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Abstract. This paper proposes a new method for monitoring the irregularities in railway tracks by updating
the status of the tracks in the cloud. The IoT based Railway Track Monitoring System (IoT-RMS) is proposed
for monitoring the health of the railway track. The system identifies any abnormality in the tracks at an early
stage. These abnormalities are rectified before they develop for smoother transportation. The micro electro
mechanical system (MEMS) accelerometers are placed in the axle box for measuring the signal. It becomes
hard to identify the exact location of abnormalities when the global positioning system (GPS) falters due
to signalling issues. In this paper, a new hybrid method is proposed for locating irregularities on a track;
even in the absence of a GPS signal. Pre-processing of the GPS signal is carried out effectively because the
sensors used in IoT-RMS are capable of functioning in a high noise environment. The IoT-RMS updates
the location of the abnormality in the cloud and shares it with other trains that will be passing through that
location. As a result, the drivers of trains respond accordingly and avoid derailment. An experimental setup
has been developed for a study of the performances for four different abnormal cases, and the result shows
the effectiveness of the proposed system.

Keywords: Location of irregularity, MEMS accelerometer, track condition monitoring, internet of things,
derailment

1. Introduction

Rail transport plays a vital role in our day-to-day life. In the last ten years, there
has been a remarkable growth in the infrastructure of the railway system, especially
in developing countries. One challenge that arises is the ability to sufficiently power
monitoring equipment in remote location (Hodge et al. 2015). A solution to the issue
could be to use batteries or a renewable source of energy. However, these sources of
energy require constant maintenance which can be hindered in remote locations (Lee
et al. 2014). Tsunashima et al. (2014) describe an in-service vehicle with sensors, and
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in the irregularities in the tracks are detected and relayed using a global positioning
system.

Trains generate significant amounts of force which causes the tracks to degrade
over time (Bogacz et al. 2007). In order to meet the safety standards created by the
Federal Railroad Administration (FRA), continuous monitoring is necessary. Wavelet
transform-based track monitoring system has proposed by Lei et al. (2018). It identifies
the abnormalities of the track and inform to the control room. Molodova et al. (2014)
have suggested a method to locate any surface problem on the tracks. The track irregu-
larities are detected using these signals. An optimal track monitoring system based on
accelerometer signals has been discussed by Chellaswamy et al. (2017a).

The signal is analyzed using the principal component analysis (PCA) which attracts
our attention to the railway track signal analysis and fault detection. The PCA method
is a standard multivariate technique; capable of diminishing data dimensionality. Due
to its simple structure, it can quickly analyze and retain essential information (Gigin
et al. 2018). PCA with gray relational analysis based multi-objective optimization was
introduced by Gaurav et al. (2020) for analyzing the vibrations from drilling. Fault
detection based on the PCA method was proposed by Guannan and Yunpeng (2019).
The ensemble empirical mode decomposition is essential for extracting information
from the noise. The PCA method is required to detect faults by establishing the Q-
statistic with a threshold. Xianping and Feng (2019) suggested a new PCA method for
managing the unstructured data with a reduced number of variables. This method is
significantly more efficient than the conventional methods of big data analysis.

Zhai et al. (2015) developed a test unit to locate abnormalities on tracks with high-
speed trains. A fiber optic monitoring system was recommended for its high sensitivity
and dynamic range by Naderi and Mirabadi (2006). Konop and Konowrocki (2013)
used the wheel-rail dynamics of the tracks for determining their health. Lee et al.
(2012) used a three-filter band pass, a compensation filter, and a Kalman filter for
the estimation of track irregularities on high-speed railway tracks. Chellaswamy et
al. (2013), Chellaswamy et al. (2020) estimated the track abnormalities using a fuzzy
logic-based monitoring system for improving the ride quality of rail transportation.

Chellaswamy et al. (2017b) have proposed the IoT based rail track monitoring sys-
tem. When the vibrations exceed a set threshold value, the controller identifies the
coordinates and updates the cloud. A video surveillance system may be necessary for
monitoring locations with heavy fog (Chen et al. 2016). The disadvantages of this
method have been discussed by Jian et al. (2015) and Huang et al. (2019). Continuous
video streaming requires broadband connectivity, if not present, then it will be hard
to achieve accuracy and quality in the recognition of abnormalities. Several pieces of
technology require cloud-based technology such as industrial, medical, agricultural,
and even home appliances (Feng et al. 2016, Mainetti et al. 2016, Kidd 2012, & Amy
et al. 2017). Humanoid robots use IoT-based real-time networking. Han-pang et al.
(2017) have compared this technology with the existing network parameters such as
efficiency, flow control, and priority.

Big data can process datasets of larger sizes efficiently unlike older software (Bevilac-
qua et al. 2017). New sets of techniques and technologies are used by big data to reveal
insights from massive, diverse, and complex data sets. With a large volume of sensor,
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user, and operation data accumulation in the railway industry, the big data has become
the main drive (Uckelmann & Harrison, 2010). The computer-based algorithm controls
the physical entities of the modern railway system while trains are interconnected and
act as communication hubs. They collect information from the onboard devices and
exchange the information with other trains and railway control centers. The real-time
status is shared and instructions are received from the control centers. To improve
safety and performance, a modern railway system should implement IoT and big data.

In this paper, the IoT-based railway track condition monitoring system is introduced
for establishing continuous monitoring of the railway tracks. The PCA method was
chosen for its simple software redundancy technique and false alarm reducing methods.
If any abnormality is detected in the track, the corresponding coordinates are captured
from the GPS by the controller. The location of the abnormality (LOA) is captured
when the acceleration signal exceeds the set threshold value. When the train passes
through any remote or hilly areas, the signal either becomes weak or it will transpire.
Henceforth, it becomes very difficult to find the faulty location. So hybrid sensing
method using proximity sensors are combined with the GPS for the estimation of the
exact LoA. The LoA is updated in the cloud server and the information is provided to
other trains which pass through the fault location. It also provides information to other
trains to enable the drivers to reduce their speed to avoid derailment. The message
is also sent to the maintenance department so they can take necessary action. The
novelties of the proposed IoT-RMS are as follows:

• Principal component analysis-based preprocessing and fault detection method are
used.

• A hybrid sensing method is introduced for estimating the exact location of abnor-
mality even when the GPS signal is absent.

• The information is updated in a cloud server and shared with other trains that may
pass through the same location.

2. Proposed IoT-RMS

This section discusses the IoT-RMS that helps to avoid train derailment. Different
types of sensors such as speed and acceleration sensors are used locate anomalies. The
sensors are mounted in the passenger or goods railcars and integrated with the IoT
cloud for storage and processing. Accelerometers have been installed in the vertical
and lateral direction of the axle-box. When any abnormality is detected, the controller
sends details of the abnormality with location information to OpenGTS (open source
GPS tracking system) server. MongoDB, a distributed database, is used to store and
track information about abnormalities collected from trains (Divya & Ziliang 2017,
Anand & Mallikarjuna 2017). Alert message can be shared to the driver of the train
that is going to pass through the abnormality’s location. This allows the driver to prepare
and react accordingly before passing through the location to avoid derailment. Four
different abnormalities, namely, cracks, rusted deformations on rail tops, loose bolts,
and missing bolt, are considered and are shown in Fig. 1. GPS-DSM132, a tracker
device, was used for tracking the location of irregularities. It measures and records
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(a) (c)

(b) (d)

Fig. 1. Examples of track abnormalities (a) deformation with crack, (b) rusty deformation on rail top, (c)
loose bolts, and (d) missing bolt.

geo-location coordinates such as latitude, longitude, as well as velocity. This device
ensures accuracy while also being compact in size and is easy to handle. Hence, it is
widely used in applications like mobile objects and vehicle tracking.

A 4G network is used for the transfer of abnormality location coordinates from a
rail vehicle to an OpenGTS server. ATM buses in Messina use this system for location
tracking (The OpenGTS project, http://opengts.sourceforge.net). Open source GPS
tracking systems (OpenGTS) are used for web-based tracking. The restful approach
performs communication between OpenGTS and trackers and is used in passen-
ger trains, goods wagons, high-speed trains, etc. Tracking information provides two
functions: 1) An open street map like the one used by OpenGTS for visualizing geo-
located information on a map (The OpenDMTP Project. http://www.opendmtp.org and
http://opengts.sourceforge.net/documentation.html). 2) The geographic data structure
is encoded by human and machine-readable system GeoJSON. The geo-information
SQL-GeoJSON translator is used for visualizing.

Abnormalities on the track are detected using accelerometer signals. The received
signals are preprocessed by Principal Component Analysis Method (PCAM). In this

http://opengts.sourceforge.net
http://www.opendmtp.org
http://opengts.sourceforge.net/documentation.html
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Table 1
Technical specifications of ADXL345 accelerometer

Parameters Values

Type ADXL345

Image

Manufacturer Analog Devices
Axis 3
Voltage (V) 1.8 – 3.6
Current (�A) 350
Interface SPI, I2C
Precision 3 g
Temperature (◦ C) 85
Price ($) 3

study, the statistics-based correlation method is used for fault identification due to its
simple structure, speed, and faster estimation time. The correlation analysis has been
performed between the measured signal and the track geometry measurement signal
(Lee et al. 2012) (for more details refer to section 2.3). Table 1 shows the various
parameters of the accelerometer. Accelerometers are suitable for track monitoring sys-
tems because they have decent scalability, stability, are relatively light, and significantly
cheaper. Hence, this paper proposes an accelerometer based measurement and tracking
system for increasing the safety of the passengers.

The workflow of IoT-RMS is shown in Fig. 2. This algorithm checks the status
of the track continuously and updates it in the cloud. GPS finds the location of the
abnormality and the controller transfers this information to the driver before the train
crosses this location. Track measurements are sent to a cloud server and decision are
made involving this workflow. The accelerometer signals (Ax), the GPS data (DGPS),
the IoT-ESP8266 (DIoT), and the GSM (DGSM) data are present in the track measure-
ment section. The controller turns on the proximity sensor when the GPS signal is less
than the set threshold value (ATHD) or is completely absent. When proximity sensors
start to measure the abnormalities during the absence of the GPS signal (DPRO) (refer
section 4 for more information) and the total abnormal distance is obtained as DPRO
+DGPS. The controller updates the abnormality location information to the cloud. The
information will be updated by the first two trains who detect the irregularity. If the
first two trains update the cloud server with same location information, then the server
ultimately decides there is an abnormality present. It will then share the current abnor-
mality information (Dcur) to all the trains that will pass through the location. If any
train detects an abnormality (Drec), it will check both the Dcur and Drec. If both are
equal it will discard the process of updating the abnormality in the database.
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Fig. 2. Workflow of the proposed IoT based track monitoring system.
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2.1. PCAM

The PCAM retains most information of the original data while transforming a set of
correlated variables onto a set of uncorrelated variables. The abnormalities are detected
and isolated from the uncorrelated variables method (Li et al. 2012). The data matrix
(A) consists of m variables and n samples decomposed as a sum of the residual matrix
(G) along with an estimation matrix (A).

A = G +
(
A

) = t1PT
1 + t2PT

2 + · · · + tkPT
k (1)

In the equation above, t and P respectively denote the scores and loading matrices
of A. Both the vectors ti and Pi are orthonormal. Now, ti can be expressed as:

ti = AnPi (2)

The new observation An is equal to the 1 × M vector and the corresponding score ti is
equal to a 1 × A vector. PCAM has the capability to handle a data set with larger dimen-
sion. For instance, it is currently used to analyze genomic data which has significantly
more variables (Milting et al., 2013).

Statistics such as Q and T2 are used to detect the faults of PCAM. The Q and
T2 measure the corresponding variation in G and A (Jiang, 2011). In particular, the
Q statistics measure the lack of fit between the model and the testing vectors. On
the other hand, the T2 statistics quantifies variations within the model. When abnor-
malities are detected, the limits are consistently exceeded. A confidence level can be
established from these statistics. The confidence level can then be used for monitoring
the railway tracks. Both the Q statistics and T2 statistics can be expressed based on Li,
(2011) as:

Qk =
∑N

k=1

(
tk − βk

σk

)2

(3)

T 2
n =

∑M

n=1
(en)2 (4)

Here, tk , σk, and βk denote the score of the observation in the k-th component, the
mean, and the standard deviation of the scores of that component in the calibration
data respectively. en represents the residual value corresponding to the n-th variable.
The analysis is done in two steps: 1) Initially, the received data is inspected for special
causes of vibration, which are iteratively solved. Once the collected data is free of
special causes of variation, it is used to model the normal operation condition of the
calibration of the IoT-RMS. Next, the IoT-RMS monitors new data. 2) In the second
step, the monitored data and calibration data are distinguished. The scores are linear
combinations of the original variables and normally distributed. As a result, the T2-
statistic is multiplied by a constant while also following a beta distribution (Tracy et al.,
1992). This is given by:

T 2∼ (P − 1)2

P
BA

2 ,(P−A−1)/2 (5)



88 C. Chellaswamy et al. / An IoT based rail track condition monitoring

where P and B, denotes respectively, the number of observations and beta distributions.
Hence, the upper limit (UL) for the T2-statistic at significance level � is given by

UL
(
T 2

)
γ

= (P − 1)2

P
BA

2 ,(P−A−1)/2 (6)

whereBA
2 ,(P−A−1)/2 is the 100(1-�)% percentile of the corresponding beta distribution

that can be computed from the 100(1-�)% percentile of the corresponding F distribution
(for more details readers can refer Tracy et al., 1992). When done in by the same method,
UL for the T2 statistics for new incoming data is given by:

T 2∼A
P

(
P2 − 1

)
(P − A)

FA,(P−A) (7)

UL for theT2 statistic at significance level � is given by

UL
(
T 2

)
γ

= A

P

(
P2 − 1

)
(P − A)

F(A,(P−A)),γ (8)

Several procedures can be used for setting the UL for Q-statistics. Here, assume that
the residuals follow a multi-normal distribution and the significance level � is given by:

UL(Q)γ = α1

⎡
⎣zθ

√
2α2j

2
0

α1
+ 1 + α2j0 (j0 − 1)

α2
1

⎤
⎦

1/j0

(9)

where αn = ∑rank(X)
a=A+1 (λa)n, with rank(X) is the rank of the data matrix X and λa is the

eigenvalues of matrix 1
P−1 · EA · ETA,EA is the matrix of residuals; j0 = 1 − 2α1α3

3α2
2

;

and Zθ is the 100(1-�)% normal percentile.

2.2. Preprocessing of signal

The sensors used in IoT-RMS works under high noise and humid environments. So,
noise-like fluctuations are predictable during real-time signal measurement (Yabin et
al., 2017). The abnormal fluctuations in the received IoT-RMS consist of singular points
and random fluctuations. The monitoring result of the measured signal of the railway
track is shown in Fig. 3. The results of both the T2and Q statistics are not enough
to consistently alarms. As a result, the preprocessing of data is needed for IoT-RMS
signal measurements. In this study, the statistics-based correlation method is used due
to its simple structure and efficiency (Chunli et al., 2012). The random error from the
sensors have three standard deviations (Walpole, 2012). The singular point elimination
can be expressed as:∣∣ki − k̄

∣∣ > 3σ (i = 1, 2, . . . , n) (10)

Where ki, σ, and k̄, denotes respectively, the singular point, the standard deviation, and
the arithmetic average. If ki satisfies Eqn. 10, it is removed from the measured signal.
The acceleration signals are measured from two different locations and the singular
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Fig. 3. Measured signal of the railway track (a) T2 statistics (b) Q statistics.

Fig. 4. Singular points elimination (a) deformation with crack (b) missing bolt.

point removal is shown in Fig. 4. The effectiveness of the singular points elimination
method is evident in Fig. 4. The random fluctuations of the measured signal from IoT-
RMS have to be reduced and thus arithmetic average filtering, discrete wavelet analysis,
weighted recursive filtering, and median filtering are widely used to remove the random
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fluctuations. The discrete wavelet transform (DWT) has its advantages when localizing
which reduces the noise present (Messai et al., 2015). DWT is used in this study for
the denoising process. The discretized wavelet function can be represented as:

ψm,n (k) = 1√
αm
ψ

(
k − nβαm

αm

)
(11)

where �m , ψ(k) and n��m , denotes respectively, the scale parameter, the mother
wavelet, and the shift parameters. Commonly, dyadic grid values such as � and � have
chosen 2 and 1. The dyadic grid wavelet function can be written as:

ψm,n (k) = 2−m/2ψ
(
2−mk − n

)
(12)

The information represented by these discrete dyadic wavelets do not repeat and
therefore allow complete reconstruction. The DWT for any signal y(k) can be written as:

Dm,n =
∑

k
y (k)ψm,n (k) (13)

where Dm,n is known as the detail coefficient. The detail coefficient acts as a general
thresholder at each level of decomposition is generally using a universal value in order
to remove the noise (Kopsinis & McLaughlin, 2009).

The hard and soft threshold values for D can be calculated as:

fn (D) =
{
D if D � Th

0 otherwise
(14)

and

fs (D) =
⎧⎨
⎩
D− Th if D � Th

D+ Th if D � Th

0 if D < Th

(15)

where the threshold value is represented by Th = σ
√

2log (N). σ is the standard devi-
ation of the noise and can be calculated from the median of the detail coefficients
Dm,n. σ = MAD

(∣∣Dm,n∣∣)/0.6745. MAD is the median absolute deviation of the detail
coefficient, as given by:

MAD = Median
{∣∣Dm,n −Median

(
Dm,n

)∣∣} (16)

To study the effectiveness of the random fluctuations Fig. 2 is used again. The
results of random fluctuation reduction from the measured signal is shown in Fig. 5.
It is evident from Fig. 5 that the random fluctuation is greatly reduced. This greatly
reduces Q and T2 false alarms. It can be concluded that the preprocessing is necessary
for the IoT-RMS signal measurement.

2.3. Parameter selection and fault detection

After preprocessing the data of IoT-RMS, the next step is to develop a model with
preprocessed data. In this study, the correlation analysis has been performed between
the measured signal (m) and the track geometry measurement signal (n). Correlation
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Fig. 5. Reduction of random fluctuation (a) T2 statistics (b) Q statistics.

refers to the relation between the coefficient of two signals (m, n) and it can be exp-
ressed as:

Rm,n =
∑k
i=1 (m (i) − m̄) (n (i) − n̄)√∑k

i=1 (m (i) − m̄)2
√∑k

i=1 (n (i) − n̄)
2

(17)

where m̄ and n̄ represent the mean value of the signal m and n respectively. A higher
correlation between m and n typically indicates a higher R value.

After preprocessing and selecting the parameter of the received signal of IoT-RMS,
the accuracy and stability of the detection stage is improved by introducing another
confidence limit. This method reduces the false alarm of T2 and Q statistics. The second
confidence limit can be expressed as:

f (x;β, y) =
∑x

i=0
P (x;β, y) =

∑x

i=0
Cinβ

i(1 − β)n−i < α (18)

where y is the basic observation window length, x is the maximum allowable value, �
is the false alarm probability, and � is the experience value determined from the model.
If the false alarm signaled by the T2 and Q statistics exceed the maximum value x, then
x will become the faulty true state. The track abnormality can be detected when the T2

and Q statistics exceeds the second confidence.

2.4. Performance indicators

There are four different test indexes, the Mean Square Error (MSE), the Relative Error
(RE), Signal to Noise Ratio (SNR), and Correlation Coefficient (CC).These are used
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in this evaluation between original and denoised measurements. A statistical analysis
was carried out for evaluating the results of the proposed IoT-RMS. The performance
of the proposed PCAM-DWT was compared with two other related methods namely,
the conventional measurement (CM) and the sliding window average (SWA) method.
The test was performed with the measured data and the data was recorded identify if
the tracks were in a healthy condition. The MSE can be expressed as:

MSE =
√∑N

i=1

(
Pmes,i − Pd

)2

N
(19)

where Pmes and Pd represent the original and denoised data. Obviously, a smaller MSE
means a smaller error. RE can be expressed as:

RE =
∑N
i=1

(
Pmes,i − Pd

)
Pd

(20)

A traditional method to measure the noise level in the measurements is defined as:

SNR = 10 × log

⎛
⎝

∑N
i−1

(
Pmes,i

)2
/
N

(RMSE)2

⎞
⎠ (21)

The CC between original and denoised measurement can be expressed as:

CC =
∑N
i=1

(
Pmes,i − Pmes,i

) (
Pd,i − Pd

)
√∑N

i=1

(
Pmes,i − Pmes,i

)2
√∑N

i=1

(
Pd,i − Pd

)2
(22)

From the definition, it can be seen that a higher CC implies a stronger relationship
between original and denoised measurements.

The performance indicators for PCAM-DWT for the proposed IoT-RMS is compared
with the SWA and CM methods. In the SWA method, the window length is 12. This
was selected based on several experiments conducted by Pei and Guo (2001). The test
values of the performance indicators for the four different cases of IoT-RMS are shown
in Table 2. Table 2 shows the variations of MSE from 0.304 to 0.701; the lowest value
for PCAM-DWT for all the four cases and the largest value for CM. The relative error
of the proposed method was the lowest followed by SWA and CM. This indicates that
the proposed PCAM-DWT provides higher SNR and CC compared to other methods.
Based on the definition of the performance indicators, the proposed PCAM-DWT
provides a better denoising effect and it is suitable for IoT-RMS.

3. Cloud architecture

IoT based railway track monitoring systems present in the trains are connected to the
cloud server. The controller of the track monitoring system performs various operations,
namely, abnormal location identification, updating of the cloud server, and duplication
monitoring. The event hub is placed to receive the data from different tracks. It can
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Table 2
Test results of different performance indicators for the four test cases

Abnormalities Methods

CM SWA PCA-DWT CM SWA PCA-DWT

MSE RE

Deformation with crack 0.638 0.431 0.372 3.025 2.849 2.683
Rusty deformation on rail top 0.701 0.528 0.34 2.973 2.628 2.392
Loose bolts 0.679 0.420 0.351 2.893 2.710 2.471
Missing bolt 0.592 0.398 0.304 3.172 2.921 2.729

SNR (dB) CC

Deformation with crack 62.7 65.2 74.5 0.893 0.953 0.982
Rusty deformation on rail top 67.4 68.9 80.2 0.875 0.937 0.975
Loose bolts 65.8 71.8 76.4 0.892 0.952 0.986
Missing bolt 67.1 67.4 84.8 0.873 0.963 0.974

Fig. 6. Proposed architecture for smart track monitoring system.

capture thousands of events and handle multiple applications (Xiaowei et al., 2017). A
SQL warehouse stores the data as big data analyzes it for load forecasting, visual data,
and control, etc. If further action in required, results are shared with the central control
office. The generic architecture of the IoT-RMS is shown in Fig. 6. The architecture
has four layers: a perception/action layer, a transfer layer, a data engine layer, and an
application layer. These are discussed in the following sections.
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3.1. Perception and action layer

Apart from on-board railway track monitoring via sensors, the network also receives
information from different sensors such as sensors mounted in infrastructure, environ-
mental sensors, and the detectors that gather information from the rail passengers.
Other key parameters, namely, bogie conditions, bearing temperature, power supply
voltage, and the amount of air braking are obtained from the different sensors mounted
in a modern train. These parameters help identify the exact condition of the train. In
this study, the condition of the railway tracks is measured through an accelerometer and
analyzed by the controller present in each train. The controller sends the abnormality
information with the location coordinates to the transport layer for further operation.
Various trains are linked wirelessly to a local node. The node can identify the trains
through its ID number.

3.2. Transfer layer

On receipt of the data from the perception layer, it is first pre-processed for meeting
the requirements of the upper layers. For example, information relating to the status of
the train is transferred to the data server. Train-ground wireless networks such as GSM-
R network, long-term evolution for railways (LTE-R) networks, or 4G/5G networks
are used for sending information relating to the track condition, air brake pressure, and
bearing temperature to the core network (Huansheng et al., 2020). Then, the representa-
tive node transmits the compressed data to the core networks. This reduces the amount
of data exchanged between the sensors and the networks. Thus, it is a heterogeneous
architecture considering the existence of various data sensing and transfer networks.
The key status would need to be updated to the control center so the necessary steps
can be taken within a short span of time. This means that data transfer must be highly
efficient. It is essential that the data transmission link is robust. The link must withstand
extreme network situations like fast fading, shadowing, and high Doppler frequency
shifts. Additionally, the network must be elastic in order to enable the accommodation
of a larger number of sensors and monitors. In general, the network should be robust,
elastic, and stable in order to adapt to various situations.

3.3. Data engine layer

Data from the different sources should be processed before it is used by the applica-
tions. Smart railway data has the following characteristics. 1) Data may be a number,
text, audio, video, and image. It can be structured, semi-structured or unstructured
data. 2) Huge data in the range of a few dozen terabytes to petabytes are available.
For example, 10 million status records are produced by Beijing-Shanghai high-speed
trains every day. 3) Data may be from different places which include headquarters,
local offices, and divisions.

Intelligent data processing such as distributed storage, noise filtering, data fusion,
information indexing, data mining, visualization, etc is performed by the data engine
layer (Sunitha et al., 2019). The collected data should be stored in the network for easy
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access. In the smart railways, sources of the data are distributed and have decentralized
control. The data source can generate and collect information in the absence of any
centralized control. Google has proposed MapReduce to provide a parallel processing
model. This will allow a large amount of data to be processed by its associated imple-
mentation. Multiple layer architecture is used for overcoming the issues relating to big
data. Multiple servers store the data so that the parallel execution increases the pro-
cessing speed using the Map Reduce and Hadoop frameworks. These types of multiple
layer architectures are necessary for any smart railway.

3.4. Application layer

Customer service and inspection of infrastructure smart railways use advanced tech-
nologies such as sensors, communications, intelligent controls, and computing for the
performance of various functions like train control and dispatch. Applications of smart
railways are train-related, infrastructure-related, and passenger and freight-related.

4. Signal coverage problems

When a train goes through tunnels, mountains, and thick forest areas, the signal
grows weak and the controller cannot easily identify them. Consequently, it becomes
challenging to determine the correct location of vibrations. Therefore, there is a need
to consider this problem while calculating the location of vibrations.

4.1. GPS coverage problem

GPS module DSM132 has more accuracy and less tolerance (up to 10 cm). This
allows it to be used in this study. When a train passes through forests and hilly regions,
the GPS signal is reduced. This makes it difficult to find the exact location of irregularity
(Schlain et al., 2015 & Mohsen et al. 2016). Thus, a new method for determining the
location is introduced in this study. Even when the GPS signal is low, proximity sensors
are interfaced with the controller to determine the location of abnormalities (LOA).
The proposed system immediately activates the proximity when the GPS signal is low.

A GPS signal is essential for the calculation of the LOA. GPS signal coverage area
and estimation of LOA are shown in Fig. 7. The proximity sensor which is mounted
in a wheel disc produces one pulse per rotation. The controller counts these pulses
and determines the distance of the uncovered region by the GPS. Distance (X1) is
estimated as

X1 = n × k (23)

where n is the number of pulses produced by the proximity sensor and k is the circum-
ference of the disc. LOA is estimated as

LOA = Coordinateold + X1 (24)

where Coordinateold denotes the location where the GPS signal goes absent and X1 is
the distance from Coordinateold to the abnormality location. For example, if D = 6 km
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Fig. 7. GPS coverage problem and estimation of LOA.

Table 3
Status of GPS, GSM, proximity sensor, and the controller operation

DGPS Signal Communication
Signal

Controller Operation Condition of Proximity

Not Present Present Estimate the location of vibration
based on (2) and send to the cloud.

ON

Present Present Send GPS coordinates if vibration
present

OFF

Present Not Present Store GPS coordinates if vibration
present

OFF

Not Present Not Present Store the location of vibration and
switch on the proximity and store
the location if abnormality is
detected.

ON

then the abnormality location is determined by adding 6 km to the previously stored
coordinates. Table 3 shows the different signal status and the corresponding opera-
tions done by the controller. In the first case, when the GPS signal is absent, IoT-RMS
immediately turns on the proximity sensor to determine the location of abnormality
based on (15). In the second case, the controller sends the abnormality location with-
out any problem when the GPS and communication signals are present. In the third
case, the controller stores the LOA when the GPS is present and the communica-
tion signal is absent. Data is then sent to the cloud when the signal is available. In
the final case, both GPS and communication signal are absent and it automatically
switches the proximity on, stores the location of the abnormality, and sends it to the
cloud when the communication signal is available. The route of the train is defined
at the starting time so that no confusion will come in the direction of LOA from
Coordinateold.
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Fig. 8. T2 and Q statistics with 0.15 % drift (a) deformation with crack (b) missing bolt.

5. Simulation and experimental results

5.1. Experimental setup

In this section, the prototype of the proposed system is analyzed and presented with
different experiments that are performed by sending the alert notice to other trains that
pass through the location. This helps the driver plan ahead and avoid derailment. Four
different experiments were conducted to look at the effects of visible damage (missing
bolt), invisible damage (loose bolts and battered rail surface), rusty deformation on rail
top, and deformations with. The proposed method was also performed at three different
speeds; 20 km, 45 km, and 80 km. A huge amount of data, approximately 78 GB, was
stored on 27 January 2018. Four different places around Chennai were selected for
two-way travel in the same route and the location of the abnormalities were noted.
The field tests for manipulated variables were performed near the industrial city of
Tamilnadu. To start, the tests were performed under normal conditions as a control.
Four routes; Chennai Beach to Chennai Central (A), Chennai Central to Egmore (B),
Pallavaram to Trisulam (C), and Tambaram to Chengalpat (D) were chosen for the
study. At these locations, the abnormality detection system was tested for its efficiency
and accuracy.

5.2. Performance of Proposed PCAM-DWT

To verify the detection capability of PCAM-DWT used in the proposed IoT-RMS
with two scenarios (deformation with crack and missing bolt) are considered. Here
signals with a duration of 2000 milliseconds were taken near the abnormalities for ease
of understanding. In the first scenario, artificial drifts were imposed on the accelerom-
eter signal received from the deformation with a crack at the 7500th sample point and
missing bolt for the 2700th sample point. In the simulation, the drift grows to 0.15%
for the deformation with crack and 0.156% for missing bolt measurements. For both
the cases, the small drift alters the measurement that is unnoticeable in the time profile
as shown in Fig. 8. Figure 8 indicates that the T2 statistic has not exceeded the limit
during the test. On the other hand, the Q statistics have negligible variation.
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Fig. 9. T2 and Q statistics with 1.25 % drift (a) deformation with crack (b) missing bolt.

In the second scenario, drift grows to 1.25 % for the deformation with a crack at the
7500th sample point and missing bolt for the 2700th sample point. The measurement
can be seen in the time profile and is shown in Fig. 9. Figure 9 indicates that both
the T2 and Q statistics have exceeded the limit during the test at the corresponding
sample point. The T2 statistics exceed 2.24 % in the deformation with crack and 3.73%
for missing bolt cases. The Q statistics exceed 4.36 % in the deformation with crack
and 4.49% for missing bolt cases. It is evident that T2 and Q statistics for both the
deformation with crack and missing bolt cases exceeds only in the abnormal points
and not exceeded due to large variation in the amplitude.

5.3. Performance of IoT-RMS

Acceleration of the train is measured by the MEMS accelerometers. The measured
acceleration is applied to PCAM-DWT and correlation analysis was performed. The
correlation analysis has been performed between the measured signal and the track
geometry measurement signal (for more details refer to section 2.3). The track abnor-
mality can be detected when the T2 and Q statistics exceeds the second confidence.
Figure 10 shows the abnormality measured by the axle box accelerometer during the
departure of the train for four different locations (locations: A, B, C, and D) under
various speeds. Figure 10 (a) and (b) show the accelerometer signal for visible and
invisible damage for three different speeds. The figure shows the signal level of invis-
ible damage as less than the visible damage and the abnormalities present at 7 km and
6.2 km respectively from the start of the track for all the speed. Figure 10 (c) shows the
abnormality for deformation with a crack for three different speeds. It shows abnor-
mality at 3.8 km from the start of the track for all the speeds. Figure 10 (d) shows the
abnormality for rusty deformation on the track top and the irregularity seen in 5.3 km
for all the speed scenarios.

Figure 11 shows the abnormality measured by the axle box accelerometer during the
arrival of the train for four different locations (locations: A, B, C, and D) under three
different speed scenarios. Comparing Fig. 10 and 11 the accelerometer signal received
from both the departure and arrival of the same route indicates that the presence of
abnormality. Figure 10 and 11 show the accuracy of the proposed method.
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Fig. 10. Abnormality in axle box mounted accelerometer during departure (a) invisible damage (loose bolts
and battered rail surface) (b) visible damage (missing bolt) (c) deformation with crack (d) rusty deformation
on rail top.

Fig. 11. Abnormality in axle box mounted accelerometer during arrival (a) invisible damage (loose bolts
and battered rail surface) (b) visible damage (missing bolt) (c) deformation with crack (d) rusty deformation
on rail top.

5.4. Experimental results

The prototype of the proposed system developed uses the ARM processor (LPC2148)
and has been deployed on the super-fast train (26142). The acceleration signal was
recorded for different test cases under running conditions. Figure 12 shows the exper-
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Fig. 12. Experimental Setup of the proposed IoT-RMS.

Fig. 13. Experimental results for different location of abnormalities with coordinates: (a) visible damage
(missing bolt) (b) Invisible damage (loose bolts and battered rail surface) (c) deformation with crack (d)
rusty deformation on rail top.

imental setup and the coordinates for the location of the abnormality. Figure 13 shows
the different locations of abnormalities such as the missing bolt at location A, loose bolts
at location B, deformation with a crack at location C, and severe plastic deformation
on rail top at location D.

Accelerometer data were recorded and analyzed for the four abnormality cases.
The test was done on 27 January 2018 and the values for a particular test track were
collected. The controller finds the abnormal condition when the signal exceeds the
second confidence level and records the location using GPS. Figure 13 shows the
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Fig. 14. Visualization of OpenStreetMap for real-time track abnormality monitoring.

experimental results in a zoomed view for various track irregularities. Figure 13 (a)
shows the presence of the irregularity in the coordinate 13.0815◦ N & 80.2768◦ E.
When these coordinates were compared with the predefined values, they found to be
almost the same with only 1 m variation from the fault location. Recorded invisible
damage coordinates are shown in Fig. 13 (b). This shows abnormality present in the
coordinate 13.0739◦ N & 80.2618◦ E. The coordinates of deformation with crack and
rusty deformation on rail top are shown in Fig. 13 (c) and (d). It shows the presence of
the abnormality in 12.9679◦ N & 80.1484◦ E, 12.9336◦ N & 80.1020◦ E. These values
exactly match with the predefined values.

Web-based tracking for vehicles is provided by the open-source OpenGTS under
Apache Software License. This technology can be used in general-purpose vehicles,
private transport vehicles, and different kinds of the satellite tracking system. Open-
StreetMap helps visualization of the location of track abnormality. Figure 14 shows the
real-time track abnormality. MongoDB database is used for the storage of the data and
monitors the abnormal location. Data analysis and manipulations can be performed on
these unstructured data.

5.5. Performance comparison

The performance of the network was studied by considering the constant latency
of the network at which the data is sent from the vehicle to infrastructure and alert
message from the infrastructure to the vehicle. The focus of the analysis is on inquiry
and data processing and data insertion and parsing. Two types of server are used in
the proposed system, one for the storage of the data and the other for data collection
and manipulation. OpenGTS software was installed in the i7-6700 CPU with 64 GB
RAM and used for collecting and manipulating the data from the track. The data
storage server was installed with MongoDB and it configured under single server
mode.
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Fig. 15. Performance comparison (a) Parsing row data in MongoDB (b) Processing time.

Fig. 16. Comparison of accuracy in fault detection during departure of train.

Scalability analysis was performed 40 times for both the scenarios for ensuring
reliability in the results. Figure 15(a) shows the performance of parsing row data to
GeoJSON and included in MongoDB. The chart was plotted using the number of the
data, size and the corresponding response time. There was a linear increase in response
time with an increase in the data size. The chart shows that the size of the data is
proportional to the response time.

The response time of the MongoDB was assessed considering 10000 documents. Fig-
ure 15(b) shows the response time in which the distance varied from 1 km to 8 km. Slight
variations in response time around 25 meters were seen with an increase in the distance.

The accuracy of the proposed IoT-RMS had been studied by conducting different
experiments for both the departure and arrival of the train. The experiment results for
the departure of the train are shown in Fig. 16. Comparing the proposed IoT-RMS
with other methods, 19.59% higher than the conventional method, 11.34% and 8.25%
higher than the methods used by Mingyun (2017) respectively for the abnormality
detected at location A. In the same way, the comparison is made with the abnormality



C. Chellaswamy et al. / An IoT based rail track condition monitoring 103

Fig. 17. Comparison of accuracy in fault detection during arrival of train.

location at B, the proposed IoT-RMS is 18.48 % than the conventional method, 3.26%,
and 5.44% compared to Lee et al. (2012) and Mingyun et al. (2017) respectively.
Similarly, the proposed method is compared with the abnormality locations at C and
D, the proposed method is higher than all the other methods. The results show that
the proposed method identifies the abnormalities in the exact location, whereas the
conventional method provides the least accuracy compared to the proposed IoT-RMS
followed by Lee et al. (2012) and Mingyun et al. (2017). Figure 17 shows the results of
the arrival of the train. The results show that the accuracy of detecting the abnormality
is exact and better than other methods namely, the conventional method, by Lee et al.
(2012) and Mingyunet et al. (2017).

Meanwhile, to study the accuracy of the proposed IoT-RMS the abnormalities are
created purposely in four different locations (13.0815◦ N & 80.2768◦ E; 13.0739◦
N & 80.2618◦ E; 12.9679◦ N & 80.1484◦ E; 12.9336◦ N & 80.1020◦ E) and the
performances were analyzed. The accuracy of the proposed IoT-RMS detecting the
abnormality for different speed scenarios are listed in Table 4. The controller estimates
the coordinates for different abnormalities exactly at 25 km speed. The GPS is switched
off purposely in the rusty deformation on the top case and the accuracy of the system
is verified. In this case, the controller switches on the proximity and exactly calculates
the distance (Coordinateold+4.75 km) of abnormality. The location of abnormality can
be identified by taking 4.75 km from the Coordinateold. The abnormality location is
also exactly calculated in the 50 km speed. There is a little variation in the abnormality
location for visible and deformation with crack fault case; a deviation of 0.94 m is
present from the fault set coordinates.

The performance of the proposed IoT-RMS is compared with three different existing
methods, namely, Lei et al. (2018), Chellaswamy et al. (2017b), Mingyuan et al. (2017),
and the proposed method is shown in Table 5. The proposed method has an automatic
system that monitors and manages when a GPS signal is not available or less than the
set threshold. Additionally, Table 5 indicates that the proposed system provides prior
information to the driver with more accuracy than other systems.
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Table 4
Fault detection and the corresponding GPS coordinates different speeds

Type of abnormality Fault set coordinates Fault identified Distance
estimated by
proximity (km)

Accuracy (%)
coordinates

Latitude Longitude Latitude Longitude

Speed 25 km
Visible damage 13.0815◦ N 80.2768◦ E 13.0815◦ N 80.2768◦ E No 100
Invisible damage 13.0739◦ N 80.2618◦ E 13.0739◦ N 80.2618◦ E No 100
Deformation with

crack
12.9679◦ N 80.1484◦ E 12.9679◦ N 80.1484◦ E No 100

Rusty deformation
on the top

12.9336◦ N 80.1020◦ E 12.9336◦ N 80.1020◦ E 4.75 100

Speed 50 km
Visible Fault 13.0815◦ N 80.2768◦ E 13.0815◦ N 80.2768◦ E No 100
Invisible Fault 13.0739◦ N 80.2618◦ E 13.0739◦ N 80.2618◦ E No 100
Deformation with

crack
12.9679◦ N 80.1484◦ E 12.9679◦ N 80.1483◦ E 3.52 99.52

Rusty deformation
on the top

12.9336◦ N 80.1020◦ E 12.9336◦ N 80.1020◦ E No 100

Speed 80 km
Visible Fault 13.0815◦ N 80.2768◦ E 13.0813◦ N 80.2767◦ E 4.27 99.14
Invisible Fault 13.0739◦ N 80.2618◦ E 13.0739◦ N 80.2618◦ E No 100
Deformation with

crack
12.9679◦ N 80.1484◦ E 12.9677◦ N 80.1483◦ E No 99.25

Rusty deformation
on the top

12.9336◦ N 80.1020◦ E 12.9336◦ N 80.1020◦ E No 100

Table 5
Performance comparison of the proposed IoT-RMS with existing methods

Methods Fault detection method Method for Global Accuracy Cost
GPS signaling Information (%) (Euro)

problem sharing

Lei et al. (2018) Time-frequency model Not available Not available 92 18,000
Chellaswamy et al.

(2017b)
Accelerometer with IoT Not available Available 94 27,000

Mingyuan et al. (2017) ZigBee with wireless
sensor network

Not available Not available 97 55,000

Proposed IoT-RMS Accelerometer with IoT Available Available 99 42,000

6. Conclusion

Rail track monitoring is essential for detecting vibrations in the track, identifying
the location information, and ultimately avoiding derailment. This paper has proposed
an IoT based condition monitoring system for detecting any abnormalities in the rail
track and updating it in the cloud. Accordingly, this information has sent to alert the
drivers of the trains that pass through the abnormal location, so that they can reduce
the speed in the specified location, thereby avoid derailment. Signals from the MEMS
accelerometers mounted in the axle box of the train have pre-processed because the
sensors used in IoT-RMS works in a high noise environment. They have tested for
three different speeds for four abnormality cases. It is clear from the results that the
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IoT-RMS provides the exact location of irregularity, and it could also be passed to
other vehicles through the cloud. Performances of the network like query time and
processing speed are studied. A prototype has been developed, and the accuracy of
the system has been shown through different tests conducted. This system tracks the
abnormality at the beginning itself and thus avoids the chances of derailment. The
proposed IoT-RMS exactly identifies the abnormality and captures the corresponding
location. The accuracy of the proposed system is higher when compared to earlier
versions. Due to these factors, the proposed system can easily be integrated to the
railway network.

The limitation of our study is that four cases of abnormalities have been considered.
In the near future, it will be enhanced by introducing more scenarios. Moreover, opti-
mization algorithms can be included in the signal analysis. This system can be extended
for avoiding frontal collision by updating and sharing the branching information of
running trains.
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