\(k \) = reduction factor.
\(\mu \) = the distance along a helix axis associated with one radian of angular rotation: \(\mu = \psi \tan \beta \).
\(\rho \) = fluid density.
\(\Phi \) = strength of source distribution over the portion of the vortex sheet corresponding to the blade.
\(\varphi \) = an angular measure in the \(i, j \) plane measured from the \(i \) axis as shown in fig. 1.
\(\Phi \) = an angle measured in the same way as \(\varphi \), but associated with rotation in the \(i, j \) plane rather than with movement on a helical surface.
\(1 - \psi \) = inflow velocity (excluding any induced velocities) expressed as a fraction of ship speed.
\(\psi \) = angle between the vortex sheet and the camber-line tangent.
\(\omega \) = angular velocity of the propeller.
\(_0 \) = subscript implies association with the point at which the induced velocities are being calculated.
\(_t \) = super-subscript denotes differentiation with respect to radius.
\(_{(2)} \) = super-subscript implies association with the secondary propeller.
\(_* \) = super-subscript implies association with the mid-chord position of a blade section.

ERRATUM

'INTERNATIONAL SHIPBUILDING PROGRESS'

April 1967

'Drag measurements on a thin plate in dilute polymer solutions' by J. Levy and S. Davis.

* * *

The curves appearing in Figures 4 through 13 are erroneously marked Turbulent (Prandtl-Karman).
Correctly marked this should be Turbulent (Karman-Schoenherr).