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Abstract.
Background: Preclinical studies, clinical trials, and reviews suggest increasing 3’,5’-cyclic adenosine monophosphate
(cAMP) and 3’,5’-cyclic guanosine monophosphate (cGMP) with phosphodiesterase inhibitors is disease-modifying in
Alzheimer’s disease (AD). cAMP/protein kinase A (PKA) and cGMP/protein kinase G (PKG) signaling are disrupted in
AD. cAMP/PKA and cGMP/PKG activate cAMP response element binding protein (CREB). CREB binds mitochondrial
and nuclear DNA, inducing synaptogenesis, memory, and neuronal survival gene (e.g., brain-derived neurotrophic factor)
and peroxisome proliferator-activated receptor-� coactivator-1� (PGC1�). cAMP/PKA and cGMP/PKG activate Sirtuin-1,
which activates PGC1�. PGC1� induces mitochondrial biogenesis and antioxidant genes (e.g.,Nrf2) and represses BACE1.
cAMP and cGMP inhibit BACE1-inducing NFκB and tau-phosphorylating GSK3�.
Objective and Methods: We review efficacy-testing clinical trials, epidemiology, and meta-analyses to critically investigate
whether phosphodiesteraseinhibitors prevent or treat AD.
Results: Caffeine and cilostazol may lower AD risk. Denbufylline and sildenafil clinical trials are promising but preliminary
and inconclusive. PF-04447943 and BI 409,306 are ineffective. Vinpocetine, cilostazol, and nicergoline trials are mixed.
Deprenyl/selegiline trials show only short-term benefits. Broad-spectrum phosphodiesterase inhibitor propentofylline has
been shown in five phase III trials to improve cognition, dementia severity, activities of daily living, and global assessment
in mild-to-moderate AD patients on multiple scales, including the ADAS-Cogand the CIBIC-Plus in an 18-month phase III
clinical trial. However, two books claimed based on a MedScape article an 18-month phase III trial failed, so propentofylline
was discontinued. Now, propentofylline is used to treat canine cognitive dysfunction, which, like AD, involves age-associated
wild-type A� deposition.
Conclusion: Phosphodiesterase inhibitors may prevent and treat AD.
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BACKGROUND

Sporadic Alzheimer’s disease (AD) is the most
common cause of dementia in the elderly. It involves
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brain amyloid-� (A�) generation, aggregation into
oligomers, and deposition into neuritic plaques, tau
hyperphosphorylation into neurofibrillary tangles [1,
2], iron and aluminum accumulation [3, 4], infec-
tions [5–11], oxidative stress and damage to lipids,
RNA, DNA, and proteins [12–16], aberrant calcium
and zinc signaling [17–21], mitochondrial dysfunc-
tion [22–24],endoplasmic reticulum stress [25–27],
lysosomal dysfunction [17, 20, 28–30], defective
autophagy [31], neuroinflammation [32–38], neu-
ronal abortive cellcycle re-entry [39–48], insulin
and insulin-like growth factor 1 resistance [49–51],
synaptic dysfunction [52], and neuron death.

Cyclic nucleotides are endogenous cell signal-
ing molecules that act as second messengers to
regulate various physiological processes in the cen-
tral nervous system. There are multiple cyclic
nucleotides that may be involved in the pathogene-
sis of AD, including Ca2+-mobilizing and transient
receptor potential melastatin 2 (TRPM2) channel-
openingcyclic adenine diphsophate ribose (cADPR)
[53–57] and cytoplasmic DNA-induced cyclic guano-
sine monophosphate adenosine monophosphate
(cyclic GMP-AMP, or cGAMP)[14–16, 58–62]. Of
these though, there is the most evidence about
the cyclic purine nucleotides 3’,5’-cyclic adenosine
monophosphate (cAMP) and 3’,5’-cyclic guanosine
monophosphate (cGMP).

Physiologic cAMP and cGMP signaling

Physiologically, cAMP is produced whenG�s-
containing complexes activate adenylate cyclases
(AC). Adenylate cyclase generates cAMP from
adenosine triphosphate (ATP). cAMP activates
exchange protein directly activated by cAMP (EPAC)
and protein kinase A (PKA). PKA holoenzymes con-
sist of two catalytic and two regulatory subunits.
When bound to cAMP, the regulatory subunits release
the catalytic PKA subunits to phosphorylate many
targets [63].

Regarding cGMP signaling, nitric oxide syn-
thases (NOS) produce nitric oxide (NO).NO activates
soluble guanylyl cyclase (sGC) in the cytoplasm.
sGC produces cytoplasmic cGMP [64, 65]. In
addition, Atrial natriuretic peptide (ANP) and
B-type natriuretic peptide (BNP) activate particu-
late, plasma-membrane localized, receptor guanylyl
cyclase-A (GC-A) [66], and C-type natriuretic pep-
tide (CNP) activates the particulate guanylyl cyclase
B (GC-B) [67]. Particulate GC-A and GC-B pro-
duce cGMP proximal to the plasma membrane

[67, 68]. cGMP activates protein kinase G (PKG)
[64, 65].

Phosphodiesterases

Phosphodiesterase (PDE) enzymes degrade cyclic
purine nucleotides. PDE1, 2, 3, 10, and 11 degrade
both cAMP and cGMP [69, 70]. PDE4, 7, and 8
degrade cAMP specifically. PDE5, 6, and 9 degrade
cGMP specifically [69, 70]. PDE5 degrades cyto-
plasmic cGMP produced by NOS/NO/sGC signaling,
whereas PDE9 degrades peri-plasma membrane
cGMP produced by natriuretic peptide/pGC signal-
ing [71]. Complicating the interpretation of studies
about the effects of cGMP, low concentrations
of cGMP inhibit PDE3, increasing cAMP levels,
whereas moderately high doses of cGMP activate
PDE2, decreasing cAMP levels [72].

Various drugs and naturally-occurring compounds
inhibit one or more PDE enzyme. Based on the
various preclinical studies about PDE inhibition
for AD, a review by Heckman et al. concluded
that PDE2, PDE4, and PDE5 inhibitors appear to
hold the most promise for treating AD [73]. Mul-
tiple benefits of increasing cAMP and/or cGMP
signaling with various PDE inhibitors can be
ascribed to the effect of these pathways on cAMP
response element binding protein (CREB), Sirtuin 1
(SIRT1), peroxisome proliferator-activated receptor-
� coactivator-1� (PGC1�), nuclear factor erythroid
2-related factor 2 (Nrf2), nuclear factor κ-light-chain-
enhancer of activated B cells (NFκB), and glycogen
synthase kinase 3� (GSK3�) signaling (Fig. 1). The
following section is a discussion of the effects of
cAMP and cGMP levels on these molecular path-
ways.

cAMP, cGMP, and CREB

Both cAMP/PKA and cGMP/PKG signaling acti-
vate CREB by phosphorylating it at Ser133 [74–79].
pSer133-CREB protein levels are decreased in the
AD hippocampus [80], the AD prefrontal cortex,
and AD peripheral blood mononuclear cells [81].
pSr133-CREB activates the transcription of mito-
chondrial D-loop DNA and nuclear DNA [82, 83].
Activated CREB induces genes involved in synapto-
genesis and memory formation [84], such as brain
derived neurotrophic factor (BDNF) and Activity-
regulated cytoskeleton-associated protein (Arc), and
neuronal survival, such as BDNF and Bcl2 [84–90],
as well as genes involved in mitochondrial biogene-
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Fig. 1. Downstream targets of cAMP and cGMP signaling relevant
to AD.

sis and antioxidant defense, such as PGC1�, Nuclear
respiratory factor 1 (Nrf1), Nrf2, and mitochondrial
transcription factor A (Tfam) [83, 91].

cAMP, cGMP, SIRT1, and PGC1α

Both cAMP/PKA and cGMP/PKG signaling pro-
mote mitochondrial biogenesis and antioxidant gene
expression via CREB- and SIRT1-mediated PGC1�
activation [92–105]. In addition to activating CREB
[74–79], which induces PGC1� transcription [83,
91], both cAMP/PKA and cGMP/PKG signaling
activate SIRT1 [94–96, 98, 104–110]. SIRT1 exerts
multiple beneficial effects in AD, including down-
regulating pro-amyloidogenic �-secretase (BACE1)
and upregulating anti-amyloidogenic A Disintegrin
and metalloproteinase domain-containing protein 10
(ADAM10) [106], as well as deacetylating and
thereby post-translationally activating PGC1� [97,
111–118].

PGC1� induces the core regulators of mitochon-
drial biogenesis, including Nrf1, Nrf2, and Tfam
[93]. PGC1� induces antioxidant genes when bound
to Forkhead box O3 (Foxo3a) and deacetylated by
SIRT1, namely manganese superoxide dismutase
(MnSOD), catalase, peroxiredoxins 3 and 5, thiore-
doxin 2, thioredoxin reductase 2, and uncoupling
protein 2 (UCP2)[112].Brain PGC1� overexpres-
sion has also been shown to upregulate glutathione
peroxidase 1 (GPx1), UCP4, and UCP5 [119].
PGC1� also induces genes involved in oxidative
respiration [92, 103] and fatty acid �-oxidation

[120]. Conversely, in a peroxisome proliferator-
activated receptor � (PPAR�)-dependent mechanism,
PGC1� represses the expression of BACE1 [121,
122].

These downstream effects of PGC1� signaling
are important for AD treatment because BACE1 is
the rate-limiting enzyme in A� generation [123],
and neural mitochondrial biogenesis and antioxidant
enzyme expression are severely disrupted in AD.
In the AD patient hippocampus, mitochondrial bio-
genesis is impaired as shown by decreased number
of mitochondria in neurons and lower expression
of PGC1�, as well as of downstream Nrf1, Nrf2,
Tfam [93], and MnSOD [23, 112]. This deficit in
PGC1� signaling in AD appears to begin very early.
PGC1�, Nrf1, Nrf2, and Tfam were downregulated
at the mRNA level as early as 1 month of age in a
transgenic AD mouse model, even before a signifi-
cant concentration of A� oligomers had formed [91].
In rodent brain hypo-perfused like AD and vascular
dementia brains are [119, 124–127], PGC1� neural
overexpression improved cognitive deficits and the
metabolic activity of hypoxic neurons [119], indicat-
ing the therapeutic potential of modulating PGC1�
signaling pharmacologically.

Therapeutically, PDE inhibitorsprovide a way to
modulate this AD deficit in pSer133-CREB and
PGC1� signaling. In APPswe M17 cells, cAMP
rescued CREB phosphorylation and PGC1� expres-
sion in a PKA-dependent manner [93]. Furthermore,
cAMP signaling may promote not only synapto-
genesis, memory formation, neuron survival, and
mitochondrial biogenesis, but also restoration of the
physiologic balance between mitochondrial biogene-
sis and mitophagy. For example, 15 mg/kg/day of the
cAMP-elevating PDE7 inhibitor S14 given orally to
6-month-old APP/PS1 mice rescued memory deficits,
increased neurogenesis, and rescued mitochondrial
mass by increasing mitochondrial biogenesis and
decreasing A�-induced excessive mitophagy [128].
This balancebetween mitochondrial biogenesis and
mitophagy appears to be disrupted in AD patients’
hippocampal pyramidal neurons as shown by the
PGC1�downregulation [93, 129], as well as the find-
ing that many of the few surviving mitochondria
accumulate in autophagosomes [22, 130]. Ultimately,
in hypoperfused rodent brain, the nonspecific PDE
inhibitor propentofylline restores mitochondrial ATP
production [131, 132], suggesting that one out-
come of modulating CREB and PGC1� signaling
with PDE inhibitors is enhanced mitochondrial ATP
production.
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cAMP, cGMP, and Nrf2

Downstream of CREB and PGC1�, Nrf2 is a tran-
scription factor that induces various genes involved
in antioxidant defense, detoxification, autophagy, and
cytoprotection, such as glutamate–cysteine ligase
(the rate-limiting enzyme in glutathione synthesis),
SOD1-3, and heme oxygenase 1 (HO-1) [133–136].
Nrf2 is active when it is localized to the nucleus;
however, nuclear Nrf2 levels are decreased in AD
patients’ hippocampal cells, indicating decreased
Nrf2 activity in AD [137]. Both cAMP and cGMP
appear to increase Nrf2 signaling.

cAMP appears to increase Nrf2 signaling in
most cell types [138–140]. For example, in
mouse and human hepatocytes, cAMP analogue
8-Bromoadenosine-cAMP upregulated Nrf2 target
gene expression and antioxidant response element
(ARE) transcriptional activity in a PKA-dependent
manner [138]. Treatment of keratinocytes and
melanocytes with either �-melanocyte stimulating
hormone or forskolin (both of which increase cAMP)
increased Nrf2 and Nrf2 target gene expression [139].
The PDE4 inhibitor roflumilast has been shown to
replenish Nrf2 levels in bronchial epithelial cells
infected with respiratory syncytial virus [141, 142].
Therefore, cAMP may increase Nrf2 signaling in neu-
rons and other brain cells [138–140].

cGMP may also activate Nrf2 signaling, as in
human bronchial epithelial cells, arsenite activated
Nrf2 in a cGMP/PKG-dependent manner [143].
cGMP/PKG signaling has been postulated to be
involved in Nrf2 activation in the heart as well [144].
In C6 glioma cells, nitrated cGMP activated Nrf2
[145]. In colon carcinoma cells, nitric oxide activated
Nrf2 [146]. This points to context-dependent activa-
tion of Nrf2 by cGMP, nitrated cGMP, and NO in
diverse cell types. Therefore, both cAMP and cGMP
(and thus PDE inhibitors) may promote Nrf2 activity
in brain cells.

cAMP, cGMP, and NFκB

Another important therapeutic target in AD is
NFκB. NFκB is a family of transcription factor
dimers consisting of two of five possible protein
subunits: c-Rel, RelA/p65, RelB, p105/NFKB1, and
p100/NFKB2. NFκB dimers containing the RelA/p65
subunit induce inflammatory gene expression (e.g.,
pro-inflammatory cytokines IL-1�, IL-6, and TNF�,
chemokines IL-8, RANTES, MIP1, enzymes COX2
and iNOS, adhesion molecules VCAM1 and ICAM1

[147]), as well as the expression of BACE1 [34, 35].
Inflammatory NFκB is activated by oxidative stress
[148], diverse pathogen- and damage-associated
molecular patterns via toll-like receptors (TLR) [149,
150], fibrillar A� via TLR2 [32], pro-inflammatory
cytokines (e.g., TNF� via the TNF receptor and IL-1�
via the IL-1 receptor) [147], and other immunore-
ceptors [37, 148], such as the B-cell antigen receptor
(BCR) in conjunction with protein tyrosine kinases
[151]. Through signaling mediators such as MYD88
[32], TLR, for example, activate inhibitor of NFκB
kinase (IKK), which phosphorylates inhibitor of
NFκB protein � (IκB�), causing its ubiquitination
and degradation, releasing c-Rel, RelA/p65, and RelB
containing dimers to translocate to the nucleus and
induce gene transcription [151].

cAMP/PKA signaling inhibits NFκB in most
but not all cell types and contexts [147, 152].
With relevance to AD, raising cAMP has been
shown to inhibit NFκB in microglia stimulated with
either TNF� or lipopolysaccharide (LPS) [147, 153,
154]. Disruption of inflammatory NFκB signaling
by cAMP has been shown to occur via multiple
mechanisms [147, 155]. Specifically, cAMP/PKA-
phosphorylated CREB upregulates the IκB� gene
[147, 156, 157]. cAMP inhibits IKK�, decreasing
IκB phosphorylation, ubiquitination, and degrada-
tion [147, 157]. cAMP inhibits the ubiquitination
and degradation of IκB� [147, 151]. Phosphory-
lated CREB outcompetes NFκB for their common
requisite binding partner CREB binding protein
(CBP), shifting gene transcription towards CREB
and away from NFκB-mediated expression [147].
cAMP induces the exchange of activating p65-p50
NFκB dimers for repressive p50-p50 dimers [147].
cAMP induces the exchange of activating CREB-
c-Jun dimers for repressive CREB-ICER dimers in
the promoters of certain genes, such as TNF� [147].
cAMP activates the expression of c-Fos, which pre-
vents p65 homodimers from binding to promoters
[147].

cGMP inhibits NFκB indirectly via cAMP [155,
158]. cGMP inhibits PDE3, raising cAMP levels.
In vascular smooth muscle cells, raising effective
cGMP levels with a NO donor or C natriuretic
peptide resulted in cGMP-induced PDE3 inhibition,
cAMP accumulation, and cAMP/PKA-dependent
NFκB inhibition [158].

Therefore, raising cAMP and cGMP levels with
PDE inhibitors would likely inhibit NFκB in brain
microglia, decreasing neuroinflammation and �-
amyloidosis in AD [34, 35, 147, 153, 154, 156–158].
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cAMP, cGMP, and GSK3β

GSK3� is the primary kinase of 45 of the 85
phosphorylable Serine and Threonine residues on
tau [159–162]. If PKA phosphorylates tau before
GSK3� does, then paired helical filament formation
is suppressed, whereas if GSK3� phosphorylates tau
before PKA does, then paired helical formation is
promoted [163], suggesting that high PKA activity
and low GSK3� activity may suppress neurofibrillary
tangle formation. Furthermore, GSK3� phosphory-
lates and thereby inhibits CREB and PGC1� [101,
164–169].

Multiple lines of evidence suggest that both cAMP
and cGMP inhibit GSK3�. cAMP/PKA suppresses
GSK3� activity in most cell types by phosphorylat-
ing it at Ser9, including in cortical neurons [170–172],
platelets [173], mouse spermatozoa [174], Rat1,
NIH 3T3, and HEK293 cells [175], but not in
murine melanoma cells [176]. Multiple AD rodent
model studies have shown that the cGMP-elevating
PDE5 inhibitor sildenafil inhibits GSK3�, suggest-
ing that cGMP typically inhibits GSK3� in the brain
[177–181].

Gαs/AC/cAMP/PKA signaling alterations in AD

The beneficial effects of cAMP and cGMP
on CREB, PGC1�, Nrf2, NFκB, and GSK3�
signaling, however, appear to be lost during
the pathogenesis of AD, as preclinical stud-
ies and neuropathology evidence suggestthat the
AC/cAMP/PKA and NOS/NO/sGC/cGMP pathways
may be pathologically disrupted in AD patients’
brains [79, 182–205]. In preclinical models, both
BACE1/A� and tau pathology disrupt cAMP signal-
ing. A�25–35 exposure transiently increases cAMP
levels, suppressing neuronal glucose uptake in a
cAMP/PKA-dependent manner [206], but long-term
A�42 exposure decreases cAMP levels [182]. Sub-
lethal doses of A�42 (but not A�25–35) impair KCl-
and N-methyl-D-aspartate-induced CREB phospho-
rylation [193]. BACE1 overexpression decreases
cAMP levels, PKA activity, and CREB phospho-
rylation independently of A� [199]. Human tau
overexpression inhibits PKA, decreases phospho-
rylation of CREB, decreases phosphorylation of
glutamate receptor 1 [200] (GluA1, phosphoryla-
tion of which increases its membrane localization,
facilitating conductivity, long-term potentiation, and
memory formation [207]), decreases phosphoryla-
tion of tropomyosin receptor kinase B [200] (TrkB, a

receptor for BDNF [208]), and downregulates BDNF
mRNA and protein levels [200]. Therefore, both
A� and tau pathology appear to disrupt cAMP/PKA
signaling.

In neuropathology studies, it appears that
AC/cAMP/PKA signaling may be disrupted in AD
patients’ brains. To begin with, AC protein and
activity levels (especially G�s-stimulated) have gen-
erally been found to be decreased in AD patients’
brains [183–187, 201–205]. Basal, G�s-stimulated,
and forskolin-stimulated AC activity has been found
to be decreased in the AD hippocampus [201–203].
However, G�s-stimulated but not basal or forskolin-
stimulated AC activity was found to be decreased
in the AD hippocampus, temporal cortex, and angu-
lar gyrus in one study [204]. AC-I protein levels
were significantly decreased in the AD hippocam-
pus [205]. Parietal cortex membrane AC-I and AC-II
protein levels were significantly decreased in AD
patients, as was Ca2 + /CaM-stimulated AC activity
[183]. Basal AC activity was found to be decreased
in the AD frontal cortex, temporal cortex, and
angular gyrus [184]. G�s-stimulated but not basal
or forskolin-stimulated AC activity was decreased
in the AD superior temporal cortex [185]. G�s-
stimulated but not basal or forskolin-stimulated AC
activity was decreased in the AD neocortex [186].
[3H]forskolin binding was decreased in the AD
frontal cortex, suggestive of fewer AC catalytic sub-
units to bind to [187]. These findings overall suggest
that a decrease in AC activity may occur in AD
brains.

cAMP levels were not altered in the AD patient
cerebrospinal fluid (CSF)in two studies [197, 198],
but they were elevated in one study in a manner
that correlated with tau pathology [209]. Increased
cAMP levels were found in AD microvessels [189],
and in the cerebral cortical and meningeal vessels
in the frontal and temporal cortex and hippocampus
in association with vascular A� [188]. This suggests
that cAMP levels and localization may be subtly dys-
regulated in AD brains.

Downstream of cAMP, PKA activity appears to
be suppressed in AD in most studies [185, 190–192,
194, 200, 210, 211]. [3H]cAMP binding to cytoso-
lic but not particulate PKA was decreased in the
AD patient entorhinal cortex and subiculum [190].
Neither soluble nor particulate PKA activity were
altered in the AD patient superior temporal cortex
in one study [185], nor was PKA activity altered in
AD patient cerebral microvessels [210]. In another,
however, decreased PKA activity was found in the
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AD patient temporal cortex [192]. Decreased PKA
activity was also observed in the AD patient medial
temporal cortex [191]. Regulatory 51 kDa PKA-
RII� and PKA-RII� and catalytic PKA-C� protein
levels were decreased in the AD patient medial
temporal cortex [191]. Catalytic PKA-C� protein
levels were decreased in the AD patient frontal
cortex [194]. However, a calpain-cleaved 47 kDa
fragment of PKA-RII� was increased in the AD
patient medial temporal cortex [191]. In cultured hip-
pocampal neurons, A� exposure resulted in PKA
inhibition, higher PKA-RII� protein levels, and less
glutamate-induced CREB phosphorylation (the lat-
ter of which was reversed by cAMP-elevating PDE4
inhibitor rolipram) [211]. Overexpression of human
tau was found to increase nuclear PKA-RII� proteins
[200], suggesting that the concerted action of Ca2+-
activated calpain proteases, A�, and tau may promote
expression of the 47 kDa PKA-RII� fragment in the
nucleus. Silencing PKA-RII� expression improved
tau-induced deficits in PKA activity and CREB phos-
phorylation [200], suggesting that this nuclear 47 kDa
PKA-RII� upregulation in AD may suppress nuclear
PKA activity and CREB phosphorylation. Therefore,
overall PKA activity and nuclear PKA activity appear
to be suppressed in AD [185, 190–192, 194, 200, 210,
211].

GC/cGMP/PKG signaling alterations in AD

Preclinical and neuropathology data sug-
gest that NOS/NO/sGC/cGMP signaling may
be disrupted in AD as well. A� inhibits the
NOS/NO/sGC/cGMP/CREB pathway required for
long-term potentiation in hippocampal slices [79].
NOS activity has been found to be decreased in
the AD superior frontal gyrus and hippocampus
[196]. The activity of NO-activated sGC—but not
basal sGC nor particulate GC (pGC)—was found
to be decreased in the AD superior temporal cortex
[195].

Upstream of the maintained pGC signaling [195],
elevated BNP levels have been associated with cog-
nitive disorders in elderly patients 75–78 years old
but not older [212, 213], and multiple studies have
found associations between increased BNP levels
in blood or plasma andmild cognitive impairment
(MCI) occurrence, severity, or risk, conversion of
MCI to AD, or dementia [213–223]. For example,
one study found plasma BNP levels were associated
with diagnosis of MCI or AD as well as CSF A�42
levels; furthermore, plasma BNP levels were found

to be increased in MCI and AD patients [213, 214].
This suggests that BNP/pGC/cGMP signaling may be
either maintained or increased in MCI and AD [195,
212–214].

Overall, cGMP levels were found to be decreased
in AD patient CSF [197, 198], which correlated
with CSF levels of A�42 [197], depression symp-
toms [198], and cognitive dysfunction as measured
by The Mini-Mental Status Exam (MMSE) [197,
198]. This suggests that AD is characterized by a
profound and disease severity-correlating decrement
in NOS/NO/sGC/cGMP signaling.

Increasing cAMP and cGMP signaling to treat AD

Thus, PDE inhibitors would be predicted to
restore disrupted cAMP/PKA, cGMP/PKG, CREB,
PGC1�, and Nrf2 signaling, activate SIRT1, repress
NFκB-induced BACE1 expression, A� genera-
tion, and inflammation,inhibit GSK3�-mediated
tau phosphorylation,and promote neuron survival,
synaptogenesis, mitochondrial biogenesis and sur-
vival of mitophagy, ATP generation, antioxidant
and detoxification enzyme expression, and mem-
ory formation—all of which would be crucial
therapeutic benefits in the fight to prevent, halt,
and reverse AD etiopathogenesis. In this narrative
review, we overview efficacy-testing clinical tri-
als, epidemiological studies, and meta-analyses to
investigate whether PDE inhibitors can prevent or
treat AD, MCI, or dementia in a disease-modifying
fashion.

CLINICAL TRIALS AND EPIDEMIOLOGY
OF PDE INHIBITORS

Vinpocetine

Vinpocetine inhibits PDE1, raising cAMP and
cGMP [224]. Discovered in the 1970s by C. Szántay
and C. Lörincz et al. independently, vinpocetine has
been approved in European countries for the treat-
ment of dementia and stroke for over 30 years, and it is
available in the United States as a dietary supplement
[225]. Preclinical data demonstrate that vinpoce-
tine can rescue cognitive deficits in a rodent AD
model [226], increase CREB phosphorylation [227]
and BDNF expression [228], downregulate BACE1
[226], upregulate Nrf2 mRNA expression [229],
decrease oxidative stress [226, 228–239], mitochon-
drial dysfunction [240, 241], and apoptosis [230,
239], inhibit GSK3� [226, 228], NFκB [229, 231,
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232, 239, 242–250], and the NLPR3 inflammasome
[243], decrease levels of pro-inflammatory cytokines
IL-1� [226, 229, 231, 232, 236, 237, 243], IL-6
[236, 237, 239, 251], and TNF� [226, 229, 231, 232,
242, 243, 246], and arrest the cell cycle in the G1
phase by downregulating cyclin D1 and upregulating
p27(Kip1) [252].

Despite these promising preclinical findings, there
is very little evidence about vinpocetine for the treat-
ment of AD specifically, and what little there is is
disappointing. In a 1-year-long 1989 open-label pilot
trial, 15 patients with AD showed no improvement
or delay in decline on the CGI at doses of 30, 45, or
60 mg vinpocetine once daily [253]. In a multicen-
ter, double-blind, placebo-controlled trial, subgroup
analysis showed that no significant treatment effect
was observed on the CGI, the Short Cognitive Per-
formance Test/Syndrom-Kurztest (SKT), the Brief
Cognitive Rating Scale, or the Sandoz Clinical
Assessment Geriatric (SCAG) in AD patients [254].
These were the only clinical trials of vinpocetine in
AD that could be found at the time of this writing, and
both seem to indicate that vinpocetine is ineffective
for AD. By contrast, the evidence of vinpocetine for
the treatment of all-cause dementia is inconclusive
but relatively promising.

In a 2001 meta-analysis of 3 out of 39 studies that
met inclusion criteria, 327 patients with dementia
or cognitive impairment due to other disorders took
vinpocetine or placebo [255]. The vinpocetine treat-
ment group had significantly better scores on the Mini
Mental Status Questionnaire (MMSQ), the SCAG,
and the CGI. However, the authors noted that vin-
pocetine is not indicated for the treatment of AD due
to the little and inconsistent data available for this
indication [255].

In a 2003 Cochrane systematic review and meta-
analysis of the three available unconfounded, double-
blind, randomized, placebo-controlled clinical trials
of vinpocetine for the treatment of 583 patients with
dementia, 30 mg and 60 mg vinpocetine were found
to produce significant benefit, including on the CGI
and on the SKT attention and memory scale at up
to and including 13 months. Due to the inconclusive
nature of the data, however, the authors concluded
vinpocetine is not indicated for dementia treatment
[256].

In a 2012 clinical trial, moderately severe MCI
patients who took vinpocetine for 18 months showed
significant improvements in cognition on the MMSE
and the Alzheimer’s Disease Assessment Scale-
Cognitive Subscale (ADAS-Cog), daily activity on

the Activities of Daily Living, mood on the Hamil-
ton Depression Scale, and overall change in disease
status according to patients and investigators on the
patient global impression of change and the clinical
global impression of change [257].

Compared to placebo, vinpocetine 5 mg twice daily
for 3 months in a 2014 pilot study resulted in sig-
nificantly improved memory and concentration in
56 patients with cognitive impairment due to either
dementia of various etiologies or epilepsy [258].

Therefore, the evidence about vinpocetine for AD
is very limited, but the two trials available seem
to show that vinpocetine is not effective for this
indication. However, vinpocetinedoes appear to hold
promise for MCI and dementia patients, although
further clinical trials with larger patient cohorts are
required to further evaluate its efficacy for these indi-
cations.

Nicergoline

The ergot derivative nicergoline inhibits
Ca2+/calmodulin-dependent PDE1 and cGMP-
stimulated PDE2 activity [259] but activates the
high Km cAMP-degrading PDE from heart [260]. In
addition, it non-competitively inhibits Ca2+/Mg2+-
dependent brain adenosine triphosphatase (ATPase).
It exerts a complex effect on brain Na+/K+ ATPase
whereby it activates the Na+/K+ ATPase at low
concentrations but inhibits it at high concentrations
[260, 261]. It also acts as a potent �1A adrener-
gic receptor antagonist [262]. Nicergoline has been
available since the 1970s in over 50 countries and has
been used to treat a variety of conditions, including
AD, vascular dementia, acute and chronic peripheral
circulation disorders, and cerebral infarction [263,
264].

In preclinical studies, nicergoline has been shown
to restore cognitive deficits in AD mice [265],
upregulate BDNF [266], reverse the age-associated
cholinergic deficit and enhance K+-induced acetyl-
choline release [267, 268], activate catalase [269],
decrease oxidative stress [265, 269–271], inflam-
mation [265, 266], andapoptosis [265, 266, 272],
and decrease levels of IL-1�, IL-6, and TNF�
[266].

A 2001 Cochrane systematic review of 14
unconfounded, double-blind, randomized, placebo-
controlled trials found that nicergoline provided
mild to moderate dementia patients with signifi-
cant improvements on the SCAG, the MMSE, and
the CGI at 6 and 12 months [273]. According to
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this meta-analysis, there was no significant improve-
ment on the ADAS-Cog at 6 or 12 months in a
total of 342 patients, although there was a non-
significant trend in favor of nicergoline on this scale
[263, 273]. This is important since the ADAS-Cog
is used exclusively with AD patients. The claim
that differences on the ADAS-Cog were not signif-
icant at 6 months are based exclusively on Crook
et al. 1996, an unpublished report from Pharma-
cia and Upjohn [273]. The claim that the change
on the ADAS-Cog with nicergoline was not signif-
icant at 12 months is based on a 2001 multicenter,
randomized, double-blind, placebo-controlled trial in
346 patients with probable mild to moderate AD,
in which nicergoline 30 mg twice daily resulted in
significantly improved cognition on the ADAS-Cog
at 6 months and mean differences in ADAS-Cog
scores between treated and control patients that grew
increasingly large—including at 12 months [274].
According to the primary source poster abstract by
Amaducci et al. 1999: “In the reduced patient cohort
treated for 12 months, the ADAS-cog score differ-
ence between treatments after 3, 6, 9, 12 months
was 0.89, 1.07, 1.45 and 1.64 respectively, increas-
ingly in favour of nicergoline [274].” It was noted that
AD patients receiving nicergoline improved over the
course of the first 6 months and then deteriorated by
month 12 [274]. However, the deterioration on the
ADAS-Cog in nicergoline-treated AD patients was
less severe than in placebo-treated patients, a benefit
that became increasingly apparent up to and includ-
ing at 12 months [274]. In other words, it appears
that nicergoline resulted in a modest but significant
improvement in AD symptoms on the ADAS-Cog at
6 monthsand produced no significant improvement at
12 months but rather slowed an increasingly precip-
itous decline at 12 months [274]. It is unclear why
this study was included for the 12-month analysis
but not for the 6-month analysis in the Cochrane
review, nor is it clear whether this would change the
conclusion of the Cochrane meta-analysis that the
trend towards improvement on the ADAS-Cog at 6
months was not significant. The finding of signifi-
cant improvement on the ADAS-Cog at 6 months
was formally published after the Cochrane review
article was in a journal in 2001 [275]. There was no
mention in this formal paper of the trends toward a
slowing of decline on the ADAS-Cog at 12 months
[274, 275].

Two more recent trials, however, studied smaller
groups of patientsand yielded negative results. In a
2017 uncontrolled pilot trial, 16 patients with early

AD received 30 mg nicergoline twice daily for 1.5
years on average [276]. No statistically significant
differences were noted in the severity of dementia,
activities of daily living, cognition, and depressive
symptoms between baseline and follow-up. How-
ever, nicergoline increased cerebral blood flow in
frontal and parietal regions [276].A 2019 study in
22 patients with early AD found that, compared to
acetylcholine esterase inhibitors alone, acetylcholine
esterase inhibitors plus nicergoline preserved cere-
bral blood flow to the left temporal pole and the
middle cingulate gyrus but did not result in any sig-
nificant difference in dementia severity [277].

Nicergoline was found by a 2014 systematic review
and meta-analysis to have a good safety profile, espe-
cially compared to other ergot derivatives, with no
more adverse events reported than for placebo [278].

Therefore,it appears that nicergoline may be indi-
cated for dementia patients [273]. There are mixed
reports about whether the improvement on the
ADAS-Cog at 6 months that nicergoline provided
was significant, and there was a non-significant trend
toward slower cognitive decline on this scale at
12 months [273–275]. However, two more recent
pilot trials had disappointing results [276, 277]. This
makes it inconclusive whether nicergoline is useful
for the treatment of AD. Further clinical trials of
nicergoline in AD involving more patients appear to
be warranted.

Deprenyl/selegiline

Deprenyl, also known as selegiline, inhibits the
calmodulin-dependent PDE1A2 and monoamine
oxidase (MAO) [224, 279]. Discovered in the
1960s by Zoltan Ecseri at Hungarian drug com-
pany Chinoin, deprenyl is used clinically to treat
Parkinson’s disease, major depressive disorder, and
attention-deficit/hyperactivity disorder [280–282]. In
preclinical studies, deprenyl has been found to
increase CREB phosphorylation [283], activate Nrf2
[284–286] and catalase [283], decrease oxidative
stress [284–287], inflammation [286], mitochon-
drial dysfunction [287], and apoptosis [287],
and potentiate UVradiation-induced PARP1 activa-
tion yet downregulate PARP1 protein expression
[288].

In the latest Cochrane systematic review and
meta-analysis from 2003, which included 17
unconfounded, double-blind, randomized, placebo-
controlled clinical trials, it was found selegiline
significantly improved memory and cognition in AD
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patients at 4–6 weeks and 8–17 weeks, but not at
21–30, 35–56, or 65–82 weeks, and it improved
activities of daily living at 4–6 weeks but not at
later time points [289]. These 17 randomized con-
trolled trials (RCTs) found significant improvements
in memory on multiple scales, including the MMSE
in 6 RCTs, the Randt Memory Index and the Wech-
sler Memory Scale in 2 RCTs each, and the Buschke
Selective Reminding Test, prose recall, the Rey-AVL,
and the ADAS-Cog in 1 RCT each. Sideeffects were
reported, but very few were severe enough that a
patient had to leave the trial, and there was no sig-
nificant difference between the number of adverse
events and trial withdrawals reported with selegi-
line and placebo. However, meta-analysis of the
global rating scales (i.e., the Blessed Dementia Scale,
Gottfries-Bråne-Steen scale (GBS), Global Deterio-
ration Scale, and CGI) found no significant difference
between selegiline and placebo. Birks and Flicker
concluded that, “selegiline for Alzheimer’s disease
has proved disappointing . . . .there is [] no evidence
of a clinically meaningful benefit for Alzheimer’s
disease sufferers. This is true irrespective of the out-
come measure evaluated, i.e. cognition, emotional
state, activities of daily living, and global assess-
ment, whether in the short, or longer term (up to
69 weeks), where this has been assessed [289].”
Nevertheless, the authors’ own results do appear to
point to modest and short-termyet statistically sig-
nificant improvements in memory, cognition, and
activities of daily living on various scales with
selegiline treatment in AD patients, although the
short-lived nature of these improvements do appear
disappointing.

Cilostazol

PDE3 degrades cAMP and cGMP and is localized
primarily to the endoplasmic reticulum membrane
[290, 291]. Cilostazol is a PDE3 inhibitor used as
an anti-platelet agent. Invented in the late 1980s
by Otsuka Pharmaceutical Co., it is used clini-
cally to treat intermittent claudication in peripheral
vascular disease and to prevent stroke [292, 293].
Cilostazol has been shown in preclinical studies
to rescue cognitive dysfunction and promote solu-
ble A� brain efflux in a mouse model of cerebral
amyloid angiopathy, decrease oxidative stress and
apoptosis, suppress A� oligomerization and deposi-
tion [294, 295], inhibit GSK3� [168, 173], activate
CREB [168, 295–299], induce mitochondrial bio-
genesis via cAMP/PKA/CREB/PGC1� signaling

[298–301], induce Nrf2 and target gene expres-
sion [298, 302–305], decrease oxidative stress [306],
upregulate SIRT1 protein levels [307], activate
adenosine monophosphate-activated protein kinase
[308, 309], inhibit NFκB [306–308, 310–312], down-
regulate BACE1 [307], and decrease levels of IL-1�
[305], IL-6 [168, 305], and TNF� [298, 305].

Epidemiologically, taking cilostazol has been asso-
ciated in a dose-dependent fashion with decreased
risk of incident all-cause dementia in patients over 65
with an overall adjusted hazard ratio of 0.75 (mean-
ing that patients over 65 taking cilostazol are 25%
less likely to develop dementia compared to those
not taking cilostazol), with high-dose cilostazol users
having a 0.53 adjusted hazard ratio (meaning that
high-dose cilostazol users are 47% less likely to
develop dementia)[313]. Subgroup analysis revealed
that cilostazol users who had ischemic heart disease
or cerebral vascular diseases were significantly pro-
tected from dementia (adjusted hazard ratios 0.44 and
0.34, respectively) [313].

A retrospective study found that control patients
deteriorated by ∼2 points on the MMSE per year,
whereas cilostazol-treated patients had no change in
MMSE scores per year, a simsignificant difference
[314]. Subgroup analysis revealed that control MCI
patients had an annual decrease in MMSE score of 4
points, whereas cilostazol-treated MCI patients had
a very small, ∼0.2 point increase in MMSE score
per year, a significant difference [314]. The differ-
ences between MMSE scores for healthy control
patients and dementia patients were not significant,
although it is worth mentioning that control demen-
tia patients had an annual decrease in MMSE scores
of ∼1.1, whereas cilostazol-treated dementia patients
had an annual increase in MMSE scores of ∼0.4
points [314]. In other words, the cilostazol-treated
dementia patients appeared to improve slightly more
on the MMSE than cilostazol-treated MCI patients
(though this trend was non-significant), but the effect
of cilostazol in dementia patients may have been
found to be non-significant simply because the con-
trol dementia patients deteriorated less rapidly than
the control MCI patients did [314].

In another retrospective analysis comparing
patients with mild dementia who received either
donepezil alone or donepezil plus cilostazol, cilosta-
zol users had a significantly slower rate of cognitive
decline as measured by the MMSE [315].

In a 12-month case-control study in 60 patients
with stable AD taking acetylcholine esterase
inhibitors, cilostazol add-on usage was significantly
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associated with a decreased rate of cognitive decline
on the MMSE [316].

In an open-label, uncontrolled pilot trial of 10
patients with AD, improvement in MMSE score
was found at 6 months [69, 317]. In a randomized,
controlled trial of 20 patients with AD and cere-
brovascular disease, compared to taking aspirin or
clopidogrel, taking 100 mg/day cilostazol was found
to prevent decrements in scores on the Japanese
ADAS-Cog, Trail Making Test-A, and the Revised
Wechsler Memory Scale (logical memory-I) at 6
months. Only the control patients had decreased cere-
bral blood flow in the left middle temporal gyrus,
whereas the cilostazol-treated patients had signif-
icantly increased blood flow in the right anterior
cingulate lobe [318].

In a 6-month, randomized, double-blind, con-
trolled trial of 36 patients with mild or moderate
AD and white matter lesions, 100 mg cilostazol plus
donepezil compared to donepezil alone prevented
decreases in glucose metabolism in the parietal
and frontal lobes compared to controls and pre-
served glucose metabolism in the left inferior frontal
gyrus [319]. However, no significant differences were
observed on the MMSE, the ADAS-Cog, or other out-
come measures. That being said, cilostazol-induced
improvements in glucose metabolism correlated with
better scores on the ADAS-Cog [319]. Further trials
of cilostazol are ongoing [69, 320].

Therefore, cilostazol usage may be associated with
a decreased risk of dementia [313]. Itmay slow the
rate of cognitive decline on the MMSE in MCI
patients [314], mild dementia patients [315], and AD
patients [69, 316–318]. However, the trial data about
cilostazol in AD specifically is very limited and over-
all disappointing, with efficacy found by two pilot
trials (one controlled, the other not) studying 30 total
AD patients, but lack of efficacy found by a rigorous
clinical trial studying 36 AD patients with white mat-
ter lesions [69, 317–319]. Based on these findings,
future trials of cilostazol should focus on patients with
MCI or early AD, especially those with comorbid
cerebrovascular disease.

Denbufylline

Denbufylline inhibits PDE4, raising cAMP [321].
For unclear reasons, there is a dearth of preclin-
ical evidence about denbufylline, although PDE4
inhibition is arguably one of the most promising
PDE therapeutic targets for the purpose of cogni-
tive enhancement and AD treatment according to the

following preclinical evidence and a recent review
of the preclinical evidence about PDE inhibitors for
the treatment of AD [73]. For example, treatment
with the PDE4 inhibitor rolipram resulted in long-
lasting improvements in basal synaptic transmission,
long-term potentiation, and working, reference, and
associative memory in APP/PS1 transgenic AD mice
[322]. In rats exposed to A�40 in the CA1 hippocam-
pus, 0.5 mg/kg rolipram rescued memory deficits and
CREB phosphorylation [323]. In rats microinfused
with A�25–35 into the CA1 hippocampus, 0.1, 0.25
and 0.5 mg/kg/day intraperitoneal PDE4-inhibiting
rolipram dose-dependently reversed memory deficits
[324, 325], restored CREB phosphorylation and Bcl2
expression, decreased p65 NFκB and Bax expression
[324], decreased ROS and malondialdehyde levels,
rescued glutathione levels and SOD activity, upreg-
ulated thioredoxin, and inhibited the inducible iNOS
pathway in the hippocampus [325]. In mice injected
in the dentate gyrus with aggregated A�42, lentiviral
RNA silencing of long-form PDE4D rescued A�42-
induced cAMP decrements and memory deficits on
the Morris water maze and the novel object recog-
nition test while upregulating pSer133-CREB and
BDNF and downregulating p65 NFκB, IL-1�, and
TNF� [182]. In APPswe/PS1dE9 mice, 0.001 mg/kg
of the PDE4D isoform-specific inhibitor GEBR-
7b for three weeks at 5 months of age improved
spatial memory on the object location test at 7
months of age without affecting CREB phospho-
rylation, BDNF expression, synaptic densities, A�
levels, tau phosphorylation, or GSK3� activation
[326]. Clinical trials have not been performed of
any of these preclinically tested PDE4 inhibitors,
possibly because the side-effect of emesis has ham-
pered their clinical development [69]. However, these
preclinical effects of PDE4 inhibition are likely rea-
sonably representative of denbufylline’s preclinical
effects.

In a randomized, multicenter, parallel group,
double-blind, placebo-controlled clinical trial in 45
patients with mild to moderate AD not taking any
other medications, 100 mg of denbufylline given
twice daily for 3 months significantly improved
scores on the SCAG, the CGI, the Digit Symbol Sub-
stitution Test, and the MMSE compared to placebo
[327]. It also decreased delta activity and acceler-
ated slow activity on imaging (which are increased
in AD patients), indicating an increase in vigilance
that correlates with symptomatic improvement [327].
Neither emesis nor any other adverse effects were
reported [327].
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In a trial in 226 AD patients and 110 patients with
vascular or mixed dementia, 25, 50, or 100 mg den-
bufylline for 4 months significantly improved MMSE
scores but only when these patients were considered
as a single group [328]. Significantly more all-cause
dementia patients who received denbufylline than
those who received placebo had improved MMSE
scores. No major adverse events were reported
[328].

Therefore, the trial data about denbufylline in AD
is very limited but somewhat promising. Emesis was
not reported in association with this PDE4 inhibitor
[327, 328]. Further trials of denbufylline in AD may
be warranted.

Sildenafil

PDE5A specifically degrades cytoplasmic cGMP
produced by sGC downstream of NO [71]. Sildenafil
(also known as Viagra) inhibits PDE5, thereby rais-
ing cytoplasmic cGMP levels. Discovered in the late
1980s by Pfizer, sildenafil is used clinically to treat
erectile dysfunction and pulmonary arterial hyper-
tension [329, 330]. In preclinical rodent models of
AD,sildenafil has been shown to rescue memory
[177–180, 331–335], decrease A� levels [178, 179,
333–336] and tau hyperphosphorylation [177, 178,
180, 331], inhibit GSK3� [177–180] and JNK [331],
decrease IL-1�, IL-6, and TNF-� secretion [335],
upregulate pSer133-CREB [180, 333, 335], BDNF
[180, 336], Arc [180], and Bcl2 [336], downregulate
BACE1 [179], A�PP, caspase-3, and Bax [336], and
decrease double-stranded DNA breaks and apoptotic
cells [336]. For a recent review of sildenafil for AD,
see Sanders 2020 [337].

Single-doses of 50 mg sildenafil have been shown
in small groups of AD patients to decrease spon-
taneous neural activity in the right hippocampus,
decrease cerebrovascular reactivity, and increase
cerebral blood flow and the cerebral metabolic rate
of oxygen [338, 339]. Based on this very limited pre-
liminary evidence, clinical trials of sildenafil in AD
patients are warranted.

A dose-limiting effect of sildenafil is that high
doses of sildenafil raise cGMP levels to such an extent
that cGMP-sensitive PDE2 is activated, degrading
cAMP [72]. This effect has been shown to limit
the effective dosage of sildenafil in metabolic condi-
tions [72]. Therefore, future clinical trials should test
sildenafil combined with a cGMP-stimulated PDE2
inhibitor, such as propentofylline [72, 340].

PF-04447943 and BI 409,306

In a phase II multicenter, double-blind, ran-
domized, placebo-controlled trial, Pfizer’s PDE9A
inhibitor PF-04447943 failed to improve scores
significantly better than placebo on the ADAS-
Cog, the Neuropsychiatric Inventory, or the CGI-
Improvement scale [341].

In two multicenter, double-blind, parallel-group,
randomized, placebo-controlled phase II studies,
MCI and mild to moderate AD patients who took the
PDE9 inhibitor BI 409306 developed by Boehringer
Ingelheim did not show any significant difference
on the Neuropsychological Test Battery total z-score
at 12 weeks, nor on the ADAS-Cog11, the Clin-
ical Dementia Rating scale-Sum of Boxes, or the
Alzheimer’s Disease Cooperative Study-Activities of
Daily Living scale [342].

In preclinical models of AD, PDE9 inhibition has
been shown to rescue synaptic plasticity and memory
and decrease dendritic spine density degeneration and
cytotoxicity [213, 341, 343, 344]. However, PDE9
inhibitors PF-04447943 and BI 409306 have been
shown to be ineffective in MCI and AD patients [341,
342]. This might bebecause PDE9A regulates natri-
uretic peptide-induced pGC-generated peri-plasma
membrane cGMP, not NO/sGC-generated cytoplas-
mic cGMP [71]. As discussed, the NOS/NO/sGC
pathway and cytoplasmic cGMP pools are dis-
rupted in AD [195, 196], whereas NP/pGC/cGMP
signaling and peri-plasma membrane cGMP are
maintained or increased [195, 212–214], which might
make increasing peri-plasma membrane cGMP with
PDE9inhibitors a less viable therapeutic approach
than replenishing cytoplasmic cGMP pools with
PDE5 inhibitors [213].

Another consideration is that it is NP-activated
pGC, not NO-activated sGC, that produces the peri-
cytoplasmic cGMP that activates cyclic-nucleotide
gated (CNG) channels [68]. Therefore, PDE9 inhi-
bition might be expected to promote CNG activation,
unlike PDE5 inhibition (Fig. 2) [68, 71]. CNG chan-
nels are non-specific cation channels that allow Ca2+
ions to influx into the cytoplasm of olfactory sen-
sory neurons [345]. Excessive axonal Ca2+ influx
induces Wallerian axonal degeneration, and exces-
sive cytoplasmic Ca2+ influx induces excitotoxicity
[346–349]. Olfactory sensory neurons are exposed
to multiple sporadic AD risk factors, including
combustion-derived carbon nanoparticles and micro-
bial toxins [350–353]. AD pathogenic factors spread
between neurons trans-synaptically in extracellular
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vesicles, such as exosomes [354–358], and tau pathol-
ogy spreads through the brain in AD in a stereotypical
fashion [2]. Olfactory sensory neurons’ axons project
into the olfactory bulb [359], a brain region that
is critically affected starting from the preclinical
stages of AD [350, 351]. Thus, PDE9A inhibition
might promote pGC/cGMP-activated CNG-mediated
Ca2+ influx into olfactory sensory neurons, axon
degeneration, excitotoxicity, and possibly propaga-
tion of AD pathologies to the olfactory bulb, possibly
counterbalancing its positive effects and provid-
ing no net change in AD patients taking PDE9
inhibitors.

Furthermore, it is unclear whether CNG channel
expression is restricted to the AD brain olfactory
sensory neurons, since the CNG subunit CNGA1
is significantly upregulated at the mRNA level in
AD patients’ entorhinal cortices (Fig.3) [360], and
the cGMP-sensitive CNGA3 subunit is significantly
upregulated in AD patients’ hippocampi (Fig.4) [345,
360]. CNG mRNA was rarely expressed in a non-
AD patients’ temporal cortex, but when it was, it
was typically expressed by neurons (Figs. 5–10)
[360, 361]. This suggests the possibility that PDE9
inhibitors might promote pGC/cGMP/CNG/Ca2+-
mediated axonal degeneration and excitotoxicity in
the sporadic AD entorhinal cortex and hippocampus.

Fig. 2. The effects of PDE5 versus those of PDE9 on cGMP.

Therefore, PDE9 inhibitor might do as much harm
as good, equaling out to no net effect in clinical trials.
PDE9 inhibitors should not be pursued further for the
treatment of AD.

Caffeine

Caffeine is a non-specific/broad-spectrum PDE
inhibitor. Like propentofylline, caffeine is a methyl
xanthine derivative [362, 363]. In AD transgenic
mice, caffeine partially rescued PKA activity and
CREB phosphorylation in the striatum but not the

Fig. 3. CNGA1 upregulated in AD entorhinal cortex, adapted from Xu et al. 2018 with permission [360].
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Fig. 4. CNGA3 upregulated in AD hippocampus, adapted from Xu et al. 2018 with permission [360].

Fig. 5. Cell type-specific expression of CNGA1 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

frontal cortex [364], decreased plasma, cortical,
and hippocampal A� levels [365, 366], suppressed
BACE1 and PS1 expression [366], and improved
working memory [366].

The evidence about whether caffeine lowers the
risk of AD, cognitive decline, or dementia is mixed. In
a 2015 meta-analysis of 31,479 individuals enrolled
in 20 studies, caffeine intake from coffee or tea was
not significantly associated with the incidence of cog-
nitive disorders [367]. In a 2016 study (n = 6,467),
caffeine intake was associated with a lower risk of
incident dementia and cognitive decline in women
over the age of 65 [213, 364, 368]. In a 2016
meta-analysis of 29,155 participants enrolled in

Fig. 6. Cell type-specific expression of CNGA2 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

11 prospective studies, no association was found
between caffeine intake and dementia or cognitive
decline, but high caffeine intake was significantly
associated with a decreased risk of incident AD
[369]. In a 2017 meta-analysis of 34,282 individuals
enrolled in 9 prospective cohort studies, a J-shaped
association was found whereby 1–2 cups of coffee
daily intake was associated with lower risk of cog-
nitive disorders, but the association for 3 cups of
coffee or more was not significant [370]. However,
a 2018 dose-response meta-analysis of 8 prospec-
tive studies found no significant association between
caffeine dosage and risk of AD or dementia [371].
Nevertheless, a 2019 study found that compared to
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Fig. 7. Cell type-specific expression of CNGA3 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

Fig. 8. Cell type-specific expression of CNGA4 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

Fig. 9. Cell type-specific expression of CNGB1 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

drinking less than two cups of coffee a day, life-
time drinking two or more cups of coffee a day
was significantly associated with reduced A� plaque
burden in 411 cognitively-intact older adults [372].
Therefore, caffeine intake may be associated with a
decreased risk of dementia, cognitive decline, and/or
AD. No clinical trials of caffeine in AD have been
conducted.

Fig. 10. Cell type-specific expression of CNGB3 in non-AD tem-
poral cortex, adapted from Xu et al. and Darmanis et al. with
permission [360, 361].

Propentofylline

Perhaps the most promising PDE inhibitor for the
treatment of AD is propentofylline. Propentofylline is
a methyl xanthine derivative like caffeine that acts as a
relatively potent and nonspecific cAMP/cGMP PDE
inhibitor and adenosine reuptake inhibitor [340, 362,
363]. Propentofylline has been shown in preclinical
models to suppress A� plaque deposition, tau hyper-
phosphorylation, GSK3� activation [373], microglial
ROS generation [374–378], glutamate production,
LPS-induced microglial IL-1� and TNF� secretion
[375–377], A�-induced IL-1� secretion [373], and
microglial proliferation [374–377]. It has been shown
topromote anti-inflammatory regulatory T cell pro-
liferation [379], restoration of ATP production [131,
132], and cerebral metabolic response to a memory
task [380]. It can enhance irradiation-induced G1/S
transition block [381]. It has also reversedaluminum-
induced brain edema and hypoxia-like metabolic
changes [382] and A�-induced memory deficits
[383], as well as preventednerve cell death induced
by either nerve growth factor withdrawal or A�
[384–386].

Propentofylline has perhaps the most impressive
history of phase III clinical trials of any of the
PDE inhibitors reviewed in this manuscript.In a
1998 meta-analysis of four phase III, randomized,
double-blind, placebo-controlled clinical trials rang-
ing from 6 to 14 months, 300 mg of propentofylline
taken thrice daily 1 hour before meals provided con-
sistently significant improvements both in patients
with AD and patients with vascular dementia [375].
These benefits persisted even after treatment cessa-
tion, suggesting a disease-modifying rather than a
purely symptomatic improvement in these demen-
tia patients [375]. Subgroup analysis revealed that,
at 6 months, AD patients treated with propento-
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fylline demonstrated significantly improved global
function on the GBS, cognition on the MMSE and the
SKT, and activities of daily living on the Nürnberger
Altersbeobachtungs-skala (NAB questionnaire). At
the final visit, treated AD patients exhibited signifi-
cant improvements in all categories tested, including
on the GBS, CGI item II (global improvement), SKT,
MMSE, and NAB [375].

A 2003 Cochrane systematic review of
unconfounded double-blind, randomized, placebo-
controlled clinical trials in dementia patients found
that propentofylline treatment resulted insignifi-
cantly improved cognition at 3, 6, and 12 months
(including on the MMSE at 12 months), global
assessment at 3 months, dementia severity at 3, 6,
and 12 months (including on the CGI at 12 months),
and activities of daily living at 6 and 12 months
[376]. However, data from an additional 1200
patients in randomized clinical trials was not shared
with the authors by the drug’s manufacturer, Aventis
[376]. An update on this systematic literature search
performed in 2008 yielded no new clinical trials of
propentofylline in dementia patients [376].

In a 1999 18-month-long multinational, random-
ized, double-blind, placebo-controlled clinical trial in
486 mild to moderate AD patients, 300 mg propento-
fylline thrice daily 1 hour before meals resulted in
significantly improved cognitive performance on the
ADAS-Cog and global function on the Clinician’s
Interview-Based Impression of Change Plus Care-
giver Input (CIBIC-Plus) [376, 387–391]. Benefits
persisted 6 months after treatment cessation in the
18-month clinical trial as well, further suggesting a
disease-modifying effect [387, 389, 391]. The results
of this trial were presented in several poster abstracts
[376, 387–391]. This study was listed in the Cochrane
review but not included in the meta-analysis due to
insufficient raw data from it being available [376].

However, a 2007 book chapter claimed that after
two successful phase III clinical trials (there were
more than two), an18-month trial “failed to show
benefit, and development was discontinued [392].”
The author did not cite this claim, making its source
unclear. However, a MedScape article published in
2000claimed that the 18-month-long Propentofylline
Long-term Use Study (PLUS) showed no signifi-
cant difference between treatment and placebo in AD
patients, leading Aventis to discontinue development
of the drug [393]. According to this article, in the
late 1990s, the European Agency for the Evaluation
of Medicinal Products rejected Aventis’s application
to market propentofylline for the treatment of AD

and vascular dementia [393], andin 1999, the man-
ufacturer announced a phase III trial of the drug in
AD patients to address “regulatory concerns,” but this
was later cancelled [393]. The article does not contain
any references. A 2008 book reproduced the preced-
ing claimswithout citing its source [394]. Neither of
these books nor the MedScape article reference the
successful 18-month-long phase III clinical trial pre-
sented in the 1999 poster abstracts. It is unclear to
this author whether there were two 18-month trials,
one successful and one not, or one single trial that
this MedScape article and the subsequent two books
misreported. Regarding safety, the drug was well tol-
erated in these studies for periods of up to 18 months
[376, 387, 389, 391, 395].

Now, in the UK, propentofylline is used for the
treatment of canine cognitive dysfunction [396],
which has been proposed as a superior preclinical
model of AD compared to rodent models since dogs
naturally develop age-associated A� plaques with
AD-like symptoms [397].

An economic analysis found that adding propento-
fylline to the standard of care for patients with mild to
moderate AD in Sweden would save 3.8–7.6% of the
costs associated with caring for this population [398].
A Canadian economic analysis based on clinical trials
of 12 months’ duration found that treating dementia
patients with propentofylline would improve health
outcomes and reduce home care and caregiver costs
[399].

Propentofylline is the most effective inhibitor out
of four PDE-inhibiting xanthine derivates tested
(i.e., pentoxifylline, propentofylline, torbafylline,
and albifylline) for all of the PDE isoforms that
were measured (i.e., PDE1, PDE2, PDE3, and
PDE4), with it being particularly effective at
inhibiting cGMP-stimulated PDE2 and PDE4 [340].
This is a remarkable selectivity profile for several
reasons.First, this makes propentofylline the only
PDE inhibitor reviewed here that inhibits more
than one of the most promising to inhibit in AD
PDEs (i.e., PDE2 and PDE4) [69, 73, 340]. Sec-
ond, inhibiting multiple PDEs and boosting both
cAMP and cGMP might offer synergistic improve-
ment of CREB, PGC1�, and Nrf2, etc., signaling
[72]. Third, high doses of PDE5 inhibitor sildenafil
have the side-effect of activating cGMP-sensitive
PDE2 [72], resulting in cAMP degradation and poten-
tially disrupting PKA-mediated CREB and PGC1�
signaling [72, 82, 93]. This suggests that propento-
fylline and sildenafil might provide AD and vascular
dementia patients with synergistic disease-modifying
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Table 1

Drug Phosphodiesterase inhibited Clinical effectiveness

Vinpocetine PDE1 [224] Ineffective for the treatment of AD [253, 254]. May
hold promise for the treatment of MCI and dementia
[255–258].

Nicergoline PDE1 and cGMP-stimulated
PDE2 [259]

May be effective for the treatment of dementia [273].
Inconclusive whether effective for the treatment of
AD [273–277].

Deprenyl/selegiline PDE1A2 [224, 279] Only short-term improvements in AD [289].
Cilostazol PDE3 May be associated with a lower risk of incident

dementia [313]. May slow cognitive decline in MCI,
mild dementia, and AD patients [69, 314, 315,
316–318]. Inconclusive whether effective for the
treatment of AD [69, 317–319].

Denbufylline PDE4 [321] Inconclusive whether effective for AD [327, 328].
Sildenafil PDE5 [71] No clinical trials yet performed of sildenafil for AD.
PF-04447943 and BI 409, 306 PDE9 Not effective for AD [341, 342].
Caffeine Broad-spectrum PDE

inhibitor
No clinical trials performed. May decrease risk of

dementia, cognitive decline, and AD [213, 364,
367–372].

Propentofylline Broad-spectrum PDE
inhibitor [340]

May be effective and indicated for the treatment of
vascular dementia and AD [375, 376, 387–391].

benefit by inhibiting PDE2, PDE4, and PDE5 simul-
taneously. Propentofylline, sildenafil, donepezil, and
memantine should be compared to donepezil and
memantine (standard of care) alone in future pre-
clinical studies and clinical trials for the treatment
of AD.

CONCLUSION

Based on the preceding discussion, it can be
concluded that modulating cyclic purine nucleotide
levels with certain PDE inhibitors can prevent and
treat AD, MCI, and dementia in a disease-modifying
fashion (see Table 1 for summary of the clini-
cal effectiveness of the PDE inhibitors discussed).
Caffeine and cilostazol may be associated with
a decreased risk of incident dementia, cognitive
decline, and AD [213, 313–316, 364, 368–370, 372],
suggesting that PDE inhibitors may help prevent
AD. The clinical trials of denbufylline and silde-
nafil are promising but very preliminary [327, 328,
338, 339], so no conclusions can be drawn from
them. Clinical trials of PF-04447943 and BI 409,306
have shown a lack of efficacy [341, 342], which
might be because PDE9 inhibition increases peri-
plasma membrane cGMP (rather than cytoplasmic
cGMP) and allows Ca2+ influx through CNG [68,
71, 213]. The clinical trials of vinpocetine [253,
255–258], cilostazol [69, 317–319], and nicergo-
line are preliminary and mixed [273–277], with
cilostazol and nicergoline likely being the most
promising and the worthiest of further study of these

three [273–277]. Deprenyl/selegiline clinical trials
show short-term but not long-term benefits, making
deprenyl somewhat disappointing [289]. By contrast,
propentofylline has been shown in five phase III
clinical trials to improve cognition, dementia sever-
ity, activities of daily living, and global assessment
in mild-to-moderate AD patients on multiple scales
[375, 376, 387–391], including on the ADAS-Cog
and the CIBIC-Plus at 18month in a phase III clin-
ical trial that was presented in several 1999 poster
abstracts [376, 387–391]. However, two books pub-
lished in 2007 and 2008, respectively, claimed based,
apparently, on a MedScape article published in 2000
that an 18-month phase IIIb clinical trial failed to
show efficacy, so propentofylline was discontinued
[392–394]. It is unclear whether there were two
18-month-long phase III trials of propentofylline,
or whether the MedScape article was inaccurate.
Ultimately, propentofylline may be indicated for the
treatment of patients with mild-to-moderate sporadic
AD. Regardless, propentofylline is used now to treat
canine cognitive dysfunction [396]. Like human AD,
canine cognitive dysfunction involves age-associated
wild-type A� deposition, making it a superior pre-
clinical model of AD compared to rodent models
[397]. Ironically, this impliesthe hypothesis that if
propentofylline treats canine cognitive dysfunction,
then it may treat human sporadic AD.

Treatment effects of propentofylline persisted
months after treatment cessation in multiple tri-
als, suggesting a disease-modifying effect in AD
patients [375, 387, 389, 391]. We propose this
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disease-modifying effect may have been observed
because, as a potent and non-specific/broad-spectrum
PDE inhibitor [340], propentofylline raises cyto-
plasmic cAMP and cGMPenough to substantially
enhance neural pSer133-CREB, SIRT1, PGC1�, and
Nrf2 signaling [74–81, 92–105, 138–140, 143, 144],
improving neural synaptogenesis [84–90], memory
[84], mitochondrial biogenesis [83, 91, 93, 103],
antioxidant [112], detoxification, and survival gene
expression [84–90] while also inhibiting BACE1-
inducing inflammatory NFκB [34, 35, 147, 153,
154, 156–158] and tau-phosphorylating and CREB-
inhibiting GSK3� [159–162, 164–168, 170, 171,
173–175, 177–181].

Interestingly, the only PDE inhibitor that has com-
pleted efficacy-testing clinical trials as of 2020 that is
known to inhibit more than one of the most promising
PDEs to inhibit to treat AD according a review of pre-
clinical studies (i.e., PDE2, PDE4, and PDE5) [73]
is propentofylline [340]. Propentofylline is known
to inhibit PDE2 and PDE4 [340], two of the three
most promising therapeutic targets [73]. It is per-
haps unsurprising, then, that propentofylline is also
the PDE inhibitor with arguably the most promising
clinical trials so far [375, 376, 387–391]. However, it
is unknown whether propentofylline inhibits PDE5
as well [340], although it is a non-specific/broad-
spectrum PDE inhibitor that raises both cAMP and
cGMP, so it might [340]. If it does not, then the PDE5
inhibitor sildenafil might be the ideal therapeutic to
co-administer with propentofylline. Furthermore, by
potently inhibiting cGMP-stimulated PDE2 [340],
propentofylline would be ideal to co-administer with
sildenafil to prevent the dose-limiting side-effect
of sildenafil of activating cGMP-stimulated PDE2
[72]. Future preclinical studies should study the
effect of propentofylline and sildenafil together and
apart plus standard of care compared to standard of
care alone in AD to determine whether propento-
fylline and sildenafil combination treatment might
provide synergistic benefits. Future clinical trials
should investigate whether propentofylline improves
AD symptom severity on the ADAS-Cog and over-
all impression in a third (or second?) 18-month
phase III clinical trial in mild-to-moderate AD
patients.

CONFLICT OF INTEREST

The authors have no conflict of interest to report.

REFERENCES

[1] Cline EN, Bicca MA, Viola KL, Klein WL (2018) The
amyloid-� oligomer hypothesis: Beginning of the third
decade. J Alzheimers Dis 64, S567-S610.

[2] Braak H, Braak E (1991) Neuropathological stageing of
Alzheimer-related changes. Acta Neuropathol 82, 239-
259.

[3] Smith MA, Zhu X, Tabaton M, Liu G, McKeel DW, Cohen
ML, Wang X, Siedlak SL, Dwyer BE, Hayashi T, Naka-
mura M, Nunomura A, Perry G (2010) Increased iron
and free radical generation in preclinical Alzheimer dis-
ease and mild cognitive impairment. J Alzheimers Dis 19,
353-372.

[4] Yumoto S, Kakimi S, Ishikawa A (2018) Colocalization
of aluminum and iron in nuclei of nerve cells in brains of
patients with Alzheimer’s disease. J Alzheimers Dis 65,
1267-1281.

[5] Itzhaki RF, Lathe R, Balin BJ, Ball MJ, Bearer EL, Braak
H, Bullido MJ, Carter C, Clerici M, Cosby SL, Del Tredici
K, Field H, Fulop T, Grassi C, Griffin WST, Haas J,
Hudson AP, Kamer AR, Kell DB, Licastro F, Letenneur
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[110] Bermúdez-Ocaña DY, Ambriz-Tututi M, Pérez-Severiano
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Pérez-Roldán JM, Garcı́a-Barroso C, Franco R, Aguirre N,
Garcı́a-Osta A (2011) Sildenafil restores cognitive func-
tion without affecting �-amyloid burden in a mouse model
of Alzheimer’s disease. Br J Pharmacol 164, 2029-2041.

[181] Garcı́a-Osta A, Cuadrado-Tejedor M, Garcı́a-Barroso C,
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