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Abstract.

Background: The present systematic review and meta-analysis of diagnostic test accuracy summarizes the last three decades
in advances on diagnosis of Alzheimer’s disease (AD) in developed and developing countries.

Objective: To determine the accuracy of biomarkers in diagnostic tools in AD, for example, cerebrospinal fluid, positron
emission tomography (PET), and magnetic resonance imaging (MRI), etc.

Methods: The authors searched PubMed for published studies from 1990 to April 2020 on AD diagnostic biomarkers. 84
published studies were pooled and analyzed in this meta-analysis and diagnostic accuracy was compared by summary receiver
operating characteristic statistics.

Results: Overall, 84 studies met the criteria and were included in a meta-analysis. For EEG, the sensitivity ranged from 67 to
98%, with a median of 80%, 95%CI [75, 91], tau-PET diagnosis sensitivity ranged from 76 to 97%, with a median of 94%,
95%Cl [76, 97]; and MRI sensitivity ranged from 41 to 99%, with a median of 84%, 95%CI [81, 87]. Our results showed
that tau-PET diagnosis had higher performance as compared to other diagnostic methods in this meta-analysis.
Conclusion: Our findings showed an important discrepancy in diagnostic data for AD between developed and developing
countries, which can impact global prevalence estimation and management of AD. Also, our analysis found a better perfor-
mance for the tau-PET diagnostic over other methods to diagnose AD patients, but the expense of tau-PET scan seems to be
the limiting factor in the diagnosis of AD in developing countries such as those found in Asia, Africa, and Latin America.
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INTRODUCTION

Alzheimer’s disease (AD) is chronic neurode-
generative disease and the most common cause of
dementia. AD is characterized by disturbance of mul-
tiple brain functions, including memory, thinking,
orientation, calculation, learning capacity, and judge-
ment. The cognitive impairments are accompanied by
deterioration in emotional control, social behavior,
and motivation [1, 2].

AD is a global disease with differential impact
on countries in the world. There are over 9.9 mil-
lion new cases of dementia each year worldwide,
implying one new case every 3.2 seconds [3]. AD
is the sixth leading cause of death in the United
States (US) [1, 4] and its numbers and propor-
tions will increase rapidly in coming years, as the
population of Americans at age 65 and older is
projected to grow from 56 million in 2020 to 88 mil-
lion by 2050 [5]. The risk factors for AD include
age, race, and ethnicity and the prevalence of AD
was higher in women (12.2%) as compared with
men (8.6%) worldwide [3]. Racially, Asians and
Pacific Islanders had the lowest prevalence rate of
AD (8.4%), then American Indian and Alaska Natives
(9.1%), non-Hispanic whites (10.3%), population
with mixed races (11.5%), Hispanics (12.2%), and
blacks (13.8%) (percentage includes both men and
women) [6, 7].

Developing countries have a considerable contri-
bution in the increase of new AD cases as currently
58% of people with dementia has been reported in
low and middle income countries (per capita income),
and by 2050 it is estimated to rise by 68%. One of
the reasons could be that developing countries have
the fastest elderly growing population which is suf-
fering from dementia; for example, new AD cases in
China, India, South Asia, Western Pacific, and Latin
American countries have emerged [3]. Developing
countries have fewer resources to address the mental
health issues and lack funding agencies to develop
research studies which are the major challenge that
public health systems have to battle in the manage-
ment of AD patients.

The new diagnostic technologies developed for
AD are managed and accessible in developed coun-
tries; however, because of poor economic growth,
developing countries have poor diagnostic tools and
lack epidemiological, clinical studies on AD. These
factors are the major problems in diagnosis and esti-
mation of prevalence rates in low-income countries
(per capita income) especially in Latin America,

Asia, and Africa [8]. The budget allotted for epi-
demiological clinical studies for AD in developed
nations is based on their economic growth, per capita
income levels, which will impact on the development
of global health policies, clinical and pre-clinical
research studies, and the management of neurode-
generative diseases in these nations.

In contrast, the developed countries like the US
and Canada have a stable economy and have estab-
lished funding agencies and research organizations
that provide funding for research and conducts epi-
demiological, clinical, and pre-clinical studies on
mental health diseases like AD. It is estimated that
AD is one of the most financially costly diseases and
managed by federal government funding agencies in
developed nations [9]. The total estimated worldwide
cost of dementia was US$ 818 billion in 2015, which
represents 1.09% of global GDP and by 2018, the
global cost of dementia raises above US$ 1 trillion.
Due to slow economic growth and financial insta-
bility in developing countries (e.g., Latin American,
African, and Asian countries), management of AD is
not well addressed by their governments [10].

AD prevalence increases in elderly individuals
(range-70-85 years), who represent the greatest bur-
den of the disease over 43% for blacks and 40% for
Hispanics. The eight epidemiological studies were
conducted in Latin America between 1997-2007, to
analyze AD prevalence rates in six countries (Brazil,
Chile, Cuba, Peru, Uruguay, and Venezuela). It was
estimated that global prevalence of dementia was
7.1% of individuals over 65 years of age in Latin
America. However, there is a significant variation in
the estimation of prevalence rates among these stud-
ies; for example, one of the studies carried out in
Brazil estimated the frequency of dementia was 2%
and another study carried out in Venezuelan estimated
13%, which is significantly different from global
prevalence of AD in Latin America[11]. These differ-
ences are often attributed to the different diagnostic
criteria for dementia (e.g., Diagnostic and Statisti-
cal Manual of Mental Disorders (DSM-1V), Clinical
Dementia Rating Scale, etc.) used for the types of
sampling and assessment. Another study conducted
in Latin America, the 10/66 Dementia Research
Group protocol, estimates the prevalence of dementia
in the population of 65 years, in Venezuela is 6.2%,
Mexico is 7.3%, Dominican Republic is 9.8%, and
12.6% for Cuba [12] which had less difference in
prevalence rates. Thus, the lack of same screening
tests for diagnosis of AD and identical protocols for
conducting the epidemiological studies contributes
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to significant variation in population studies in AD in
developing countries.

The clinical diagnosis of AD is based on criteria
established by the National Institute of Neuro-
logical and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disor-
ders Association (NINCDS-ADRDA) [13], although
low diagnostic specificity has been related to other
dementias [14]. Recent studies have suggested that
AD begins decades before the onset of clinical
symptoms of dementia through the accumulation of
pathological hallmarks of the disease consisting of
amyloid-3 (AB) deposits and neurofibrillary tangles
(NFTs)/tau proteins [15-17].

Biomarkers are defined as objective measures of
a biological or a pathogenic process that can be
used to evaluate disease risk or prognosis, to guide
clinical diagnosis, or to monitor therapeutic inter-
ventions [18]. NFTs are the first neuropathological
hallmarks to appear in AD but amyloid deposition in
the brain seems to have a closer link to AD-related
pathophysiology and may be a better disease marker
though it has rapidly increasing prevalence with age
on both positron emission tomography (PET) and
neuropathology. For AD biomarker analysis, tau-
PET and amyloid-PET analysis is more relevant for
non-invasive diagnosis. Cerebrospinal fluid (CSF)
analysis is based on quantitative analysis of proteins
and is an invasive technique. Recently, AD diagnostic
biomarkers were grouped into three categories: Af3
deposits, hyperphosphorylated tau aggregates, and
neurodegeneration or neuronal injury [19]. Since CSF
is in direct contact with the extracellular space of the
brain and has many proteins secreted in it, it is con-
sidered to be an optimal source for the assessment
of AD biomarkers profile [20]. While magnetic res-
onance imaging (MRI) and PET are considered as
imaging biomarkers of neuronal injury [21]. In the
past decades, electroencephalography (EEG) anal-
yses, with spectral and non-linear measures, have
provided new insights into the understanding of phys-
iological dynamics, including the brain alterations
due to AD. Nevertheless, the gold standard for AD
[22] diagnosis continues to be the histological exam-
ination of brain tissue in postmortem biopsy [23].

The overall goal of this review is to understand
and highlight the major gaps in epidemiological
studies of AD in developed and developing countries.
Also, we investigated the best diagnostic biomarkers
for AD diagnosis which contributes to estimations
of prevalence rates in developed and developing
nations. We performed a systematic review of the

medical literature for three decades (1990-2020) and
results were analyzed by meta-analysis based on the
diagnostic biomarkers employed in AD diagnosis in
developed and developing countries. The diagnostic
biomarkers analyzed were CSF, amyloid-PET,
tau-PET, EEG, and MRI. In this study we have high-
lighted the lack of diagnostic biomarkers AD studies
from developing countries which is due to poor diag-
nostic infrastructure (PET, MRI scanning machines)
in medical and research organizations. This will help
to identify the basic need to fund the research organi-
zation for the screening of AD patients in developing
countries. Thus, we hope that our findings will moti-
vate developed and developing countries to invest
and fund research studies on innovative technologies
and developing new biomarkers for AD, and, hence,
improve the diagnosis and accuracy of prevalence of
AD that will aid in management of patients with AD.

METHODS

Search strategy and eligibility criteria

The bibliographic extraction was performed
from the National Center for Biotechnology Infor-
mation (NCBI) databases. PubMed is a free
resource database and comprises over 28 mil-
lion bibliographic records for biomedical literature
from MEDLINE, and other life science journals
(https://www.ncbi.nlm.nih.gov/pubmed/). PubMed
provides a uniform indexing of biomedical literature,
the Medical Subject Headings (MeSH terms), which
form a controlled vocabulary or specific set of terms
that describe the topic of a paper in a consistent and
uniform manner [24]. While author keywords are par-
ticularly useful, the choice of terms can vary from
paper to paper and from author to author. For this,
MeSH terms were employed in the string query to
improve the accuracy of the search.

The search string was performed separately for
each diagnostic biomarker as follows: “Alzheimer
Disease” [MeSH Terms] AND “Sensitivity and
Specificity” [MeSH Terms] AND “Cerebrospinal
Fluid” [MeSH Terms] for CSF; “Alzheimer Disease”
[MeSH Terms] AND “Sensitivity and Specificity”
[MeSH Terms] AND “Positron-emission Tomog-
raphy” [MeSH Terms] AND “Amyloid” [MeSH
Terms] for Amyloid-PET; “Alzheimer Disease”
[MeSH Terms] AND “Sensitivity and Specificity”
[MeSH Terms] AND “Positron-emission Tomogra-
phy” [MeSH Terms] AND “tau Proteins” [MeSH
Terms] for tau-PET; “Alzheimer Disease” [MeSH
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Terms] AND “Sensitivity and Specificity” [MeSH
Terms] AND “Magnetic Resonance Imaging”
[MeSH Terms] for MRI; and “Alzheimer Disease”
[MeSH Terms] AND “Sensitivity and Specificity”
[MeSH Terms] AND “Electroencephalography”
[MeSH Terms] for EEG. The co-occurrence network
map of MeSH terms from the biomarkers datasets was
created using the VOSviewer server (Version 1.6.15)
[25].

The selection of the studies was performed in three
steps. Firstly, duplicated articles, non-full English
articles, reviews, and meta-analysis were excluded.
Secondly, titles and abstracts of the selected stud-
ies through the search strategy were analyzed, and
finally, full papers were retrieved for all potentially
relevant studies and for those for which the title or
abstract did not provide enough information to clearly
decide whether or not it should be included. From
the final set of included studies, data regarding geo-
graphical distribution, number studies conducted by
country, and frequency of the diagnostic tools used
was also extracted.

Data extraction and meta-analysis of diagnostic
test accuracy

Since diagnostic accuracy of a test is generally
measured by a pair of summary points, namely,
sensitivity and specificity [26], information regard-
ing sensitivity and specificity data were manually
extracted from the selected studies. Also, data regard-
ing the number of AD patients and healthy controls
were retrieved. Studies with unclear or missing data
regarding the AD and healthy control groups or data
describing the sensitivity and specificity obtained in
the studies were excluded from further analysis.

The data obtained from the selected studies was
analyzed with R “mada” package (Version 0.5.9) [27]
which is a tool for the meta-analysis of diagnos-
tic accuracy. For this, the numbers of true positives
(TP), false positives (FP), true negatives (TN), and
false negatives (FN) were calculated and entered in
to “mada”. The data from studies regarding each
diagnostic biomarker were analyzed separately and
the diagnostic performance was assessed by calcula-
tion of the sensitivity (Se) and specificity (Sp). Also,
accuracy statistics like: the Positive Likelihood ratio
(LR+), which is the ratio of the probability of a pos-
itive test result among those with disease to that of a
positive test result among those without disease; the
Negative Likelihood ratio (LR-), which is the ratio of
the probability of a negative test result among those

Bibliographic extraction
from Pubmed
(N=1376)
Excluded
duplicates, reviews,
ta-analysi
non-english language
g (N=157)
H Selection of
il the studies
i (N=1219)
= Excluded
Analysis of titles and
(N=977)
S Data
2 extraction
g (N=242)
L Excluded
missing or unclear data
regarding: sensitivity,
specificity, control groups
(N=158)
=z N
% Meta-analysis
3 (mada package)
5 (N=84)

Fig. 1. Systematic review and meta-analysis workflow diagram.

with disease to that of a negative test result among
those without disease; and the Diagnostic Odds ratio
(DOR), which is the ratio of the OR for a positive
test result among persons with disease to that among
persons without disease; and their 95% confidence
interval (CI) were calculated.

The diagnostic accuracy of the biomarkers was
compared by summary receiver operating character-
istic (sSROC) curve statistics. The R “mada” package
reitsma model, estimates the SROC curve using the
bivariate model by default [28]. The confidence level
for all calculations was set to 95%.

RESULTS
Search strategy results

In this study, a workflow for a systematic review of
literature and meta-analysis of diagnostic accuracy of
biomarkers employed for AD in developed and devel-
oping countries is shown (Fig. 1). The bibliographic
search was performed in the PubMed database and
resulted in a total of 1,376 articles selected, whereas
the number of studies selected for CSF, amyloid-PET,
tau-PET, MRI, and EEG was 20, 147, 51, 1,017, and
141, respectively (Fig. 2). Regarding the distribu-
tion among the time frame of the selected studies,
a 30 years span of time was covered (2020-1990),
whereas no articles published in 2020 were found
(Fig. 2). In this sense, MeSH terms provide a pow-
erful tool to overcome variability in language and
broaden or narrow results; however, a search using
only MeSH terms cannot yield results that include
newly published articles.
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Fig. 2. Papers selected for the different biomarkers using MeSH terms in PubMed database (from 1990 to 2019). Distribution per year of all
articles found in the search and bibliometric map created by VOSviewer based on MeSH terms co-occurrence for: A) CSF, B) amyloid-PET,

C) tau-PET, D) MRI, and E) EEG biomarkers.

When conducting a co-occurrences analysis of
MeSH keywords, by setting the minimum number of
occurrences of a keyword to five, the number of key-
words that meet the threshold were 17, 65, 34, 219,
and 66 for CSF, amyloid-PET, tau-PET, MRI, and
EEG, respectively. When examining each network in
more detail, it was possible to notice, that terms, such
as brain, aged, male, female, and predictive value of
tests, were common denominators (Fig. 2).

Furthermore, a three-step eligibility criteria were
employed to analyze 1,376 studies, and 1,134 arti-
cles were excluded in this step. In the data extraction
step, 158 articles were excluded. Thus 84 articles
were selected for meta-analysis. Also, data regarding
geographical features extracted from the 84 studies
selected were analyzed (Fig. 3); among 25 countries
in which the studies were performed, only six are
considered developing countries (Fig. 2A, B); while

in most of the studies, the biomarker studied was the
MRI (Fig. 20).

Diagnostic biomarkers of Alzheimer’s disease

CSF and amyloid-PET biomarkers

Surprisingly, one study regarding CSF for AD
diagnostic biomarker was selected [29] and two stud-
ies for amyloid-PET was found to be eligible by
standards applied in the workflow [30, 31]. Thereby
no analysis has been performed regarding these two
diagnostic biomarkers.

Electroencephalography

Thirteen studies were selected for EEG: [32—44]in
which a total of 1,387 subjects were studied. The sen-
sitivity was ranged from 98 to 67%, with a median
of 80%, 95%CI (91, 75), while the test for equal-
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Geographical Location of AD Studies included in meta-analysis

# Developing Countries
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Fig. 3. Geographical location of Alzheimer’s disease studies. A) Demographic representation of AD clinical studies worldwide (lower-
blue to higher-red numbers). B) The bar chart shows the number of AD studies conducted by different countries included in the meta-analysis.
C) The pie chart shows the type of diagnostic tools used in the AD studies for meta-analysis.

ity of sensitivities presented a x> =62.1255, df=13,
p-value =2.18e-08. The specificity on the studies
ranged from 98 to 48%, with a median of 94%, 95%CI
(97, 76); the test for equality of specificities showed
x* =58.2504, df = 13, p-value = 1.08e-07. A negative
correlation between sensitivities and false positive
rates is shown r=-0.100, 95%CI (-0.599, 0.454).
Also, the results regarding LR+{median 4.25, 95%CI

(8.48,2.71},LR- {median 0.23,95%C1(0.42,0.12)},
and DOR {median 19.24, 95%CI (49.00, 6.73)}
are shown. The diagnostics performance analyzed is
summarized in Fig. 4 and Supplementary Table 1.

Tau-PET biomarker
Our analysis selected seven studies for the tau-PET
biomarker: [45-51]. A total of 1,012 subjects were
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Fig. 4. Study data and paired forest plot of the sensitivity and specificity of tau-PET in Alzheimer’s disease diagnosis. Data from each study
are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). Forest plot depicts the estimated sensitivity
and specificity (black circles) and its 95% confidence limits (horizontal black line).

Study Sensitivity (95%Cl) Specificity (95%Cl)
Tiepolt 2013 0.95 (0.77-0.99) 0.83 (0.65-0.92)
Kerbage 2015 0.90 (0.68-0.97) 0.86 (0.65-0.95)
Thurfjell 2014 0.81 (0.65-0.90) 0.95 (0.85-0.98)
Kaneko 2014 0.97 (0.86-0.99) 0.88 (0.69-0.95)
Apostolova 2015 0.76 (0.68-0.81) 0.71(0.64-0.76)
Ossenkoppele 2018 0.95 (0.90-0.97) 0.88 (0.82-0.92)
Ottoy 2019 0.94 (0.71-0.98) 0.92 (0.66-0.98)
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Fig. 5. Study data and paired forest plot of the sensitivity and specificity of EEG in Alzheimer’s disease diagnosis. Data from each study
are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). Forest plot depicts the estimated sensitivity
and specificity (black circles) and its 95% confidence limits (horizontal black line).

studied. The sensitivity was ranged from 97 to 76%,
with a median of 94%, 95%CI (97, 76); while the
test for equality of sensitivities showed: x> =36.5719,
df=6, p-value=2.13e-06. The specificity on the
studies ranged from 95 to 71%, with a median of
88%, 95%CI (95, 71); while the test for equal-
ity of specificities presented x?=29.7706, df=6,
p-value =4.35e-05. The correlation between sensitiv-
ities and false positive rates was analyzed a negative
result is shown r=-0.448, 95%CI (0.898, —0.460).
Also, the results regarding LR+{median 7.79, 95%CI
(14.87, 2.6)}, LR- {median 0.07, 95%CI (0.35,
0.03)}, and DOR {median 96, 95%CI (259, 7.53)}
are shown. The diagnostic performances analyzed are
summarized in Fig. 5 and Supplementary Table 2.

MRI biomarker

Initially our analysis identified 1,017 published
studies that used MRI as a diagnostic biomarker.
After the analysis, only 61 studies were selected
[52-112]. A total of 8,072 subjects were studied.
The sensitivity on the studies ranged from 99 to
41%, with a median of 84%, 95%CI (87, 81).
The analysis of the test for equality of sensitivities
showed: X2:326.3558, df=61, p-value=<2e-16.

The specificity on the studies ranged from 99 to
59%, with a median of 84%, 95%CI (90, 80); while
the test for equality of specificities: x> =332.8035,
df =61, p-value = <2e-16. Also, anegative correlation
between sensitivities and false positive rates is shown
r=-0.096, 95%CI (-0.338, 0.158). Also, the results
regarding LR+{median 5.29, 95%CI (7.78, 4.22)},
LR- {median 0.19, 95%CI (0.23, 0.14)}, and DOR
{median 32.16, 95%CTI (67.13, 22.41)} are shown.
The diagnostic performance of the selected studies is
summarized in Figs. 6—8 and Supplementary Table 3.

Summary ROC curves (sROC)

Since variation in the cut-off points of the tests,
implicit or explicit variations in the studies, which
can generate sensitivity and specificity differences,
the SROC curve analysis was chosen to compare the
data regarding EEG, tau-PET, and MRI biomarkers
(Fig.9). The calculated area under de curve (AUC) for
EEG (AUC: 0.85), tau-PET (AUC: 0.93), and MRI
(AUC: 0.91) suggests a better performance for the
tau-PET diagnostic biomarker. Even when the AUC
was calculated restricted to observed False Positive
Rates (FPRs) and normalized, the data showed an
AUC of 0.75, 0.87, and 0.82 for EEG, tau-PET and
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Fig. 6. Study data and paired forest plot of the sensitivity and specificity of MRI in Alzheimer’s disease diagnosis (from 1995 to 2010).
Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). Forest plot depicts the
estimated sensitivity and specificity (black circles) and its 95% confidence limits (horizontal black line).

Study Sensitivity (95%Cl) Specificity (95%Cl) Sensitivity (95%Cl) Specificity (95%Cl)
Westman 2011 0.85 (0.62-0.95) 0.75 (0.48-0.94)

. —_—— —_——
Vemuri 2011 0.69 (0.57-0.79) 0.95 (0.88-0.97) e
Grafia 2011 0.98 (0.89-0.99) 0.97 (0.80-0.99) ¢ .

QOishi 2012 0.88 (0.69-0.96) 0.84 (0.67-0.93) ¢
Polat 2012 0.75 (0.57-0.87) 0.72 (0.55-0.84) ¢ ¢
Kaneko 2012 0.87 (0.72-0.94) 0.77 (0.55-0.90) ' ¢
Chang 2012 0.89 (0.82-0.93) 0.72 (0.64-0.98) +' ¢
@uo 2012 0.82 (0.56-0.94) 0.89 (0.64-0.97) ¢
Aguilar 2013 0.87 (0.79-0.92) 0.82 (0.74-0.88) ¢ —
Quo 2014 0.86 (0.65-0.96) 0.83 (0.62-0.93) .
PereiraD14 0.81(0.76-0.85) 0.84 (0.80-0.87) N —_—
Balthazar 2014 0.82 (0.69-0.90) 0.59 (0.42-0.75) N — —— -+
Farhan 2014 0.85 (0.72-0.92) 0.98 (0.89-0.99) .
Lebedev 2014 0.89 (0.84-0.93) 0.90 (0.86-0.93) - -
Yun 2015 0.94 (0.86-0.98) 0.92 (0.84-0.95) e
Anmed 2015 0.78 (0.70-0.84) 0.88 (0.82-0.92) e
Martinez-Torteya 2015 0.88 (0.75-0.94) 0.83 (0.71-0.91)
Zhan 2015 0.93 (0.87-0.96) 0.93 (0.87-0.96) . -
Yoo 2016 0.75 (0.54-0.88) 0.96 (0.88-0.98) o .~
Besga 2016 0.92 (0.78-0.97) 0.76 (0.55-0.88)
Mohammadian 2015 0.84 (0.60-0.95) 0.77 (0.57-0.89) .
Vasta 2016 0.73 (0.60-0.83) 0.65 (0.51-0.76)
Tang 2016 0.92 (0.77-0.97) 0.93 (0.76-0.98) .
Roquet 2016 0.79 (0.50-0.93) 0.81(0.61-0.92) — — —
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Fig. 7. Study data and paired forest plot of the sensitivity and specificity of MRI in Alzheimer’s disease diagnosis (from 2011 to 2016).
Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). Forest plot depicts the
estimated sensitivity and specificity (black circles) and its 95% confidence limits (horizontal black line).
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Study Sensitivity (95%Cl) Specificity (95%Cl)
Knhedner 2017 0.84 (0.78-0.88) 0.92 (0.88-0.95)
Arnaoutoglou 2017 0.83 (0.66-0.92) 0.82 (0.67-0.91)
Fallmar 2017 0.67 (0.45-0.83) 0.72 (0.57-0.83)
Doan 2017 0.57 (0.49-0.63) 0.91 (0.87-0.94)
Golubic 2017 0.95 (0.68-0.99) 0.95 (0.67-0.99)
Medaglia 2017 0.71(0.51-0.85) 0.90 (0.77-0.96)

$ha2017 0.66 (0.50-0.78) 0.97 (0.91-0.99)

Gerischer 2017 0.80 (0.60-0.92) 0.72 (0.42-0.88)
Donelly-kehoe 2018 0.84 (0.73-0.91) 0.66 (0.58-0.74)
Lu 2018 0.82 (0.76-0.86) 0.95 (0.92-0.97)
Graldo 2018 0.94 (0.83-0.98) 0.79 (0.61-0.90)
Knight 2019 0.54 (0.34-0.74) 0.93 (0.84-0.97)
Spasov 2019 0.99 (0.97-100) 0.99 (0.97-100)
Bartos 2019 0.77 (0.62-0.88) 0.73 (0.57-0.84)
Moscoso 2019 0.72 (0.64-0.79) 0.76 (0.67-0.83)
Howett 2019 0.92 (0.80-0.97) 0.89 (0.76-0.95)
Ferrari 2019 0.62 (0.38-0.80) 0.67 (0.47-0.82)
Mendoza-Le6n 2019 0.88 (0.79-0.93) 0.94 (0.87-0.97)
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Fig. 8. Study data and paired forest plot of the sensitivity and specificity of MRI in Alzheimer’s disease diagnosis (from 2017 to 2019).
Data from each study are summarized. Sensitivity and specificity are reported with a mean (95% confidence limits). Forest plot depicts the
estimated sensitivity and specificity (black circles) and its 95% confidence limits (horizontal black line).

e
©
® 4
z 3
=
B
&
<
R
o / MRIAUC: 0.91
1)
/
2 4 sl tau-PET AUC: 0.93
r T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Fig. 9. Meta-analysis of diagnostic test accuracy analysis. Sum-
mary receiver operating curve (SROC) plot of false positive rate and
sensitivity. EEG studies are indicated by green crosses, while tau-
PET studies are indicated by open red triangles, and MRI studies
are indicated by open blue circles. Curved lines indicate the sum-
mary performance curves estimated by sROC statistics for each
biomarker. For EEG in green (N = 13), for tau-PET in red (N =07),
and for MRI in red (N=61).

MRI, respectively, confirming tau-PET slightly better
performance (Fig. 9).

DISCUSSION

Developing countries (e.g., Asian, African, and
South American countries) face certain unique

problems such as prevalent poverty, tropical diseases,
infectious diseases, and poor infrastructure, which
ensures that the population maintains dismal rates of
adult literacy and conditions of general deprivation
at-large. It has been estimated that Population-
Attributable Risk (PAR; 19.1%, 95% confidence
interval 12.3-25.6) has been reported highest in coun-
tries with low educational achievement and with poor
physical. Developing nations have higher PAR due
to low access to educational programs and devel-
oped countries have high PAR due to poor physical
activity in their population. The PAR% is used to
predict the impact of public health interventions on
adverse outcomes, since it considers both the excess
risk associated with the exposure and the proportion
of the population that is exposed. Thus, with these
socio-economically factors with physiologically
complementary ultra-high PAR clusters, there are
more chances that an AD epidemic could be unavoid-
able in the developing world in near future [113].
The diagnosis of AD is complicated by the fact that
there is likely an apparent dynamic and overlapping
“continuum” between AD and aging, which can be
identified through biomarkers and neuropathological
findings. The diagnostic biomarkers, described
here, have been shown to be helpful in diagnosing
AD; but some of these methods are very expensive
(PET), some need personnel with high expertise to
evaluate the findings (MRI), or are invasive (CSF).
For these reasons, some of the diagnostic biomarkers
are less assessable in poor or developing countries.
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Thus, harmonization of screening methods world-
wide could help to define risks and to devise novel
approaches for dementia prevention. In this sense, the
need for diagnostic biomarkers that can be applied
more widely is of high importance and extensive
investigations have been done to discover plasma or
serum biomarkers for AD; however, currently there
are no valid biomarkers for AD diagnosis in blood
[114, 115]. AD incidences are bound to increase in
the developing world in contingent with the aging
population. It has been shown that the data from
developing countries suggest that age-adjusted AD
prevalence estimates in 65-year-olds are high (>5%)
in certain Asian and Latin American countries, but
consistently low (1-3%) in India and sub-Saharan
Africa [113-116].

Regarding the results, CSF is considered a better
source for biomarker discovery. Thereby, three CSF
biomarkers, including Af4;, total-tau (t-tau), and
phosphorylated-tau (p-tau), have been found to have
the highest diagnostic potential [117]. However, CSF
is invasive and potentially painful for the patient
since it is obtained via lumbar puncture [118—119].
Amyloid-PET has an emerging role in the diagnosis
and management of patients with AD and its use
is grounded on the fact that the hallmark of AD
is the histological detection of A at postmortem
autopsy [120]. Nevertheless, it was surprising that
the number of studies selected for the CSF and
amyloid-PET biomarkers were 1 and 2, respectively;
making it impossible to perform the analysis of the
data (at least 5 studies needed to for analysis with
p value<0.05). In this sense, with regards to CSF
results, one explanation could be the few numbers
of studies selected. While, the single MeSH terms
“Alzheimer Disease”, “Sensitivity and Specificity”
and “Cerebrospinal Fluid”; accounted for 18,509,
575,930, and 91,803 studies, respectively, combined
in a search, only 20 studies were found to be
published in the last thirty years.

EEG has been demonstrated as a reliable diag-
nostic tool in AD research [121]. Potentiated with
contemporary statistical methods seems to be a reli-
able method to classify the clinical cases of cognitive
impairment, although when the comorbidity is high
this classification is not so well effective [122]. EEG
may therefore be a valuable add-on in dementia
assessment, as an early marker of brain synaptic dis-
turbances due to the AD molecular neuropathology
[123]. MRI is an integral part of the clinical assess-
ment of patients with suspected AD and can provide
informative biomarkers even before clinical symp-

toms are apparent or irreversible neuronal damage
has occurred [124]. MRI is included in the diagnostic
criteria for the most prevalent non-Alzheimer demen-
tias, reflecting its value in differential diagnosis
[125]. The accumulation of pathological misfolded
tau protein is a common feature to a collective of
neurodegenerative disorders known as tauopathies,
in which AD is the most common [126]. Tau imag-
ing using positron emission tomography (tau-PET)
studies have provided evidence that tau-PET is
more closely related to neurodegeneration diagnostic
biomarkers than to the presence of AR [127]. Tau-
PET accumulation links to clinical phenotype and
better co-localized to glucose hypometabolism com-
pared to amyloid-PET [128] and appears to provide
valuable information earlier in therapeutic trials of
AD than MRI [129]. Taking this into consideration,
our data suggest a slight difference between the tau-
PET and MRI in the diagnoses of AD in comparison
to healthy controls. Furthermore, NFT pathology is
strongly associated with cognitive impairment; tau-
related biomarkers may work best before NFTs are
prevalent, and it may therefore be crucial to iden-
tify persons who may be at the cusp of exhibiting
tauopathies [130]. Recently, a tau-PET imaging diag-
nostic method, with a high sensitivity and moderate to
high in specificity, was able to identify the underlying
presence of NFTs [131].

In this study we aimed to analyze the last three
decades of clinical studies on biomarkers used for
the diagnosis of AD. There are certain inherent flaws
associated with systematic review and meta-analysis,
such as the location and selection of studies, hetero-
geneity, loss of information on important outcomes,
inappropriate subgroup analyses, conflict with new
experimental data, and duplication of publication
[132]. Despite these flaws there is an increase in
the usage of the meta-analysis to enhance diagnostic
test accuracy in clinical studies. In our review, the
main problem we determined was the heterogeneity
between studies from developed versus developing
countries. The major factors were clinical settings,
and the methods used to estimate the sensitivity
and specificity values, in the evaluation of the AD
patients [133, 134].

Our meta-analysis results have highlighted that
among the 84 studies analyzed, only a few were con-
ducted on AD patients from developing countries; for
example, 7 studies were carried out in Brazil (Latin
America), 4 in China, 3 in Poland, 2 in Turkey, and
1 in Iran and Taiwan each. In contrast, developed
nations like the US had 31 studies, Canada had 17
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studies, France had 9 studies, and the UK had 7 stud-
ies. These findings suggest that a proportionally small
part of the data regarding AD diagnosis are reflected
from developing nations, a fact that could hamper
the global prevalence of AD. Furthermore, a recent
study suggests that there are major gaps in geograph-
ical representation for many risk factors for AD and
data from non-European and non-North American
continents, which have not been reported. Addi-
tionally, evidence from Australia/Oceania or Africa
was limited and that, except for diabetes, data were
unavailable from Latin America/Caribbean [135]. As
a consequence of lack of funding in research, cutting-
edge technology is inaccessible, due to that only a
handful of developing countries (e.g., Brazil from
Latin America, India and China from Asia, and South
Africa from Africa) publishes their work and man-
aged to publish in high impact journals with valuable
research publications [9, 10].

Given the socioeconomic and financial disparity in
the developed (US, UK) versus developing countries
(Latin America, Asian, and African countries), there
is an urgent need to fund the studies for the growth in
the burden of AD, particularly among minority popu-
lations, and culturally subtypes groups (having differ-
ent food habits and lifestyles) should be of paramount
importance. Therefore, by reducing poverty and
improving the quality of education and lifestyle might
contribute to achieving a better living in old age for
the rapidly aging population of the developing world.
Thus, a blood-based biomarker would enable a more
rapid and inexpensive screening of potential partici-
pants, particularly for prevention trials for AD [136].
In this way, we suggest improving study design stan-
dards, to avoid poorness of reporting, analysis, and
presentation of results; and we encourage developing
countries scientist to perform studies with local sub-
jects, studies comparing classic biomarkers and new
diagnostic tools for the diagnosis of AD.

The impact of AD in developing countries deserves
further epidemiological and implementation research
to enable early detection, widespread adequate treat-
ment, and caregiver support. Refining the policy
agenda, increasing the health care policies and scien-
tific grants will promote greater awareness and lead
to better management of the disease.
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