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Abstract. The amyloid-f3 protein precursor is highly expressed in a subset of inhibitory neuron in the hippocampus, and
inhibitory neurons have been suggested to play an important role in early Alzheimer’s disease plaque load. Here we investigated
bouton dynamics in axons of hippocampal interneurons in two independent amyloidosis models. Short-term (24 h) amyloid-
B (AR)-oligomer application to organotypic hippocampal slices slightly increased inhibitory bouton dynamics, but bouton
density and dynamics were unchanged in hippocampus slices of young-adult App™*~F~C_mice, in which AB levels are
chronically elevated. These results indicate that loss or defective adaptation of inhibitory synapses are not a major contribution
to AB-induced hyperexcitability.
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INTRODUCTION

Proper functioning of neuronal networks in the
brain requires balanced excitation and inhibition [1].
One of the earliest hallmarks of Alzheimer’s disease
(AD) is the deregulation of this balance, resulting in
hyperactive neuronal networks [2-8]. This is associ-
ated with an increased prevalence of epilepsy, both
in AD transgenic models [2, 4, 8, 9] and in humans
[10-13]. In the healthy brain, the inhibitory system
can quickly adapt to changes in network activity
[14-16]. A local increase in excitation can trigger
the formation of inhibitory synapses [17], whereas
reduced network activity causes a loss of inhibitory
synapses [18]. These adaptations serve to main-
tain a balance between excitation and inhibition and
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keep neuronal networks functional, despite ongo-
ing changes in network level [16]. Defects in the
inhibitory system are linked to several brain diseases,
including AD [19-21], but possible defects in the
dynamic adaptation of the inhibitory system have not
been addressed.

Altered activity has been reported in both excita-
tory cells [6, 7, 22] and inhibitory cells [3, 5, 23], and
is often linked to elevated levels of amyloid-f3 (AB)
[2, 3, 22]. AP is the cleavage product of the presy-
naptic amyloid-f3 protein precursor (ABPP), which
is highly expressed in the hippocampus [24, 25]. In
particular, ABPP is enriched in Reelin- and CCK-
expressing inhibitory neurons on the border of the
stratum radiatum and stratum lacunosum-moleculare
[25, 26]. Depleting BACE-1 in inhibitory neurons
alleviated AB-plaque load in early phase of AD [25],
suggesting that the AR production from interneurons
contribute to early disease stages. ABPP is present
in presynaptic terminals, where it helps to regu-
late presynaptic function [27-29]. The presynaptic
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terminals of inhibitory synapses (boutons) are key
dynamic elements of the adaptation capacity of the
inhibitory system. Inhibitory boutons can rapidly
appear and disappear along the axon in response
to changes in activity or molecular signals [14,
30-32]. A toxicity has been reported to specifically
induce presynaptic impairments [33-36], including
at inhibitory synapses [21], but it is unknown if A
interferes with synaptic dynamics in inhibitory axons.
In this study we examined inhibitory synaptic dy-
namics in two amyloidosis models in parallel. We
used two-photon microscopy to examine the dynam-
ics of inhibitory boutons in GFP-labeled inhibitory
axons in organotypic hippocampal slices after short
(24h) AR exposure and we compared these with
hippocampal slices of APP-KI mice [37], in which
AR levels were chronically elevated. To visual-
ize inhibitory axons we make use of GADG65-
GFP mice, in which a subset of inhibitory neurons,
substantially overlapping with APPP-expressing
interneurons [25], are labeled with GFP [38].

METHODS
Animal experiments

All animal experiments were performed in com-
pliance with the guidelines for the welfare of
experimental animals issued by the Federal Govern-
ment of The Netherlands. All animal experiments
were approved by the Animal Ethical Review Com-
mittee (DEC) of Utrecht University.

GADG65-GFP mice express GFP in a subset of
GABAergic interneurons, mainly in dendritic inner-
vating interneurons [38, 39]. The AppN L-G-F
(APP-KI) mouse model is a second generation amy-
loidosis model with three mutations in the humanized
App-gene without overexpression of the App-gene
[37]. APP-KI mice were crossed with GAD65-GFP
mice to visualize inhibitory axons and boutons.
The APP-KI mice were kept homozygous and the
GADG65-GFP mice were kept heterozygous. GAD65-
GFP mice from a separate breeding line were used as
controls.

Brain slices

Hippocampal organotypic slices were prepared
from P6-7 old GAD65-GFP mice as described be-
fore [17, 31]. In short, pups were decapitated and
their brain were cooled. The hippocampus was
extracted and slices of 400 um thickness were

prepared. Slices were kept in an incubator until use,
between DIV10-20. Both genders were used. Organ-
otypic slice cultures were treated with synthetic A3
oligomers (Crossbeta Biosciences, Utrecht) for 24 h
at a concentration of 0.4 pg/mL, as described before
[21]. At this concentration, these AP oligomers are
able to block LTP in vivo [40]. The oligomers used
here have been obtained using recombinant full
length amyloid-3 1-42 peptide as starting material
and based on a protocol that is described before
[41]. The AP oligomers are chemically stabilized and
uniform in size, without monomers or fibrils [40].
Corresponding concentrations of the vehicle served
as control treatment.

Acute hippocampal slices were prepared from
APP-KI and GAD65-GFP transgenic mice as des-
cribed before [21]. In short, mice were sedated and
decapitated at the age of 8 to 14 weeks and their
brains were extracted. The brain was quickly removed
and cooled. Subsequently, coronal slices of 300 wm
thickness were made. Data from both genders were
pooled.

Two-photon imaging experiments

Acute and organotypic hippocampal slices were
transferred to an imaging chamber, where they were
continuously perfused with carbogenated artificial
cerebrospinal fluid (ACSF; in mM: 126 NaCl, 3 KCl,
2.5 CaCl2-2H20, 1.3 MgCI2-7H20, 26 NaHCO3,
1.25 Na2H2Po4, 20 glucose, pH ~7.3, ~315 mOsm)
at a maintained temperature of 30-33°C. Live time-
lapse two-photon microscopy images were acquired
using a Femtonics 2D two-photon laser scanning
microscope with a Nikon CFI Apochromat 60 x NIR
water-immersion objective. GFP was excited with
910nm laser light (Mai Tai Hp, Spectra Physics).
Image stacks (93.5pm x 93.5um in xy, 1124
x 1124 pixels) with a 0.5um step size in z
were acquired (range: 29-42 z-planes). During the
experiment, minor misalignments due to drift was
manually corrected. Organotypic hippocampal slices
were imaged over 150 min (15 time points). Acute
slices were imaged for only 100 min (10 time point),
due to stronger bleaching of the GFP signal, but
image quality was otherwise comparable to organo-
typic slices. Bleaching was similar in acute slices
from APP-KI and GAD65-GFP mice.

Analysis

The analysis of inhibitory bouton dynamics was
performed using a custom analysis software tool
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[17]. 1 to 5 axons per image were analyzed semi-
automatically, with the researcher blinded to the
condition. Bouton dynamics are determined by mon-
itoring the same axon over all time points and
determining bouton occurrence over time. We cat-
egorized boutons as described before ([31], see also
Supplementary Figure 1). Boutons are divided in per-
sistent boutons, which are present during the entire
imaging period and non-persistent boutons, which are
present only in a subset of time points. Non-persistent
boutons are further classified into 5 sub-groups,
based on their dynamics in the baseline (first 5 time
points) and second imaging period (remaining time
points). New boutons are only present in the sec-
ond period, but not during baseline. Lost boutons
are present during baseline and no longer in the sec-
ond period. Stabilizing boutons are non-persistent
during baseline and persistent in the second period.
Destabilizing boutons are persistent during baseline
and non-persistent in the second period. Intermittent
boutons are non-persistent during the entire imaging
period. Bouton density was calculated as the number
of boutons divided by the axon length. The average
fraction of persistent boutons was calculated as the
number of persistent boutons dived by the average
total number of boutons over all time point.

Statistical analysis was performed in Prism (Gra-
phpad software). We used the unpaired two-tailed
t-test (t; parametric) or a Mann-Whitney (MW; non-
parametric) to compare two groups. Normality was
tested with the D’ Agostino & Pearson test. Multiple
comparisons for bouton subgroups were performed
with a 2-way ANOVA test (bouton subgroup Xx
treatment). Error bars indicate standard error of
the mean. Significance is reported as *p <0.05;
**p <0.01.

RESULTS

We performed two-photon time lapse imaging on
GFP-labelled GABAergic axons in the CAl area of
organotypic slices of GAD65-GFP mice (Fig. 1A).
In these mice, GFP-labelled interneurons are posi-
tive for CCK, reelin, and VIP, and do not express
parvalbumin or somatostatin [38]. They partially
overlap with ABPP expressing interneurons [25]. The
slices were treated with control vehicle or 0.4 pg/ml
AB-oligomers for 24h prior to live imaging. We
monitored inhibitory axons and their boutons over
time (10 time points with 10 min interval) and ana-
lyzed the appearance and disappearance of inhibitory

boutons during the imaging period (Fig. 1B), as pre-
viously described [14, 30-32]. We distinguished two
populations of boutons: persistent boutons which
were present during the entire recording period, and
non-persistent boutons which are present only in a
subset of time points (see methods) [31]. 24h AR
treatment did not affect overall inhibitory bouton
density (Fig. 1C). In control axons, 82.7% %+ 2.3 of
inhibitory boutons were persistent. After A3 treat-
ment, this was somewhat reduced to 78.1 £2.0%
(Fig. 1D), suggesting that inhibitory axons became
slightly more dynamic after A treatment. We further
divided non-persistent bouton into five subgroups:
new, lost, stabilizing, destabilizing, and intermit-
tent boutons, based on their dynamics during the
imaging period (see Methods and Supplementary
Figure 1, [31]). The density of intermittent boutons
was significantly increased in A-oligomer treated
slices (Fig. 1E), while the other subgroups remained
unaffected. Together these results suggest that 24 h
A-oligomer treatment shifts inhibitory axons to a
slightly more dynamic state.

Bouton dynamics in a chronic model of
amyloidosis

We wondered if a small increase in inhibitory
bouton dynamics can lead to long-lasting changes
in inhibitory synapses during chronic A3 presence.
We therefore repeated two-photon imaging of GFP-
labelled inhibitory axons in slices from GAD65-GFP
mice which were crossed with APP-KI mice, in which
AP levels are chronically enhanced.

Acute slices were prepared from 8—14-week-old
APP-KI and control mice, the age when the first
plaques appear in APP-KI mice [25, 37]. First of
all, there was no difference in the number of GFP-
labelled axons in APP-KI and control slices (Fig. 2A),
suggesting that chronic A3 exposure did not lead to
overall loss of GFP axons [3, 42]. This is consis-
tent with a previous study in which axonal defects
in somatostatin interneurons were only reported at
a late stage, which appeared not directly related by
AP toxicity [42]. The density of inhibitory boutons
in GFP axons was similar in of APP-KI and control
brain slices (Fig. 2B). Bouton densities were compa-
rable in acute slices and organotypic slices, consistent
with the notion that organotypic slices represent a
mature network [43-45]. The fraction of persistent
boutons was similar in APP-KI and control slices
(Fig. 2C), suggesting that bouton dynamics were not
affected by chronic A3 exposure. Also when we ana-
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Fig. 1. Subtle increase in inhibitory bouton dynamics after 24 h A3 oligomer treatment. A) Representative two-photon image of GFP-positive
axons in the CA1 dendritic area of an hippocampal slice culture. B) Zoom-in (red box in A) of an inhibitory axon with boutons (closed
triangles). A new bouton (open triangle) appears after 10 min. C) Average bouton density per 100 wm of axon in AB-treated (ABo) and control
slices (t-test, p=0.96). D) Percentage of persistent boutons (t-test, p=0.16). E) Density of the different non-persistent bouton subgroups
(see methods). Each data point represents one axon. Data from 3 independent experiments (2-way ANOVA with Sidak’s post-hoc, left to
right, p=0.88, 0.99, 0.99, 0.99, 0.009), Bars plotted are mean + SEM; significance is indicated with **p < 0.01.
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Fig. 2. Inhibitory boutons dynamics in brain slices from young APP-KI mice are normal. A) Density of GFP-positive axons in the total
imaging volume (t-test p=0.57). B) Average bouton density per 100 wm of axon (t-test p=0.56). C) Percentage of persistent boutons
(t-test p=0.49). D) Density of the different non-persistent bouton subgroups (see methods) (2-way ANOVA with Sidak’s post-hoc, left to
right, p=0.99, 0.99, 0.99, 0.95, 0.12). Each data point in B-D represents one axon. Data from 4 independent experiments. Bars plotted are

mean £+ SEM.

lyzed the different bouton subgroups, no differences
between APP-KI and control bouton dynamics were
observed (Fig. 2D). Compared to organotypic cul-
tures (Fig. 1E), acute slices showed a strong reduction
in new and intermittent boutons, accompanied with
an increase in lost boutons. This probably reflects a
reduction in bouton formation and a loss of intermit-
tent boutons in the acute slices. This resulted in a
small reduction (7 £ 2%) of overall bouton density at
the end of the imaging period, but this was similar in
control and ABPP slices. Together, this analysis indi-
cates no difference in bouton number and dynamics
in the APP-KI chronic amyloidosis model.

DISCUSSION

In this study, we used two-photon microscopy to
examine the dynamics of inhibitory presynaptic bou-
tons in two independent amyloidosis models of early

AD. We found that A3 exposure had only mild effects
on inhibitory bouton dynamics. AP oligomer treat-
ment in organotypic slices shifted inhibitory axons
to a slightly more dynamic state, whereas chronic
exposure to elevated AR levels in APP-KI mice did
not affect inhibitory boutons dynamics.

Itis previously reported that A can induce impair-
ments in release of neurotransmitter or peptides
from presynaptic terminals [33-35], including at
inhibitory synapses [21], but it is unknown if this
will affect synaptic dynamics. Presynaptic defects
may be specifically important in ABPP-expressing
GABAergic neurons [25, 26], which axons are pre-
sumably exposed to the highest AB levels. We
therefore imaged GFP-labeled inhibitory axons in
GAD65-GFP slices, to maximize overlap with ABPP-
expressing interneurons. We found that treating slices
with 24 h of AR increased the number of intermit-
tent boutons in GFP-labelled axons and displayed a
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trend towards a lower percentage of persistent bouton,
suggesting a subtle destabilization of inhibition con-
nections. A destabilization of inhibitory synapses can
occur in response to a reduction in network activity
[18, 46]. However, this explanation seems unlikely
here as hypoactivity is only reported at later AD
stages [2, 3, 23]. Acute A exposure rather induces a
mild hyperexcitability [2], and we have previously
recorded an increased activity level in AB-treated
slices [21].

As a second amyloidosis model, we utilized the
APP-KI mice, which display an early build-up of A3
[37, 47]. In hippocampal slices of these mice, we
could not detect any changes in GFP-labeled axons
or their boutons. It is possible that subtle differences
in bouton dynamics in APP-KI slices have gone unde-
tected, as inhibitory bouton dynamics were much
reduced in acute slices compared to organotypic
slices (compare Fig. 1E with 2D). We can also not
exclude that a transient rearrangement of inhibitory
synapses has occurred before the experimental age.
Network rewiring in AD has been reported in fMRI
studies [48, 49], but these were at later stage and not at
the cellular level. However, cumulative effects were
absent, as overall density of inhibitory axons and bou-
tons was similar in APP-KI and control slices. It is
currently not known if the A@ mutation in APP-KI
mice which accelerates oligomerization [50, 51] also
affect other A3 properties.

Together, our experiments suggest that elevated
A levels do not lead to rearrangement or loss of
inhibitory synapses. As we have only monitored
a subset of inhibitory axons in these experiments,
we cannot rule out specific impairments at other
inhibitory synapses. However, we consider this
unlikely as the current findings are in line with our
previous observations that the density of inhibitory
synapses is not affected by AR exposure, and that
AP induces specific impairments in action potential
driven GABA release [21]. Our study shows that short
term application of A3 induces only a subtle increase
in inhibitory bouton dynamics, but we did not find any
indications for a long-term effect on inhibitory bou-
ton density after chronic exposure. Our study shows
that AB-mediated impaired GABA release [21] is not
accompanied by large changes in bouton stability or
turnover. This could be interpreted as a failure of
inhibitory axons to compensate for a reduction in neu-
rotransmission. However, it could also indicate that
bouton turnover is regulated independent of GABA
release [46]. Either way, our results indicate that
loss or defective adaptation of inhibitory synapses

are not a major contribution to Ap-induced hyper-
excitability.
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