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Trim optimization improves the energy efficiency of ships, thus reducing operational costs and emis-
sions; however, trim tables are only available for a limited number of ships. There is thus a desire to
develop additional, more accurate trim tables without the need for expensive model testing. The objective
of this research was to develop a method to decrease fuel consumption by trim optimization, by a dynamic
shaft power estimation model based on available operational data. A method that uses noon report data
and a grey-box modelling approach is proposed. The grey box model consists of a multi-layer feedforward
neural network to estimate the required shaft power, using operational parameters and an initial estimate
of the required shaft power. A case study is presented for a modern chemical tanker and sea trials have
been conducted to validate the results. The method provides correct trim advice for full load conditions;
however, the magnitude of the effect is smaller compared to sea trial results. The model is able to estimate
the required power with an average accuracy of over 6% for a random subset of the noon report data. Due
to challenges inherent to noon reports as a data source, the actual effect of trim and speed have a bigger
magnitude than the extracted trend.

Keywords: Trim optimization, grey-box modelling, sea-trial validation, noon reports, chemical tankers

1. Introduction

The IMO [13] has set the goal that greenhouse gas (GHG) emissions from inter-
national shipping should peak as soon as possible and should be reduced by 50% by
2050 compared to 2008, consistent with the Paris Agreement of the United Nations
[23]. GHG emissions from the combustion of oil-based fuels are directly propor-
tional to fuel consumption, which makes improving the ship’s energy efficiency one
of the possible solutions to reduce GHG emissions [4]. To reduce GHG emissions,
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the Marine Environment Protection Committee (MEPC) of IMO adopted a strategy,
in which shipping companies are supported to improve the energy efficiency oper-
ational index (EEOI) of their ships in operation [12]. Trim optimization is one of
the approaches considered by the industry to improve the energy efficiency of ships,
thereby having the potential to both reduce operational costs and in reducing the
emissions of the ship. Trim optimization is the selection of trim with the goal of fuel
consumption reduction, by ballast water management and load distribution, which
can be done without significant changes to the ship structure [4,9,14].

The MEPC [17] estimates that optimization of trim and draft can reduce the fuel
consumption by 0.5% to 3% on main engine fuel consumption for most vessel types.
For ships with partial loads, this can be as high as 5%. Coraddu et al. [4] conclude that
improvements exceeding 2% in fuel consumption for a handymax chemical tanker
can be achieved and DNV-GL [6] records savings between 2% and 14% for dif-
ferent draft and speed combinations of a handymax bulk carrier. Therefore, it can
be stated that to achieve an effective and significant fuel consumption reduction by
trim optimization a comprehensive study should be performed on several ship types,
considering appropriate operative profiles.

Multiple approaches exist to determine the optimal trim for given load conditions.
Approaches using model scale data, i.e. model scale towing tests or CFD simulations,
inherently suffer from scaling effects and need to be performed for every ship hull
shape again when trim optimization is to be used for other ships. Moreover, these
approaches generally assume calm water conditions, while the influence of trim on
fuel consumption in reality also depends on weather and sea conditions [1,4,7,14].

On the other hand, ship-scale data can be used. Ship-scale data can be divided into
continuous measurements (CM) and noon report (NR) data. CM data are considered
to provide accurate data, but typically require additional instruments and sensors not
readily available on most ships. NR data, on the other hand, are considered to be
a readily available data source. This research supports the idea that it would be of
additional value for the industry to develop a method to perform trim optimization
based on NR data. It should be noted, however, that the quality of NR data may be a
concern [2]. Human error is a source of noise in observing and recording the required
data fields and a mismatch exists between the snapshot of conditions on one hand,
and the 24-hr averaged sailing speed and recorded shaft power or fuel consumption
on the other hand. The goal of this research is to improve existing methods of using
NR data for trim optimization.

2. Review of modelling strategies for fuel consumption estimation

Multiple approaches exist to develop models that could estimate either the fuel
consumption for propulsion or required propulsion power in various conditions, re-
ferred to as fuel consumption modelling. The approaches can be divided into white-
box model (WBM) approaches, black-box model (BBM) approaches and grey-box
model (GBM) approaches.
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2.1. White-box modelling (WBM)

Fuel consumption modelling can be done by applying physics-based relations and
relations found by regression analysis from the model and full-scale experiments.
This approach is known as white-box modelling (WBM). WBMs are generally rather
tolerant to extrapolation, but the margin of error to estimate the fuel consumption
for a specific ship in realistic sailing conditions, especially considering wind and
waves, can be large [4,15]. While the field of WBMs for fuel consumption is vast,
the most relevant models for this work regards those for calm water resistance and
those for hull forms relevant to chemical tankers, such as the well-known low-fidelity
Admiralty coefficient, the method of Holtrop and Mennen [11] or the method of
Lützen and Kristensen [16].

2.2. Black-box modelling (BBM)

Alternatively, it is possible to observe data to predict the output of a system given
some input data, without the requirement to understand the system behaviour. This
approach is described as black-box modelling (BBM). A BBM gives a functional
relationship between system input and output, which does not represent any physical
significance, and can be more effective to model trends in process behaviour [28].
Moreover, a BBM can be more accurate than a WBM, but requires large amounts
of data for training and often suffers from poor extrapolation qualities [15,18,24,26].
The performance of a BBM depends on the dataset and problem being studied [8,25].

Applying a BBM approach to model propulsion power of fuel consumption based
on NR data has been done by Du et al. [7], Bal Besikci et al. [3], and Pedersen and
Larsen [19] using artificial neural networks (ANNs) and by Pedersen and Larsen [20]
and Yuan and Nian [27] using Gaussian Process regression (GP). Petersen, et al. [21]
investigated and compared the use of an ANN and GP, by using an operational high-
frequency dataset of a ferry over a period of two months. In all tests performed in the
paper, the performance of the ANN was a little better than the GP. Additionally, in
the research of Pedersen and Larsen [20] and Yuan and Nian [27], it was found that
similar accuracy can be obtained, although a GP is not appropriate for the analysis of
large datasets because the complexity increases with the number of input parameters
to the third power [20]. Moreover, in the case of an ANN, it is suggested that larger
networks will improve the ability to extrapolate beyond the available input data [18].
This research has thus selected the use of an ANN over a GP for modelling fuel
consumption based on noon report data.

Pedersen and Larsen [19] present an ANN to estimate the propulsion power of a
110,000 DWT tanker in various conditions. Different combinations of input variables
are used, enabling the comparison of the effect of the selection of variables. Using
NR data only resulted in an accuracy of about 7%. In the best case, combining NR
data with hindcast weather data resulted in a model accuracy of about 2%. However,
the available data set is split into four relatively small data sets with a limited range
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of conditions. Therefore, the accuracy is likely to decrease when new conditions are
met.

The model of Du et al. [7] uses 10 input variables to model the daily fuel con-
sumption for two 9000 TEU container ships based on NR data. The model accuracy
has been expressed in terms of root mean square error (RMSE), which was 8.23 and
9.34 MT/day for both ships for the best performing developed ANN. As a reference,
the average fuel consumption of one of the ships was approximately 74 MT/day,
estimated based data description provided for one of the ships.

In addition, Bal Besikci et al. [3] present an ANN using 7 input variables to model
the hourly fuel consumption of a 150,000 DWT oil tanker. The accuracy is expressed
in an RMSE of 0.141 MT/h on a mean consumption of 1.89 MT/h. However, an
alternative definition of RMSE is used.

The work of Parkes et al. [18] shows the potential of using CM data and ANNs in
estimating the shaft power. Data of three sister vessels over a period of approximately
two years are combined. The presented model was able to estimate the shaft power
with a relative error of 7.8%. According to the authors, the accuracy will likely be
better within the region of sufficient data points and less accurate in ‘extreme’ con-
ditions. Other literature that use a BBM approach and CM data for fuel consumption
modelling include Pedersen and Larsen [19], Petersen, et al. [21], and Radonjic and
Vukadinovic [22].

2.3. Grey-box modelling (GBM)

Grey-box models (GBM) aim to combine the advantages of both a WBM and a
BBM. The goal is to retain physics-based knowledge from the WBM according to
its level of fidelity about the physical behaviour of the ship regarding the propulsion
power and resistance, while the BBM integrates what is known from the specific
operational data of the ship [15,26].

The advantages of GBMs over WBM and BBM as described by Yang et al. [26]
are:

• More accurate than a WBM by considering ship-specific, real operational con-
ditions

• Less historical data required than a BBM
• A certain degree of extrapolation capacity
• Can avoid unreasonable results because of over- or under fitting of available

data.

The improved performance of a GBM over a WBM or a BBM in predicting fuel
consumption of a ship, and the improved extrapolation capacity of a GBM over a
BBM especially, is shown by the work of Leifsson et al. [15]. In [15], a GBM was
constructed to model the fuel flow rate (samples every 15 s) of a cargo ship that
operates between Iceland and Northern Europe. The ship typically operates with
speeds between 18 and 20 knots. When the vessel operates at different sailing speeds
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Fig. 1. Literature gap in fuel consumption modelling.

than normal operations, the GBM predicts the fuel consumption closer to the actual
data than the BBM, indicating better extrapolation results. It is described that the
overall RMSE of the WBM is more than three times larger than the GBM.

A WBM and a BMM can be combined in two ways: in serial or in parallel [5]. In
serial grey-box modelling, the BBM is provided with an initial estimation of the fuel
consumption, which can be seen as an additional parameter for the BBM. In parallel
grey-box modelling, the BBM models the residual of the measured and calculated
fuel consumption. The authors evaluated both ways and found a marginal difference
in outcome between the two.

2.4. Literature gap

Despite the potential to decrease fuel consumption by trim optimization based
on NR data and the potential of improved capabilities of a GBM over a BBM, no
research has been published, to the best of the authors’ knowledge, considering such
an approach to extract knowledge from NR data for trim optimization purposes. The
gap in the existing literature is illustrated in Fig. 1. This research focuses on a GBM
approach using NR data.

3. Method

3.1. Model variants

Two WBMs have been used and compared to make an initial estimate of the re-
quired shaft power. The first WBM uses the method of Lützen and Kristensen [16]
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for both the resistance estimation and the propulsive characteristics, which is de-
scribed as PLK. The other WBM uses the method of Holtrop and Mennen [11] for
resistance estimation and the method of Lützen and Kristensen [16] for propulsion
characteristics. This WBM is described as PHM. The technical details of PLK and
PHM can be found in their respective original sources [11,16]. It was found that
the proposed method of Holtrop and Mennen [11] is hard to implement for a ship
with a controllable pitch propeller (CPP), while the P/D-ratio is not recorded in the
NR data. A third model variant consists of a pure BBM, to compare the results of
GBM-PLK and GBM-PHM.

3.2. Data pre-processing

Data pre-processing is required to process the abundance of available data into us-
able input for the ANN. Garcia et al [10] distinguish six steps in data pre-processing
for big-data analysis, which are data cleaning, transformation, integration, normal-
ization, missing values imputation, and noise identification. Parkes et al [18] show
the added value of a Spearman Rank correlation analysis for feature selection, which
is adopted in the framework as well. Also, data selection is added as a step, as it
has been found during the analysis that some additional data might be filtered out
for specific reasons and the use of different datasets enables to perform additional
comparisons. Finally, a sequential order is introduced. The final data pre-processing
framework is shown in Fig. 2.

The data pre-processing steps in group A start with the integration of the available
data. Steps in group B consist of increasing the quality of the data. The steps of data
selection in group C make it possible to filter for additional requirements. Feature
selection has been done by the Spearman Rank analysis. The goal of this analysis
is to prevent selecting redundant variables and to select the most strongly correlated
variable between similar ones. Using input variables which are strongly correlated
to each other, may result in the overfitting of these variables [18]. Finally, Da Silva
et al. [5] recommend scaling the in- and output variables, to avoid saturation of the

Fig. 2. Data pre-processing framework (based on [5]).
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neurons. This is done according to the proportional segment principle, shown by
Equation (1). Here z is the scaled value and x is the value from the NR.

z = 2 ∗
(

x − xmin

xmax − xmin

)
− 1 (1)

3.3. Network training

The neural network toolbox of Matlab2017b has been used to train the neural
network.

3.3.1. Network initialization
Three sets of data are composed from the available data points. A training set

(70%) is used to train the network, a validation set (15%) is used to validate if the
performance of the trained network has reached a stopping criterion and a test set
(15%) is used to evaluate the performance with new data. Additionally, it is ensured
that the extreme values of the input variables are within the training subset. Oth-
erwise, if these extreme values are allocated to the test subset, the network tries to
generalize values that are outside the domain of the input variables, causing signifi-
cant errors [5].

3.3.2. Network settings
Different learning algorithms, all following a supervised learning strategy, have

been used. The Bayesian Regularization training algorithm has shown to provide the
most accurate and consistent results and was relatively fast. The hyperbolic sigmoid
function has been used as the activation function. Network training was stopped
when the network accuracy of the validation test set decreased for six consecutive
epochs. Then the model accuracy was determined using the test subset. The accuracy
of the model has been evaluated by calculating the mean relative error (REK ) of all
K relative errors of each K th training subset, with all N noon reports in the test
subset (see Equation (2)). Here, Ŷ is the estimated output value and Y is the actual
output value known from the nth noon report.

RE = 1

K

1

N

K∑
k=1

N∑
n=1

Ŷn − Yn

Yn

(2)

3.3.3. Network topology
The final network topology has been determined empirically by a topology analy-

sis, varying from one to four hidden layers with a range of several nodes in each layer.
The Fletcher–Gloss method (Equation (3)) was used as a guideline for the number
of neurons in the hidden layer(s) (n1), where n is the number of input variables and
n2 the number of output variables.

2 ∗ √
n + n2 � n1 � 2 ∗ n + 1 (3)
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Table 1

Neural network settings

Train function Bayesian Regularization (‘trainbr’)

Hidden layer size 18 (GBM-PHM)

15 (GBM-PLK)

27 (BBM) as this was found optimal after network topology
analysis for each model

Activation function Hyperbolic sigmoid function

Max epochs 200

MSE goal 0.01/100

Max time 1200

Max consecutive validation failures
(increase in mse)

6

Train ratio 0.7

Validation ratio 0.15

Test ratio 0.15

Performance has been measured in terms of relative accuracy and stability, in
terms of the standard deviation between all k results. Because the performance de-
pends on the data subset division, cross-validation is done by repeating the training
algorithm k = 100 times for new randomly sub-sampled data sets. The final network
settings used in the model are summarized in Table 1.

4. Case study model description

4.1. Case study data pre-processing

For this work, NR data of six sister vessels of a modern large chemical tanker
have been collected over their lifetime, which is a period of 2 to 3.5 years, result-
ing in 2923 noon reports. Next to this, the days since the last hull cleaning and
propeller polishing were collected, as well as ship-related information required for
the WBMs. Wind, sea, and swell directions were recorded in points of the compass
(N-NNE-NE-. . . ) which had to be transformed into directions relative to the ship’s
heading. Average ship speed is defined as the log distance through water per hour of
the reporting period.

Logical rules have been applied to search for missing or deviating data entries.
The recorded power is compared with the estimated power using the Admiralty coef-
ficient, to find outliers in shaft power recordings. In this study, 935 NRs were deleted
in these steps. The result of these steps is a cleaned data set, which is used to identify
the boundaries of the model. A description of the draft and trim recordings is given
in Fig. 3, which shows that in most cases (58%) the ship sails at a (near) full loaded
condition, while other load conditions are sailed less frequently. At this condition,
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Fig. 3. Frequency histogram of load and trim conditions.

most trim conditions have been sailed, but noon reports with trim by bow are scarce.
At other draft conditions, the ship is trimmed to the stern more often, which can be
explained by the weight distribution of the ship.

The step of data selection in group C makes it possible to filter for additional
requirements. This has been done by composing two data sets, which enable to com-
pare the results and understand the effect of the rough weather conditions on the
model performance. The main data set represents all encountered weather condi-
tions. The other data set represents calm water conditions, that fulfill the following
two conditions:

• A sea state of 3 on the scale of Douglas is taken as the upper bound, which
relates to slight waves, with a wave height up to 1.25 m.

• A swell state of 2 on the scale of Douglas is taken as the upper bound, which
relates to low waves, defined as a swell height up to 2 m (lowest swell height
on the scale of Douglas).

The result of the Spearman Rank analysis is shown in Fig. 4.
A third-order relation between ship speed and required power may be expected,

therefore also a correlation between these factors may be expected. However, this
relation is not found in the correlation analysis. Due to the nature of ship operation
during voyages, the speed is more a result of engine settings and weather conditions.
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Fig. 4. Spearman rank correlation for all weather conditions.

In rough conditions, the speed will vary more than in calm water conditions. The
correlation was significantly stronger (+0.35) for the calm water dataset.

Sea water temperature is preferred over air temperature since the seawater temper-
ature is less correlated with wind, sea and swell factors. Moreover, sea water temper-
ature is required for the WBMs. Still, sea water temperature is correlated with wind,
sea and swell factors. The result of taking such a variable into account has been ob-
served with a trained network. The effect of seawater temperature was much bigger
than can be explained by maritime physics only. Likely, low sea water temperature
comes together with, in general, worse wind, sea and swell conditions. However,
excluding this variable resulted in a drop in accuracy of about 0.2% of the model
performance. Therefore, this variable is selected as well in the final feature selec-
tion. This small experiment has shown that variables that are correlated to each other
do contribute to model performance, but the extracted effects are affected by the
correlated variables. These lessons are useful for further model evaluation.

The selected variables are:

• Speed through water (knots)
• Mean draft (m)
• Trim (m)
• Sea water temperature (°C)
• Wind force (Bf)
• Relative wind direction (°)
• Sea state (Douglas)
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• Relative sea direction (°)
• Swell states (Douglas)
• Relative swell direction (°)
• Days since last hull cleaning
• Days since last propeller polishing

4.2. Network topology (case study)

The results of the network topology analysis of one of the model variants are
shown in Fig. 5. The topology analysis for the other two model variants showed
very similar behaviour. Network topology and corresponding results are shown in
Table 2. Generally, it is observed that the differences in performance between the
three models are very small. In most cases, the use of one hidden layer provides a
more accurate and stable network than a network with two hidden layers. Both the
average relative error and the standard deviation of the relative errors of each training
iteration is generally smaller. Relative error of the test set has been used as metric to
evaluate the network topology performance. During the network topology analysis
it was found that multiple layer network topologies tend to cluster estimations to a
small range of mean values, indicating overfitting on the training data. Considering

Fig. 5. Topology analysis for the GBM – PLK model variant. The number of neurons in each hidden
layer is represented by the x-axis. The relative error (RE) is represented by the left y-axis, the standard
deviation between k results of the RE is represented on the right y-axis.

Table 2

Results of network topology analysis

Optimality topology RE STD

GBM – PHM 1 × 18 6.62 0.431

GBM – PLK 1 × 15 6.58 0.452

BBM 1 × 27 6.63 0.417
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multiple hidden layers, the variability in estimated shaft power tends to be limited.
Network topologies with three of four hidden layers tend to cluster estimations to a
small bound of mean values and sometimes even provide one single shaft power for
all speeds.

5. Model results

The model is able to estimate the required shaft power given a specified set of
input variables. In that way, trim tables can be generated dynamically. For each com-
bination of draft and trim, shaft power is estimated for one speed at a time, while
taking into account the weather and fouling effects. For a full load condition and
calm water conditions, the model results of the effect of trim on power are shown
in Fig. 6. These results show that a linear effect between trim and shaft power is
extracted from the noon report, showing that a bow trim of 0.5 m is optimal and can
save approximately 1% (full load) to 2% (ballast load) of the required shaft power
compared to even keel.

By varying one variable at a time, while keeping the other parameters constant, the
effect of all variables on shaft power can be extracted. This approach has been used
to understand the model behaviour. For example, in further simulations, it has been
found that the effect of speed on shaft power was unrealistically small. The effect of
speed on power is shown in Fig. 7, for calm water and moderate conditions. In the
case of moderate conditions, the model attributes a significant effect of the weather
and sea conditions on shaft power, causing an unrealistic relationship between ship
speed and shaft power for speeds of 8 knots and more. This problem has not been
solved yet within this research.

Fig. 6. Model results regarding the effect of trim on shaft power for full load condition.



R.H. Zwart et al. / A Grey-box model approach 53

Fig. 7. Model results regarding the effect of speed on shaft power for two different conditions.

6. Validation by sea trials

Three sea trials have been conducted to validate the model results. In the sea trials,
different trim conditions were tested at a range of speeds.

6.1. Description of sea trials

The sea trials have been conducted according to the following prerequisites and
instructions:

• Sea state must be less or equal to 3
• Swell state must be less or equal to 2;
• Velocity of the current should be less or equal to 1.5 knots;
• Shaft generator should be turned OFF;
• Maintain a steady course with autopilot on fixed heading;
• The counter rudder angle to maintain the steady course, shall not exceed 5 de-

grees;
• Ship speed through the water should increase, starting with 11 knots, and fin-

ishing with 14 knots;
• Measurement of the average required shaft power should be performed over a

period of at least 15 minutes and started only after a fairly constant shaft power
is reached.

The first sea trial is performed at a (near) full load condition with trim conditions
in the range of −0.50 m (by the bow) to +0.50 m (by the stern), with steps of 0.25 m.
Trimming is done by adding ballast water, therefore each mean draft condition and
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displacement is different for each tested trim condition. Next to that, trim conditions
of +0.25 m and +0.50 are done in slightly stronger winds and slightly higher sea
states.

The second sea trial is performed in near ballast load condition. Measured trim
conditions vary from −0.50 m to +2.0 m, in steps of 0.50 m. The ship is trimmed by
shifting ballast water, therefore keeping the displacement similar. Overall weather
conditions are on the limit of pre-set boundaries within which the experiment should
be performed.

Another sea trial is performed at full load condition, but for a stern trim of +0.50 m
only. Therefore, the effect of trim cannot be extracted, but the results show a similar
relationship between speed and power compared to the other sea trials for a trim
condition of +0.50 m.

6.2. Validation

Model performance is validated in two ways. The first way is to copy all sea trial
conditions one-to-one. The goal of this approach is to see how all effects, including
the effect of weather and sea conditions, are embedded in the model and if the shaft
power estimated by the model follows a similar curve as the shaft power from sea
trial results. A drawback of this approach is that the actual effect of trim gets blurred
by differences in external factors. For example, sea trial results may show a local
maximum at a certain trim condition, but this may have been caused by an increase in
wind. Therefore, the second approach is to take a considered average of the results of
all conditions. The effect of trim only, provided by the model, can then be compared
with the observed trend in the sea trial results. The results of both sea trials are shown
in Figs 8–12.

6.2.1. Performance of model variants
The results of the model variant GBM-PLK and the pure BBM perform very sim-

ilarly in both sea trial conditions. On a marginal level, the GBM-PLK shows a trend
with a steeper slope for the first sea trial conditions, which is closer to the sea trial
results than the trend of the BBM. Results of the GBM-PHM for the first sea trial
show a weaker relationship between trim and power and for speeds of 11, 12 and 14
knots, an opposite trend is observed in the first sea trial.

6.2.2. Trend in trim on power
A clear trend is found in the results of the first sea trial, showing that an increase in

trim causes an increase in required shaft power, despite the additional ballast water to
achieve forward trim. Fuel model results show as well that the effect of trim is bigger
than the effect of the small increase of mean draft due to additional ballast water (see
Fig. 9). A similar trend with a smaller magnitude is found between trim and power
by the fuel model. Regarding the first sea trial, on average a decrease in power of
1.3% is found when the ship is trimmed from even keel to 0.5 m bow trim. Sea trial
results confirm that bow trim is optimal, with a similar trend, but with a much bigger
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Fig. 8. Model- and sea trial results of the first sea trial in full load condition. Model input is equal to the
actual sea trial conditions.

magnitude. Depending on the speed, approximately 6% and 8% of required shaft
power can be saved with a change in the trim of 0.50 m. The difference in power
for stern trim conditions (stern trim of 0.25 m and 0.50 m) may be exaggerated, due
to an increase in weather parameters. This increase is visible in the model output of
Fig. 8 as well. A note should be made here that noon report data of negative trim
was available but relatively very limited. This limits the model to accurately predict
normalized shaft power for negative trim. Sea trial results with more positive trim
would further allow evaluation of the model performance.

A much smaller effect of trim in power is found in the second sea trial. In zero
noon reports, a stern trim of 0.25 m, even keel or bow trim for this load condition is
recorded, meaning that the model is extrapolating for the data points of even keel and
0.5 m bow trim for this sea trial. For these conditions, propeller immergence cannot
be ensured. The model nevertheless performs consistently with the sea trial results.
The model performs worse compared to the first sea trial. A maximum is found for
1.0 m stern trim for speeds of 11, 12 and 13 knots and 1.0 m and 1.5 m stern trim
for a speed of 11 knots. In the sea trial conditions, it is seen that the wind force was
5 Beaufort for this condition, instead of 3 or 4 Beaufort for other trim conditions.
This peak in power is not as clearly visible in the model results. Also, the decrease
in power visible in the sea trial results for a trim of 2.0 m is not seen in the model
output. This local minimum is not visible in the trim tables based on model scale
towing tests. A second sea trial can confirm if this local minimum is due to trim
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Fig. 9. Model- and sea trial results of the first sea trial in full load condition. Model input is the average
of the actual sea trial conditions.

effects or other effects. Model results for a speed of 11 knots deviate the most, which
is the speed represented by the least number of NR.

6.2.3. Structural deviations between fuel model and sea trial results
In the first sea trial, a local minimum in power is observed at even keel for speeds

of 11 and 12 knots, which is not present in the sea trial results. This condition is
specified with very calm water conditions with less displacement compared to the
bow trim conditions, which could be a reason for this local minimum. Also, the clear
drop of the sea trial results for a speed of 13 knots and a trim of −0.5 m in respect to
−0.25 m, is not visible in the model results.

The trend between trim and power from the fuel model is similar for all mean
drafts, whereas sea trial results and model scale towing tests show different mag-
nitudes of the trend and a possible different trend for part load conditions. This
indicates that the fuel model trend is averaged for all draft conditions, instead of
a unique trend per draft condition. Since the majority of recorded draft conditions
are for 9.5 m and more, it could be that the trend for this draft condition is (partly)
extrapolated to other draft conditions. A solution could be to perform a model exper-
iment, by training the neural network with noon reports for a limited range of draft
conditions, for example, ballast load, part load and full load. Additionally, sea trials
at part load conditions help to understand the effect of trim on power for this load
condition.
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Fig. 10. Model- and sea trial results of the second sea trial in ballast load condition. Model input is equal
to the actual sea trial conditions.

Only a small difference in shaft power is seen between the trend lines of the model
for different speeds, whereas the differences between the actual shaft power are much
bigger. As was expected based on Fig. 7, weather factors dominate the power esti-
mation, causing the effect of speed on shaft power is unrealistically embedded by
the model, especially for moderate sailing conditions. For a full load condition, the
model estimates the power correctly for a speed of 13 knots. For the part load con-
dition in the second sea trial, the model estimates the power correctly for a speed of
14 knots. A few possible reasons can be given.

In the noon report data, a significant part of the lower speed recordings still have a
high shaft power, explaining the weak correlation between speed and power found in
the Spearman rank correlation analysis (see Fig. 4). Therefore, the achieved sailing
speed is not only the result of the engine power but also of the weather and sea
conditions, for which a similar shaft power is required.

The engine settings can be a reason as well for high shaft power at lower speeds.
The considered ship class has a CPP with a shaft generator. To operate the shaft
generator, a constant shaft speed is required, meaning that reducing sailing speed
is to be done by decreasing the pitch only. This may cause a significant loss of the
propeller efficiency, therefore (partly) explaining the higher recorded shaft power for
lower speeds.

Errors in the noon report or sea trial data may cause errors in the model perfor-
mance. These errors may include: (i) the mismatch between average shaft power
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Fig. 11. Model- and sea trial results of the second sea trial in ballast load condition. Model input is the
average of the actual sea trial conditions.

Fig. 12. Legend of Fig. 8–11.

and a snapshot of weather conditions and heading; and (ii) the human error in es-
timating and recording weather conditions and operational parameters (for example
actual shaft power instead of day-average shaft power). From observing the NR data,
it is known that draft and trim conditions are not always updated daily in the noon
reports, while these are likely to change as a result of fuel consumption. Another
reason for differences between model and sea trial results can be that the model does
not include a parameter, which has a significant effect on shaft power or other input
parameters.

6.2.4. Model applicability
Due to the cluster of recordings around a speed of 13 knots, the accuracy is optimal

at around this speed and gets worse for speeds below 12 knots. A linear trend is
found between trim and power for all mean drafts, showing potential in fuel savings
between 1 and 2% for a change in the trim of 0.5 m. Validation with sea trials shows
that the trend is fairly accurate for the full load condition and less accurate for the
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ballast condition. However, the magnitude of the trend is too small and the effect of
speed on power is unrealistically embedded. Sea trials at ballast condition deviate
for 1.0 m and more stern trim conditions with fuel model results.

Based on (i) the operational profile of the ship class, which shows that mean draft
conditions bigger than 9.5 m represent 58% of the historical noon report data, (ii) the
almost equal trend between trim and power in the fuel model against difference in
magnitude of the power recording of the sea trial results and (iii) the possibility of
a deviating trend at part load condition, it is concluded that the fuel model provides
accurate trim advice for full load conditions. Despite the partially good performance
of the fuel model for ballast condition, no sufficient evidence is provided yet that the
fuel model should be used in practice for load conditions other than full load.

7. Discussion and modelling limitations

Model results regarding the trend between trim and power are now validated by
two sea trials, each on a different mean draft condition. Some changes in shaft power
in the performed sea trials are now attributed to external effects such as an increase
in weather parameters. More sea trial results would enforce these statements. Sea tri-
als are especially required to validate the model behaviour for part load conditions.
Despite the promising initial results, the current model does have several limitations
that should be addressed stemming, in part, from the noon report data source. Due
to limitations in noon report data, it is not possible to capture all relevant parameters
related to reducing shaft power, and thus this model cannot yet claim to be signif-
icantly (95%) exhaustive. While the Spearman Rank analysis provides confidence
that vessel trim is one of the important variables that the ship operator can adjust, it
cannot be said with certainty that it is the most significant factor. Other factors, such
as propeller pitch of the CPP or detailed level of bio-fouling, are not captured but
play a large role as well.

The extracted trends between trim and required shaft power are almost equal for
all draft conditions. Considering the robust design of the ship in the case study, this
might be true. However, sea trial results indicate a different magnitude of the effect
of trim for different draft conditions. Moreover, the results from model scale towing
tests indicate a different trend for a mean draft of 7.0 m, which is not yet validated
by sea trials. It cannot be concluded with confidence that the extracted trends by the
fuel model are true for all mean drafts. A possible solution would be to group the
noon reports for different draft conditions and perform the analysis presented in the
report for each group of mean drafts. The result would be a trend between trim and
power for each group of the mean draft, which would increase the interpretability
of the GBM and enable to conclude if different trends exist for different groups of
mean drafts. Since the number of noon reports will be less for each group of mean
drafts, the number of groups of drafts should be limited.
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Power estimations of the WBM deviate significantly from the power recordings
in the noon report data for speeds below 12 knots and above 14 knots. A research
opportunity is identified, to research the effect of a modified WBM on the perfor-
mance of the GBM. The WBM modification can be done by including an estimation
of the effect of weather conditions on the required shaft power in the WBM, which
could improve the extrapolation qualities of the GBM. The model accuracy would
then improve for speeds outside the region of 12 to 14 knots of speed.

The specific fuel consumption (sfc) is assumed to be constant. However, this will
be a function of engine speed, pitch setting of the CPP, and maintenance level and
will differ between ships. To estimate the fuel consumption more accurately, this
assumption should be dropped and be determined as a function of the mentioned
factors.

The effect of hull and propeller fouling is included by considering only the days
since the last hull cleaning and last propeller polishing. However, the actual degree
of fouling is much more complex. Further model improvements may consider for
example the geographical locations or the consecutive days in warm water.

8. Conclusion

The GBM-PLK variant is considered to perform superior to the other model vari-
ants. This model followed the trend of the sea trial results the most accurate. The ac-
curacy of the GBM-PLK fuel model is 6.58% for a random test subset from the noon
report data, which was slightly better than the other model variants. The GBM-PHM
variant has shown to result in opposite relations between trim and power compared
to the results of the sea trials in multiple cases. A linear trend is found between trim
and power for all mean drafts, showing potential in fuel savings between 1 and 2%
for a change in trim of 0.5 m.

Validation by sea trials has shown that the model is able to provide correct trim
advice, while considering dynamic effects of weather and sea conditions, for full
load conditions and speeds between 12 and 14 knots. These conditions are most
frequently encountered in the NR data. The effect of speed on power is unrealistically
embedded in the model for other conditions than calm water.

The data pre-processing framework has been constructed and used successfully
for this case study. However, due to the nature of noon reports, the quality of the
noon report data remains a source of noise. As a consequence, the knowledge that
can be extracted from noon report data remains to find trends, but the magnitude is
likely to differ from the actual effects. The main problems with using noon report
data are:

• The discrepancy between the averaged recordings of shaft power and speed
through water over 24 hours on one hand, and the snapshot of weather and sea
conditions and the relative direction on the other;
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• the highly concentrated power recordings for a certain engine setting, causing
weakly defined relations between speed and power;

• accurate and daily updated static forward and aft draft is a prerequisite to finding
realistic trends between trim and required power.

No indication is observed showing that the GBM approach increases the extrapo-
lation qualities of the BBM, nor decreases it. The most significant limitation in input
data is the relatively small number of noon reports with small forward draft con-
ditions (small mean draft with forward or even keel trim condition) and low speed
(lower than 11 knots) recordings. The effect of speed on power is not realistic for
both the GBM and the BBM approach and no difference is observed between the
model variants in low forward draft conditions. Other advantages of a GBM over a
pure BBM may still hold, which have not been proven in this analysis. These advan-
tages include the prevention of unreasonable results, and the possibility to use less
historical data than a pure BBM.
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