	-	٠	-	۱
		۰	-	,

k	= reduction factor.	1-4	= inflow velocity (excluding any induced
μ _i	= the distance along a helix axis assoc-		velocities) expressed as a fraction of
	iated with one radian of angular		ship speed.
	rotation: $\mu_i = r$, tan β_i	Ψ	= angle between the vortex wheet and
ρ	= fluid density.		the camber-line tangent.
Q	= strength of source distribution over	ω	= angular velocity of the propeller.
	the portion of the vortex sheet cor-	subscript	implies association with the point at
	responding to the blade.	0	which the induced velocities are being
φ	= an angular measure in the i, j plane		calculated.
	measured from the jaxis as shown in	super-	denotes differentiation with respect
	fig. 1.	script '	to radius.
Φ	= an angle measured in the same way	super-	implies association with the second-
	as φ , but associated with rotation in	script(2)	ary propeller.
	the i, j plane rather than with move-	super-	implies association with the mid-
	ment on a helical surface.	script *	chord position of a blade section.

ERRATUM

'IN TERNATIONAL SHIPBUILDING PROGRESS'

April 1967

'Drag measurements on a thin plate in dilute polymer solutions' by J. Levy and S. Davis.

* * *

The curves appearing in Figures 4 through 13 are erroneously marked Turbulent (Prandtl-Karman). Correctly marked this should be Turbulent (Karman-Schoenherr).