullen NC, Leuzy A, Palmqvist S, Janelidze S, Stormrud S, Pesini P, Sarasa L, Allue JA, Proctor NK, Zetterberg H, Dage JL, Blennow K, Mattsson-Carlgren N, Hansson O (2020) Individualized prognosis of cognitive decline and dementia in mild cognitive impairment based on plasma biomarker combinations. *Nat Aging* 1, 114-123.
- [42] Janelidze S, Mattsson N, Palmqvist S, Smith R, Beach TG, Serrano GE, Chai X, Proctor NK, Eichenlaub U, Zetterberg H, Blennow K, Reiman EM, Stomrud E, Dage JL,

Hansson O (2020) Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. *Nat Med* **26**, 379-386.

- [43] Lee YM, Park JM, Lee BD, Moon E, Chung YI, Kang CJ (2012) Memory impairment, in mild cognitive impairment without significant cerebrovascular disease, predicts progression to Alzheimer's disease. *Dement Geriatr Cogn Disord* 33, 240-244.
- [44] LoBue C, Woon FL, Rossetti HC, Hynan LS, Hart J, Cullum CM (2018) Traumatic brain injury history and progression from mild cognitive impairment to Alzheimer disease. *Neuropsychology* 32, 401-409.
- [45] Mouchet J, Betts KA, Georgieva MV, Ionescu-Ittu R, Butler LM, Teitsma X, Delmar P, Kulalert T, Zhu J, Lema N, Desai U (2021) Classification, prediction, and concordance of cognitive and functional progression in patients with mild cognitive impairment in the United States: A latent class analysis. *J Alzheimers Dis* 82, 1667-1682.
- [46] Palmqvist S, Tideman P, Cullen N, Zetterberg H, Blennow K, The Alzheimer's Disease Neuroimaging I, Dage JL, Stomrud E, Janelidze S, Mattsson-Carlgren N, Hansson O (2021) Prediction of future Alzheimer's disease dementia using plasma phospho-tau combined with other accessible measures. *Nat Med* 27, 1034-1042.
- [47] Pichet Binette A, Palmqvist S, Bali D, Farrar G, Buckley CJ, Wolk DA, Zetterberg H, Blennow K, Janelidze S, Hansson O (2022) Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer's dementia in mild cognitive impairment patients. *Alzheimers Res Ther* 14, 46.
- [48] Pyun JM, Park YH, Kim HR, Suh J, Kang MJ, Kim BJ, Youn YC, Jang JW, Kim S (2017) Posterior atrophy predicts time to dementia in patients with amyloid-positive mild cognitive impairment. *Alzheimers Res Ther* 9, 99.
- [49] Richard E, Schmand B, Eikelenboom P, Yang SC, Ligthart SA, Moll Van Charante EP, Van Gool WA (2012) Symptoms of apathy are associated with progression from mild cognitive impairment to Alzheimer's disease in non-depressed subjects for the Alzheimer's Disease Neuroimaging Initiative. *Dement Geriatr Cogn Disord* 33, 204-209.
- [50] Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, Suhy J, Forrestal F, Tian Y, Umans K, Wang G, Singhal P, Budd Haeberlein S, Smirnakis K (2022)

Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. *JAMA Neurol* **79**, 13-21.

- [51] Spalletta G, Caltagirone C, Girardi P, Gianni W, Casini AR, Palmer K (2012) The role of persistent and incident major depression on rate of cognitive deterioration in newly diagnosed Alzheimer's disease patients. *Psychiatry Res* 198, 263-268.
- [52] Spencer BE, Jennings RG, Brewer JB (2019) Combined biomarker prognosis of mild cognitive impairment: An 11-year follow-up study in the Alzheimer's disease neuroimaging initiative. *J Alzheimers Dis* 68, 1549-1559.
- [53] Therriault J, Benedet AL, Pascoal TA, Lussier FZ, Tissot C, Karikari TK, Ashton NJ, Chamoun M, Bezgin G, Mathotaarachchi S, Gauthier S, Saha-Chaudhuri P, Zetterberg H, Blennow K, Rosa-Neto P, Alzheimer's Disease Neuroimaging Initiative (2021) Association of plasma P-tau181 with memory decline in non-demented adults. *Brain Commun* **3**, fcab136.
- [54] Tosto G, Zimmerman ME, Carmichael OT, Brickman AM (2014) Predicting aggressive decline in mild cognitive impairment: The importance of white matter hyperintensities. *JAMA Neurol* 71, 872-877.
- [55] Van Loenhoud AC, Groot C, Bocancea DI, Barkhof F, Teunissen C, Scheltens P, Van De Flier WM, Ossenkoppele R (2022) Association of education and intracranial volume with cognitive trajectories and mortality rates across the Alzheimer disease continuum. *Neurology* 98, E1679-E1691.
- [56] Wolfsgruber S, Polcher A, Koppara A, Kleineidam L, Frolich L, Peters O, Hull M, Ruther E, Wiltfang J, Maier W, Kornhuber J, Lewczuk P, Jessen F, Wagner M (2017) Cerebrospinal fluid biomarkers and clinical progression in patients with subjective cognitive decline and mild cognitive impairment. *J Alzheimers Dis* 58, 939-950.
- [57] Xue M, Sun FR, Ou YN, Shen XN, Li HQ, Huang YY, Dong Q, Tan L, Yu JT (2020) Association of cerebrospinal fluid neurogranin levels with cognition and neurodegeneration in Alzheimer's disease. *Aging* 12, 9365-9379.
- [58] Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, Lannfelt L, Bradley H, Rabe M, Koyama A, Reyderman L, Berry DA, Berry S, Gordon R, Kramer LD, Cummings JL (2021) A randomized, double-blind, phase 2b proof-of-concept clinical

trial in early Alzheimer's disease with lecanemab, an anti-Abeta protofibril antibody. *Alzheimers Res Ther* **13**, 80.

- [59] Budd Haeberlein S, Aisen PS, Barkhof F, Chalkias S, Chen T, Cohen S, Dent G, Hansson O, Harrison K, von Hehn C, Iwatsubo T, Mallinckrodt C, Mummery CJ, Muralidharan KK, Nestorov I, Nisenbaum L, Rajagovindan R, Skordos L, Tian Y, van Dyck CH, Vellas B, Wu S, Zhu Y, Sandrock A (2022) Two randomized phase 3 studies of aducanumab in early Alzheimer's disease. *J Prev Alzheimers Dis* 9, 197-210.
- [60] Ostrowitzki S, Lasser RA, Dorflinger E, Scheltens P, Barkhof F, Nikolcheva T, Ashford E, Retout S, Hofmann C, Delmar P, Klein G, Andjelkovic M, Dubois B, Boada M, Blennow K, Santarelli L, Fontoura P (2017) A phase III randomized trial of gantenerumab in prodromal Alzheimer's disease. *Alzheimers Res Ther* 9, 95.
- [61] Mintun MA, Lo AC, Evans CD, Wessels AM, Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims JR, Brys M, Apostolova LG, Salloway SP, Skovronsky DM (2021)
 Donanemab in early Alzheimer's disease. N Engl J Med 384, 1691-1704.
- [62] Sevigny J, Chiao P, Bussiere T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, O'Gorman J, Qian F, Arastu M, Li M, Chollate S, Brennan MS, Quintero-Monzon O, Scannevin RH, Arnold HM, Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A, Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The antibody aducanumab reduces Abeta plaques in Alzheimer's disease. *Nature* 537, 50-56.