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Abstract. Porphyromonas gingivalis (P. gingivalis) is one of the several important bacterial pathogens associated with the
sporadic Alzheimer’s disease (AD). Different serotypes are either capsulated or are non-capsulated. It has been demonstrated
that P. gingivalis (non-capsulated) can reproduce the neurodegenerative AD-like changes in vitro, and a capsular P. gingivalis
(strain W83) could reproduce the cardinal hallmark lesions of AD in a wild-type mouse model. All P. gingivalis forms
express proteolytically active proteases that enable cleavage of the amyloid-f protin precursor (ABPP) and tau resulting in
the formation of amyloid-3 and neurofibrillary tangles. Tau is an established substrate for gingipains, which can cleave tau into
various peptides. Some of the P. gingivalis fragmented tau protein peptides contain “VQIINK” and “VQIVYK” hexapeptide
motifs which map to the flanking regions of the microtubule binding domains and are also found in paired helical filaments
that form NFTs. P. gingivalis can induce peripheral inflammation in periodontitis and can also initiate signaling pathways
that activate kinases, which in turn, phosphorylate neuronal tau. Periodontal disease related inflammation has metabolic
implications for an individual’s peripheral and brain health as patients suffering from generalized periodontitis often have
related co-morbidities and are “at risk” of developing AD. The aim here is to discuss the role of P. gingivalis behind such
associations with the backdrop of huge efforts to test P. gingivalis virulence factors clinically (GAIN Trial: Phase 2/3 Study
of COR388 in Subjects with AD) with inhibitors, which may lead to an intervention by reducing the pathogenic bacterial
load.
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ALZHEIMER’S DISEASE AND ITS and the roles of AP plaques and NFTs appear quite
ASSOCIATION WITH PERIODONTAL distinct but together they lead to neurodegeneration.
DISEASE The hippocampus contains abundant intraneuronal
NFTs composed of abnormally phosphorylated tau

The presence of extraneuronal amyloid (AB) protein. According to Braak staging of AD, the
plaques and intraneuronal neurofibrillary tangles NFTs spread in the brain in a defined distribution,
(NFTs) in the brain, together with defined clinical which allows correlations to be made with the clin-
signs of cognitive deficit, form the basis of the diag- ical stages [3]. Early involvement of tau pathology
nostic criteria for AD at autopsy [1, 2]. The origins has been described in the subcortical nuclei such as

the locus coeruleus and the pons anatomical areas

" - - - - of the brainstem [3, 4]. This anatomical site of the
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so any adverse change in its homeostasis could affect
behavior and mood. Notably, the trigeminal gan-
glion is located adjacent to the locus coeruleus of the
brainstem [5]. It follows that the brainstem and the
periodontium communicate via the trigeminal nerve
because tooth related pain is registered in the brain.
In support, the neurons of the trigeminal nerve five
are known to be distributed within the periodon-
tal ligament [13]. This provides an important link
between periodontitis and the areas of the brain that
are affected early in the progression of AD pathology.
Periodontitis is a chronic inflammatory disease
which damages the tooth supporting tissues, i.e., gin-
givae, periodontal ligament, and alveolar bone [6, 7].
Bacteria which can instigate changes in a normally
symbiotic microbial community to a dysbiotic state
are termed ‘keystone pathogens’. Porphyromonas
gingivalis (P. gingivalis) is a Gram negative coc-
cobacillus shaped bacterium which has long been
established as a keystone pathogen for periodonti-
tis [6, 7]. This oral commensal becomes pathogenic
and can exert its virulence via its endo/exotoxins
(surface membrane lipopolysaccharide or LPS, and
gingipains) and capsular polysaccharides that allow
this bacterium to induce chemokine paralysis of the
host and evade immune recognition, even in low
abundance. The compromised host innate and adap-
tive immune responses may be inadequate to control
the inflammophilic microbiota and paradoxically, can
contribute to connective tissue damage and inflam-
matory bone loss [8]. Oral microbes can enter the
systemic circulation during transient episodes of bac-
teraemia which can occur with daily oral hygiene
activities and dental interventions [9]. Periodontal
pathogens including P. gingivalis have been detected
at disparate sites such as the atherosclerotic plaque
[10] and AD brains [11, 12]. Pertinent to this, it
has been demonstrated in AD transgenic mice that
extraction of molar teeth generated release of the
cytotoxic A, and triggered neurodegeneration in the
locus coeruleus via its connection with the trigemi-
nal nerve five pathway connecting the periodontium
[13]. This may provide an explanation for the under-
appreciated concepts such as missing molar teeth and
their contribution to neuronal loss in AD [14-17].
This review will cover some salient aspects of
P. gingivalis, the keystone periodontal disease pat-
hogen, that makes this bacterium “important” as a
strong risk factor for developing AD pathophysiol-
ogy with an emphasis on the pathways that produce
hallmark pathology. This is plausible as we now
have a better understanding of the P gingivalis

secreted exotoxin known as gingipains that expresses
cathepsin B proteolytic enzymatic activity, which
enables cleavage of amyloid-3 protein precursor
(ABPP), to form AP plaques. Furthermore, gingi-
pains has the potential to disturb tau homeostasis by
hyperphosphorylating serine and threonine residues
via inflammatory signaling that activate glycogen
synthase kinase-3beta (GSK-38). In addition, prote-
olytically active gingipains can hydrolyze tau protein
to release fragments [12] with the “VQIINK” and
“VQIVYK” hexapeptide motifs that are present in
the paired helical filaments (PHF) that constitute the
NFT lesion. These are significant recent leaps in sci-
entific advances in order to understand the risk factor
involvement of periodontal disease with the develop-
ment of AD.

WHAT MAKES P. GINGIVALIS A RISK
FACTOR FOR AD?

Inflammation is widely thought to contribute to
the cognitive decline in AD [18]. However, periph-
eral episodes of inflammation and/or microbial access
to the brain and their impact on triggering cerebral
inflammation have largely been ignored. The path-
ways for microbial access to the brain are many [19]
including a leaky blood-brain barrier (BBB). P. gingi-
valis can trigger the peripheral and cerebral immune
responses. Periodontitis can exert its influence indi-
rectly by sustaining peripheral inflammation. This
together with defective susceptibility genes that nor-
mally help with clearance of waste from the brain,
can prime microglial cells into a pro-inflammatory
phenotype [20].

Other major risk factors for AD are comorbid in
the presence of the Apolipoprotein E allele 4 (APOE
&4) susceptibility gene inheritance [21]. One effect is
related to the decline of cerebral blood flow across the
lifespan of an individual during normal aging but this
effect is greater in subjects with APOE &4 suscep-
tibility gene inheritance [22]. Lack of an adequate
systemic blood flow to the brain in older individu-
als and those suffering from dementia harboring the
APOE &4 susceptibility gene can precipitate cere-
brovascular pathologies such as stroke, small vessel
arteriosclerosis, and others [23—25]. In addition, mid-
dle aged hypertension and diabetes also increase the
risk of AD [26]; this risk may be heightened in
the presence of P. gingivalis oral infection due to
severe periodontitis, which has metabolic implica-
tions for an individual’s peripheral and brain health
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Fig. 1. The keystone periodontal pathogen, P. gingivalis (P.g), can enter the bloodstream during episodes of transient bacteremia and gain
access to the brain via multiple routes including a leaky blood-brain barrier. The microbial invasion triggers the cerebral immune response
resulting in neuroinflammation and in the formation of the two diagnostic lesions of AD. Periodontitis can exert its influence indirectly by
sustaining peripheral inflammation (blue dotted arrow). This can affect glial cells by priming them into a pro-inflammatory phenotype. In
addition, this could also overload and overwhelm the clearing of toxic neuropeptides from the central nervous system (CNS). The potential
causal relationship of periodontitis and AD is further supported by the shared risk factors.

[27,28]. Meta-analysis has shown that there is a250%
higher risk for incident dementia in persons with both
APOE &4 inheritance and diabetes than those with-
out; and a 35% higher risk for those with APOE &4
alone [29]. Figure 1 illustrates the shared risk fac-
tors of periodontal disease and AD, which includes
the genetic components, comorbidities, and environ-
mental factors. This further supports the plausibility
of P. gingivalis as a risk factor in itself.

In addition, the BBB function becomes inadequate
during normal aging and in cognitively impaired
individuals carrying the APOE &4 genetic suscepti-
bility [30-32]. A disrupted BBB during aging and
dementia [33] can potentially facilitate the passage
of P. gingivalis from the systemic circulation into
the brain. The scientific rationale for this statement
comes from observations made from P. gingivalis
mono-infected apolipoprotein null mice models of
periodontitis for AD pathophysiology. P. gingivalis
from the oral cavity accessed the brain and the BBB

appeared significantly damaged [34-36]. A mecha-
nistic pathway for bacterial entry into the brain is
suggested to be via proteolytically active gingipains
(the extracellular cysteine proteinases of P. gingivalis
strain W83) breaking down the epithelial transmem-
brane proteins, E-cadherin, 3 integrin, and occludin,
thereby disrupting the tight junctions between capil-
lary endothelial cells. This increases the permeability
of the BBB [37], and in addition, systemic proin-
flammatory cytokines also can potentially disrupt
the BBB [38]. It is assumed that when tight junc-
tion integrity is sufficiently disturbed, passage of
bacteria into the brain is likely to take place. In sup-
porting the adverse effects of the cytokine on the
BBB integrity, Vernal et al. [39] have reported that
capsular serotype K1 and K2 P. gingivalis strains
outside the central nervous system induce an
enhanced secretion of pro-inflammatory interleukin
cytokines (IL)-1p3, IL-4, IL-6, IL-10, IL-17, inter-
feron (IFN)-vy, and tumor necrosis factor (TNF)-a
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in macrophages and dendritic cells, implying cap-
sular P. gingivalis strains have the armory for
potentiating BBB permeability through cytokine lib-
eration. Encapsulated bacterial infections, e.g. P.
gingivalis W83, harbors an additional virulence fac-
tor in the form of the capsular polysaccharide or A-
lipopolysaccharide (A-LPS) which is different from
the lipopolysaccharide (LPS) of the outer membrane
of non-encapsulated bacteria, e.g., P. gingivalis
(strain ATCC 33277) (see [40]). The A-LPS in the
capsulated P. gingivalis (W83) plays a vital role in
this bacterium’s virulence development by inducing
proinflammatory cytokine paralysis [41] as it is con-
nected to the post-translational additions of Arg-gin-
gipains that make the bacterium more virulent
[42, 43].

Therefore, a person harboring capsular forms of P.
gingivalis could have a higher risk of developing AD,
compared with those who carry the non-capsulated
bacterium. This may be one reason why not all indi-
viduals who suffer from periodontal disease also
manifest AD [15, 43]. Prevalence studies among the
Dutch population identified K6 serotype (capsular) as
the most prevalent (23%) [44], while the K5 serotype
(capsular) was frequently observed in 25% of the
subgingival isolates examined from Indonesian AD
subjects [45].

P. GINGIVALIS GINGIPAINS: THE MOST
CRITICAL VIRULENCE FACTOR

P. gingivalis produces gingipains R (RgpA, RgpB)
and gingipain K (Kgp). Gingipains are classified
as collagenases and trypsin-like cysteine proteinases
[46], and are secreted by all strains (with/without
capsule) of P. gingivalis [47, 48]. Together they
degrade a variety of proteins involved in the immune
response [49-52]. Here, our interest is in the trypsin-
like cysteine proteinases, secreted by all strains of P.
gingivalis [47, 48], which specifically cleave peptides
at Arginine-Xaa and Lysine-Xaa (Xaa=any amino
acid) from the C-terminus. The Arg-specific prote-
olytic activity is encoded by rgpA/B genes while the
Lys-specific activity is encoded by the kgp gene. Rgp
and Kgp are enzymes responsible for the trypsin-like
activity associated with P. gingivalis and hence are
important in the context of tau NFTs [47].

Recent studies have postulated that tau protein
(associated with microtubules) and actin are sub-
strates of Kgp gingipain [13, 53]. Neither Lys-
gingipain nor Arg-gingipain are inhibited by

internal protease inhibitors such as cystatins and
a-antichymotrypsin and are therefore, able to diffuse
into host tissues. Furthermore, gingipains are ther-
mally stable from 0—45°C and over a range of pH
fluctuations 5.5 to 10.5 [54]. It is not surprising in
view of the sensitivity of tau to trypsin [55], that it
is a potential substrate for gingipains in vivo [12].
This exciting finding is potentially a major break-
through for therapy based on low molecular weight
small-molecules designed to block the toxic effects
of the different types of gingipains secreted by P. gin-
givalis, which are currently in Phase III clinical trials.
An aspect of the gingipains inhibitor COR388 based
therapy is provided elsewhere [56].

P. GINGIVALIS AND ITS ASSOCIATION
WITH NEURODEGENERATION

AD is a neurodegenerative disease and hence neu-
ronal loss is pivotal to the disease process. To this
end, Goto et al. [13], performed surgical extrac-
tions of molar teeth in their triple transgenic AD
(3xTg-AD) mice and uncovered a neurodegenerative
pathway involving the trigeminal distribution within
the periodontal ligament to the locus coeruleus. From
the locus coeruleus, the tau pathology subsequently
spreads to the hippocampus. The loss of molar teeth
in AD patients is predominantly associated with peri-
odontitis and in general, tooth loss has been linked to
a higher risk of AD [14-17]. P. gingivalis (ATCC
33277) has been reported to cause AD-like neurode-
generation in infected neurons derived from induced
pluripotent stem cells (iPSC) in an in vitro culture
system with persistent expression of active gingi-
pains, resulting in a 25% loss of neurons over three
days [57]. The differentiated iPSC neurons can be
maintained for months and offer a time efficient in
vitro analysis of measuring neuronal degeneration
compared to examining the years of AD-related neu-
rodegenerative processes in humans. Furthermore, P,
gingivalis can invade and survive within neurons and
generate intraneuronal gingipains, which are prote-
olytically active, implying the plausibility of direct
neurodegeneration associated with NFT lesion for-
mation in AD taking place [57].

P. GINGIVALIS INFECTION AND
PERIODONTITIS ARE LINKED TO
DETERIORATING MEMORY

The first interventional study with human AD sub-
jects was carried out by Rolim et al. [58] in which
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they demonstrated a beneficial outcome of dental
treatment in AD subjects. The reported benefit to the
patients with mild AD was in terms of reduced oro-
facial pain and an improvement in the mandibular
function and periodontal indices. These improve-
ments were maintained until the last evaluation after
six months, and were followed by a reduction in
the functional cognitive impairment. Several proof of
concept studies carried out in either mice with exper-
imentally induced periodontal disease with an oral
infection with P. gingivalis, or with the introduction
of its LPS have indicated that inflammatory signaling
pathways contribute to a clinical phenotype in which
impaired learning and memory is observed [59-61].
The inflammatory basis of deteriorating memory is
upheld by the results from clinical trials in human
AD subjects with periodontitis [62]. For a more
comprehensive overview, see Singhrao and Olsen
[63].

P. GINGIVALIS AND ITS ASSOCIATION
WITH AD DIAGNOSTIC LESION
FORMATION

P. gingivalis has the potential to induce inflam-
mation peripherally due to periodontitis [64] and
subsequently in the brain via its intracerebral entry
or entry of its virulence factors (LPS and gingipains)
[65-67]. Gingipains released by P. gingivalis which
have similar ABPP-cleaving action as cathepsin B
(of the host) [12], interact with the ABPP signaling
pathways (amyloid cascade) to release AB [60]. In
this process, gingipains together with LPS can pro-
teolytically activate kinases such as GSK-33 which
subsequently phosphorylates neuronal tau [57, 66].

Up until now, abnormally phosphorylated tau
protein has not featured negatively in the patho-
physiology of periodontal disease per se. However,
Adamowicz et al. [68] implicated the role of GSK-3(3
in bacterial-induced periodontitis because its inhi-
bition rescued bone loss. Thus, GSK-33 may be
influencing phosphorylation of brain tau via immune
responses mediated by P. gingivalis, in the Ilievski et
al. [66] and Haditsch et al. [57] studies. The intro-
duction of phosphorylated tau is an important point,
especially since the intraneuronal cytoskeletal alter-
ations precede the formation of amyloid in AD locus
coeruleus [69]. This is interesting when compared
with the Tg mouse tooth extractions where cytotoxic
A, triggered neurodegeneration in the same brain
region (i.e., locus coeruleus) [13].

P. GINGIVALIS AND THE A PLAQUE
LESION

The extraneuronal AD plaque is composed of A3
forming the basis of the “Amyloid Hypothesis™ [70].
AP is a cleavage product of ABPP, which is seen
in internal vesicular membranes, including the Golgi
apparatus and endosomes [63, 71]. Hence, a direct
extracellular deposition of soluble/insoluble AR as
well as an intracellular processed soluble Af [63,
72, 73] both contribute to the extracellular fibril-
lary/insoluble (diffuse and neuritic) plaques in AD
brains. The ABPP proteolytic cleavage is completed
by the proteolytically active secretase enzymes (o-
, B-, and +y-secretases). In rare familial AD cases,
however, there is a mutant form of ABPP (Swedish
double mutation APP K67@M, N671L) which has
a double mutation at the start of the beta cleavage
site of ABPP cleaving enzyme 1 (BACE-1). BACE-
1 has been shown to bind this mutated site with
much higher affinity than the wtAPP and thus cleaves
to form AP much more readily [73]. Notably, the
enzyme cathepsin B, which is expressed in secre-
tory vesicles within neurons, is shown, conversely,
to bind with high affinity to wtABPP (and not to the
Swedish mutant ABPP) and has been suggested as a
likely candidate for production of A in the sporadic
form of AD [73]. As described earlier, gingipains,
the exotoxin of P. gingivalis, also has cathepsin B-
like activity [12] and may act to cleave ABPP [73].
Wu et al. [60] demonstrated the host related cathep-
sin B to interact with ABPP to liberate A3. In order
to determine the intracellular processing of ABPP
by P. gingivalis-LPS (Pg-LPS), Wu et al. [60] chal-
lenged the wtABPP mice and observed that the host’s
cathepsin B, together with inflammatory mediators
(IL-1pB), directed ABPP proteolysis to release soluble
amyloid which they interpreted to be AB4, species.
Why the host’s cathepsin B activity and not the P,
gingivalis cathepsin B-like activity are acting here
is because we postulate that the highly purified Pg-
LPS used by Wu et al. [60] is likely to have been
denatured by the purification process leaving the LPS
activity intact. Following P. gingivalis infections, an
increase in peripheral AB1-40,42 accumulation within
periodontal tissues have been shown in mice models
and in the human gingival tissues and human serum
thereby potentially adding to the A pool in the AD
brain [74-76]. To this end, Zeng et al. [77] iden-
tified advanced glycation end products (AGE) as a
likely receptor for AB1-40/42 in cerebral endothelial
cells implying AGE products-receptor are a plausible
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mediator of cerebrovascular-related A3 accumula-
tion after P. gingivalis infection in their mouse model.
This supports the hypothesis that patients harboring
the generalized form of periodontal disease may be
“at risk” of developing AD via multiple pathways.
Key evaluations of prospective and retrospective
population-based data have shown that chronic peri-
odontal disease that exists for longer than ten years
results in a doubling of the risk for the sporadic form
of AD [78-80]. Putting this information in perspec-
tive, the 10-year lag allows AP plaques to reach a
plateau in the human host and this is when the host
begins to indicate the earliest stage (mild cognitive
impairment or MCI or prodromal) of AD. Following
this stage, the pathological cascade of progressive AD
would take over. This is interesting because the pieces
of the jigsaw puzzle that form the picture of AD is
beginning to emerge from reported scientific observa-
tions regarding the co-morbidity between periodontal
disease and AD in some patients. Periodontal disease
can start at any age and the time it takes to become
chronic may vary from individual to individual. If that
individual was vulnerable to manifesting AD later in
life, it should be possible to predict the risk age of
that individual from the time that their periodontitis
became chronic. Taken together, an early detection
of disease means patients may benefit from an earlier
medical intervention.

“GINGIPAINS” INTERACTION WITH TAU
PROTEIN: WHAT DOES THIS MEAN FOR
NEUROFIBRILLARY TANGLES?

The NFTs represent hyperphosphorylated tau pro-
teins binding to microtubules. Hyperphosphorylation
of microtubules is abnormal because normal tau
becomes insoluble and subsequently aggregates.
This also causes the collapse of microtubules into
non-membrane-bound masses of abnormal PHF
which are found in the perinuclear cytoplasm of
specific neurons. These constitute NFTs [81, 82].
Understanding the formation of the NFT lesion due
to bacterial interaction is important as autopsied
brains from AD cases have confirmed the presence
of the following microbes: Actinomycetes [83, 84],
P. gingivalis [12, 56], Helicobacter pylori, Chlamy-
dia pneumoniae [85], Herpes Simplex type 1 virus
(HSV1) [86], select species of oral/non-oral spiro-
chetes [87], and select fungi [88]. Furthermore, it has
been reported that Bacteroides species such as P. gin-
givalis are more virulent as a result of mixed infection

with the Actinobacillus actinomycetemcomitans bac-
teria facilitating their movement between different
organs [89, 90].

Dominy et al. [12] demonstrated tau protein as a
substrate for P. gingivalis protease gingipains and as
a consequence, the resultant tau protein fragments
can be released into the brain’s parenchymal tissues.
Depending on their size (Table 1), these extracellular
phosphorylated tau fragments may be directly toxic to
other neurons. The smaller sized phosphorylated tau
fragments may be taken up by other connecting cells
at the synaptic clefts during neurotransmitter uptake,
thereby facilitating its spread from neuron to neuron
and subsequently spreading pathology.

TAU CLEAVAGE BY GINGIPAINS AND ITS
INVOLVEMENT IN PAIRED HELICAL
FILAMENTS

P. gingivalis protease gingipains have been demon-
strated to co-localize with microtubules and PHF
constituting NFTs in AD brains [12]. As mentio-
ned earlier, tau protein can be hydrolyzed by gingi-
pains into several fragments both from the N and C
termini [12]. Six out of several fragments have “VQI
INK” and “VQIVYK” hexapeptide common motifs
that bind to the microtubule binding domains flank-
ing regions, which support the microtubule filaments
(Fig. 2, Table 1). This implies that six of the
several tau fragments released by gingipains are
from the pivotal sites of the functional microtubules
and agrees with previously reported observations
[12]. Furthermore, PHF filaments also have VQI-
INK and VQIVYK hexapeptide signatures (see
[91]). Therefore, tau cleavage at VQIINK and
VQIVYK hexapeptides from the regions of consider-
able functional significance to microtubules “would
collapse” the intact microtubule assembly with the
said hexapeptide amino acid signatures within tau

Microtubule
binding domain  C-terminus

N-terminus Proline
Acidic domain rich domain

PHF 6 HEXAPEPTIDES

AN
/ N
/ N

Fig. 2. Schematic of tau protein and domain organization to help
understand the position of peptides in Table 1 and the 1-4 micro-
tubule binding domains of Tau to microtubules.
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Table 1

Peptides of interest taken from reference 12. Amino acids indicated in green color are putative phosphorylation sites in the tau protein.
*indicates peptides of significance to the PHF tau constituting neurofibrillary tangles that bind to microtubule binding domain (MBD)

Peptide number Region in Tau N-C termini

Nucleotide/ Peptide

1 K87-R126
N-terminal projection

domain Tau(1-165)
2 R211-R221
Proline rich domain
166-242
3* K259-K290
MBD R1/2(274-304)
4* K28-K290
MBD-2
R2(274-304)
5% K298-K317
MBD-2/3
305-335
6* K298-K321
MBD-2/3
305-335
7* K294-K317
MBD-2/3
305-335
8* K294-K321
MBD-2/3
305-335
9 R406-K438
C-terminal domain (368—441)

QAAQPHTEIPEGTTAEEAGIGDTPSLEDEAAGHVTQAR

TPSLPTPPTR

267HQPGGGKVQIINKKLDLSNVQS184K287

275VQIINKKLDLSNVQS184K285

298HVPGGGSVQIVYKPVDLSK317

298HVPGGGSVQIVYKPVDLSKVTSK321

294DNIKHVPGGGSVQIVYKPVDLSK317

294DNIKHVPGGGSVQIVYKPVDLSKVTSK321

HLSNVSST414GS416]DMVDSPQLATLADEVSALAK

and PHFs, constituting the NFT lesions [12, 91].
Further research is needed to clarify the role of gingi-
pains fragmented tau peptides in the pathogenesis
of AD.

P. GINGIVALIS PHOSPHORYLATES TAU
PROTEIN

Tau protein binds to microtubules and is prone
to hyperphosphorylation. Hyperphosphorylation of
tau protein signifies a pathological change, which
precedes NFT formation. It is believed that phos-
phorylated tau proteins accumulate within neurons
prior to NFT formation [92]. What causes this shift
between bound to free pathological tau in neuronal
cells is not clear, but P. gingivalis enzyme activ-
ity hydrolyzing this protein as shown by Dominy
et al. [12] cannot be ruled out. Haditsch et al. [57]
demonstrated an increased tau phosphorylation at two
residues (enhanced tau phosphorylation at Thr231
and at Ser396) following P. gingivalis infection in
an iPSC differentiated neuronal cell culture model.
Furthermore, the capsular serotype K1 P. gingivalis
W83 strain has been shown to have the potential to
contribute to tau phosphorylation at Ser396 in the in
vivo wild-type mouse model [66]. These are accepted
phosphorylation sites as evaluated previously by

Hanger et al. [93]. However, which kinase may be
responsible for phosphorylating Ser396 and Thr231
following P. gingivalis infection is not clear, but GSK-
3P is a strong candidate [93]. Recently Liu et al. [94]
observed in their gingivalis-infected microglial cell
model that phosphoinositide 3-kinase (Pi3K)/ pro-
tein kinase B1 (Akt) and mitogen-activated protein
kinase/extracellular signal-regulated kinase (ERK)
kinase/ERK pathways were activated. Our study
in which purified P. gingivalis LPS (Pg-LPS) was
applied to a neuroblastoma cell line, in vitro cell
model also demonstrated that the PI3K/AKT path-
ways were activated [95]. In addition, Bahar and
Singhrao [95] showed GSK-33 and forkhead box
class O1 (FOXO1) and NF-kB mRNA expression
was also upregulated and that this was dependent on
the MyD88 pathway [95]. The importance here is
that GSK-3( is one of the enzymes that can phos-
phorylate tau residues Ser396 and Thr231 [93] and
its activation implicates the onset of inflammatory
signaling [95] that are known to be involved in AD
pathophysiology [96, 97]. This implies that P. gingi-
valis infection plays an important role in the infected
cells where balance of inflammation and inflamma-
tion responsive kinases (e.g. GSK-3[3) are tipped in
favor of phosphorylation, NFT lesion formation, and
subsequent pathophysiology of AD.
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CONCLUSIONS

This review has applied a pathobiome concept in
substantiating the link between P. gingivalis infection
and AD lesions. It is clear from the human and proof
of concept studies in animal models that whole bac-
teria and their constituent endo/exotoxins enter the
central nervous system. In situ, this bacterium has
a range of enzymes that are shown to interact with
ABPP and tau, deregulating their structure and intra-
cellular processing, with resultant formation of A3
and PHE, respectively. We appreciate that other bac-
terial, fungal, or viral pathogens implicated in AD
may follow different pathways towards AD patho-
physiology compared to those described here for P.
gingivalis.

Itisevident that P. gingivalisis a potentially signifi-
cant etiological agent for AD pathophysiology. While
generalized periodontitis develops around middle
age, the sporadic form of AD is of much later onset.
The lag phase between the two comorbidities could
provide us with a mechanistic association between the
two diseases and a window of opportunity to inhibit
the toxic insults of gingipains in patients with peri-
odontitis, and its downstream inflammatory effects
such as systemic inflammation contributing to the
risk of developing AD or increasing the severity of
dementia by hyperphosphorylating tau. Hence, the
clinical “GAIN Trial”: Phase 2/3 Study of COR388
in Subjects with Alzheimer’s disease (ClinicalTri-
als.gov Identifier: NCT03823404) is key to testing
this hypothesis and advancing the management of
healthcare landscape in preventing and/or slowing
down AD. It is imperative that the oral health com-
ponent is included as a modifiable risk factor in AD
public health messages along with other preventative
advice such as keeping active, eating healthily, and
exercising.
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