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Analysis of a model for longitudinal
electromagnetic stirring in the continuous
casting of steel
Arash S. Nicka,†, Michael Vynnyckya,b,∗ and Pär G. Jönssona
aDivision of Processes, Department of Materials Science and Engineering, KTH Royal Institute of
Technology, Stockholm, Sweden
bDepartment of Mathematics and Statistics, University of Limerick, Limerick, Ireland

Abstract. A recent three-dimensional (3D) model that revisited earlier theoretical work for longitudinal electromagnetic stirring
in the continuous casting of steel blooms is analyzed further to explore how the bloom width interacts with the pole pitch of
the stirrer to affect the magnetic flux density. Whereas the first work indicated the presence of a boundary layer in the steel
near the interface with the stirrer, with all three components of the magnetic flux density vector being coupled to each other,
in the analysis presented here we find that the component along the direction of the travelling wave decouples from those in
the other two directions and can even be determined analytically in the form of a series solution. Moreover, it is found that the
remaining two components can be found via a two-dimensional computation, but that it is not possible in general to determine
these components without taking into account the surrounding air. The validity of the asymptotically reduced model solution is
confirmed by comparing it with the results of 3D numerical computations. Moreover, the asymptotic approach provides a way
to compute the time-averaged Lorentz force components that requires two orders of magnitude less computational time than the
fully 3D approach.
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1. Introduction

Electromagnetic stirring (EMS) is the process by which a high level of stirring efficiency can be achieved
through interaction between the magnetic field from a static induction coil and an electrically conducting
metal bath. It has long been used in the steel industry as a way to affect the flow of molten metal during
the continuous casting process, both in the ladle and during the solidification in the casting machine itself
[1–3]; more recently, EMS has also been used in the magnesium and aluminium industries [4,5]. At the
same time, mathematical modelling has been used for the purposes of understanding exactly what effect
EMS has on the metal flow.

A series of papers by Schwerdtfeger and co-workers [6–11], originally written in the context of the
continuous casting of steel, explored both experimentally and theoretically the effect of EMS in the round-
billet, rectangular-bloom and slab configurations that are typical for this process; these have formed the
basis of modelling in this area and are even cited until the present day [12–20]. The theoretical models
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developed consist of Maxwell’s equations for the induced magnetic flux density and the Navier Stokes
equations for the velocity field of the molten metal; in principle, these equations are two-way coupled,
since the alternating magnetic field gives rise to a Lorentz force which drives the velocity field, which
can in turn affect the magnetic field. Typically, however, the magnetic Reynolds number is small enough
that the velocity field does not affect the spatial and temporal distribution of the magnetic field, implying
only one-way coupling. A further often-invoked simplification is that the frequency of the magnetic field
is typically large enough to allow the use of the time-averaged value of the Lorentz force as input to the
Navier Stokes equations, rather than having to solve for the velocity and magnetic fields simultaneously.

However, on revisiting the problem of rotary EMS in round-billet continuous casting, Vynnycky [21]
recently found that the method used originally in [6,11] to determine the components of the Lorentz
force did not lead to a unique solution; this was because the normal component of the induced magnetic
flux density, rather than the tangential ones, had been prescribed as the boundary condition. Thereafter,
Nick and Vynnycky [22] revisited the models for the corresponding problem for longitudinal stirring in
rectangular blooms, originally considered in [7–10]; in addition to the issue of the appropriate boundary
condition at the interface between the stirrer and the steel were the conditions to be taken at the interfaces
between the steel and the surrounding air. Moreover, through nondimensionalization, it was found that
the key dimensionless parameter in the model, 𝛥, was the product of the the wave vector and the width of
the bloom, and that this parameter was comparatively large (approximately 13) in the models in [7–10].
Interestingly, previous literature had not remarked on the significance of this quantity and its cause is
different to the more well-documented skin effect [23], which is related to the frequency of the magnetic
field. Furthermore, it was possible to carry out an asymptotic analysis of the problem which identified the
structure of the field; this essentially consisted of a boundary layer having a dimensionless width of order
of 1∕𝛥 near the surface of the stirrer in which all magnetic flux density vector components decreased
rapidly to zero. A follow-on question is then what happens when 𝛥 is not large, as might occur if a smaller
bloom and a larger pole pitch is used. Thus, the purpose of this manuscript is to consider, still in the low
magnetic Reynolds number limit as in [22], the corresponding analysis when 𝛥 is small; although this can
no doubt be done solely numerically using commercially available software, the benefit of the analysis
given here is that elucidates more clearly the dependencies of the magnetic flux density, the current density
and the Lorentz force components on the applied boundary conditions and key dimensionless parameters.
In addition, this gives a way to determine these quantities at a fraction of the computational cost that full
3D simulations require.

The structure of the paper is as follows. In Sections 2 and 3, we recap the mathematical formulation
of the problem and the nondimensionalization of the governing equations, respectively. The new analysis,
in terms of the asymptotically small parameter 𝛥, is given in Section 4, whilst Section 5 outlines the
numerical method used to solve the fully three-dimensional (3D) and reduced two-dimensional (2D) time-
dependent problems. The results are presented in Section 6, and conclusions are drawn in Section 7.

2. Model formulation

2.1. Governing equations

We consider, as depicted in Fig. 1, a linear travelling stirrer that is situated at y = 0, −h∕2 ≤ z ≤ h∕2,
−l ≤ x ≤ 0, operating on a molten steel region whose cross-section is given by 0 ≤ y ≤ b, −h∕2 ≤ z ≤ h∕2,
as shown in Fig. 2; the steel is surrounded by air on the other three sides. As explained in [22], this is a
simplification of the actual situation in a continuous casting process, but we have nevertheless retained
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Fig. 1. Schematic for the longitudinal stirring of blooms and billets. A travelling wave is passed along the casting (x) direction.

enough to carry out a meaningful analysis with respect to determining the characteristics of the magnetic
flux density.

We consider the solution of Maxwell’s equations in the magnetohydrodynamic (MHD) approximation,
which consist of:

• the magnetic field constraint,

∇ ⋅ B = 0, (1)

where B is the magnetic flux density vector;
• Ampère’s law,

J + 𝜕D
𝜕𝑡 = ∇ × H, (2)

where J is the electrical current density vector, H is the magnetic field strength, which is related to B via
the magnetic permeability, 𝜂, by B =  𝜂H, and D is the displacement current, although we shall neglect
it in what follows;

• Faraday’s law,

∇ × E = −𝜕B
𝜕𝑡 , (3)

where E is the electric field and t is time;
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Fig. 2. Cross-section in the y-z plane of Fig. 1, showing the stirrer, steel and air. O denotes the origin of the coordinates.

• Ohm’s law,

J = 𝜎(E + 𝒗 × B), (4)

where v is the velocity vector, which we will simply set to zero, and 𝜎 is the electrical conductivity of
the medium under consideration, which we take to be constant in both steel and air.

Manipulating (2)–(4), we obtain

𝜎𝜂 𝜕B
𝜕𝑡 = ∇2B; (5)

note, however, that this must still be solved together with Eq. (1). Thus, with Bx, By and Bz as x-, y- and
z-components, respectively, of B, we have

𝜕𝐵𝑥
𝜕𝑥 +

𝜕𝐵𝑦

𝜕𝑦 + 𝜕𝐵𝑧
𝜕𝑧 = 0, (6)

𝜎𝜂 𝜕𝐵𝑥
𝜕𝑡 = 𝜕2𝐵𝑥

𝜕𝑥2
+ 𝜕2𝐵𝑥

𝜕𝑦2
+ 𝜕2𝐵𝑥

𝜕𝑧2
, (7)

𝜎𝜂
𝜕𝐵𝑦

𝜕𝑡 =
𝜕2𝐵𝑦

𝜕𝑥2
+

𝜕2𝐵𝑦

𝜕𝑦2
+

𝜕2𝐵𝑦

𝜕𝑧2
, (8)

𝜎𝜂 𝜕𝐵𝑧
𝜕𝑡 = 𝜕2𝐵𝑧

𝜕𝑥2
+ 𝜕2𝐵𝑧

𝜕𝑦2
+ 𝜕2𝐵𝑧

𝜕𝑧2
. (9)
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Once Bx, By and Bz have been computed, the quantities of principal interest are the components of the
Lorentz force, Fx, Fy and Fz, which are given by

𝐹𝑥 = 𝐽𝑦𝐵𝑧 − 𝐽𝑧𝐵𝑦, 𝐹𝑦 = 𝐽𝑧𝐵𝑥 − 𝐽𝑥𝐵𝑧, 𝐹𝑧 = 𝐽𝑥𝐵𝑦 − 𝐽𝑦𝐵𝑥, (10)

where (Jx, Jy, Jz) are the components of J and are given by

⎛
⎜
⎜
⎝

𝐽𝑥
𝐽𝑦
𝐽𝑧

⎞
⎟
⎟
⎠

= 1
𝜂

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝐵𝑧
𝜕𝑦 −

𝜕𝐵𝑦

𝜕𝑧
𝜕𝐵𝑥
𝜕𝑧 − 𝜕𝐵𝑧

𝜕𝑥
𝜕𝐵𝑦

𝜕𝑥 − 𝜕𝐵𝑥
𝜕𝑦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (11)

Finally, Fx, Fy and Fz are used to calculate the time-averaged Lorentz force components - 𝐹 𝑥, 𝐹 𝑦 and
𝐹 𝑧 - via

̄𝐹𝑘 = 1
2𝜋/𝜔 ∫

2𝜋/𝜔

0
𝐹𝑘d𝑡′, 𝑘 = 𝑥, 𝑦, 𝑧, (12)

with the integrals in (12) being taken with respect to time over one period of oscillation, 2𝜋∕𝜔, and with
𝜔 as the angular frequency of the current.

2.2. Boundary and interfacial conditions

At y = 0, as discussed previously [22], we prescribe the tangential components of B; thus,

𝐵𝑥 = {
𝛼(𝑧) cos(𝜔𝑡 − 𝜆𝑥) for |𝑧| ≤ ℎ/2
0 for |𝑧| > ℎ/2,

� (13)

𝐵𝑧 = {
𝛽(𝑧) cos(𝜔𝑡 − 𝜆𝑥) for |𝑧| ≤ ℎ/2
0 for |𝑧| > ℎ/2,

� (14)

where 𝜆 is the wave vector given by 𝜆 = 𝜋∕p, with p as the pole pitch, i.e. the distance from north to
south pole in the inductor. For orientation, Fig. 3 shows the common time-dependent part of Eqs (13) and
(14), cos(𝜔t −𝜆x), as a function of x for four different values of t during one period of oscillation. For
this figure, we have made use of the parameters shown in Table 1 in the following way: 𝜔 is related to the
current frequency, f, by 𝜔 =2𝜋f ; on the other hand, since 𝜆b turns out to be an important dimensionless
parameter in the problem, we have used the value of b in Table 1 and plotted profiles for the cases where
𝜆 = 0.01∕b and 0.1∕b. Note here that the plotted function is sinusoidal in nature, although this may not
be apparent from these plots because of the comparatively small values of 𝜆, relative to the stirrer length,
l.

For the steel-air interfaces at y = b, |z| ≤ h∕2 and |z| = h∕2,  0 ≤ y ≤ b, we apply the conventional
electromagnetic interface conditions between two media. These are the continuity of the tangential
components of the magnetic field strength, the continuity of the normal component of the magnetic flux
density and the continuity of the tangential components of the electric field; these are written, respectively,
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Fig. 3. cos(𝜔t −𝜆x) vs. x for: (a) 𝜆 = 0.01∕b; (b) 𝜆 = 0.1∕b.

Table 1
Model parameters

Parameter Symbol Value

Steel width b 0.25 m
Characteristic magnetic flux density B0 0.02 T
Current frequency f 50 Hz
Steel breadth h 0.35 m
Stirrer length l 1.2 m
Air magnetic permeability 𝜂a 1.2566 ×10−6  Vs A−1 m−1

Steel magnetic permeability 𝜂s 1.2566 ×10−6  Vs A−1 m−1

Air electrical conductivity 𝜎a 3 ×10−15 −8 ×10−15  A V−1 m−1

Steel electrical conductivity 𝜎s 7.14 ×105  A V−1 m−1

as

[
B ⋅ t

𝜂 ]
+

−
= 0, (15)

[B ⋅ n]+
− = 0, (16)

[E ⋅ t]+
− = 0, (17)

where t and n are the unit tangential and normal vectors, respectively, at these interfaces. In (15)–(17),
[ ]+

− is taken to mean the difference in the value of a function in the air (+) and in the steel (−).
In the air far from the steel, we should also expect the magnetic flux density to vanish, so we take

B → 0 as 𝑟 → ∞, (18)

where 𝑟 = √𝑥2 + 𝑦2 + 𝑧2.
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3. Nondimensionalization

We nondimensionalize the equations by setting

𝑋 = 𝑥
𝑙 , 𝑌 = 𝑦

𝑏 , 𝑍 = 𝑧
𝑏 , 𝜏 = 𝜔𝑡

2𝜋 , (19)

and for k = x, y, z and K = X, Y, Z,

𝐵𝐾 = 𝐵𝑘
𝐵0

, 𝐸𝐾 = 𝐸𝑘
𝐵0/𝜎𝑠𝜂𝑠𝑏

, 𝐽𝐾 = 𝐽𝑘
𝐵0/𝜂𝑠𝑏

, 𝐹𝐾 = 𝐹𝑘

𝐵2
0 /𝜂𝑠𝑏

,

where B0 is the characteristic magnetic flux density, and 𝜂s and 𝜎s are the steel magnetic permeability and
electrical conductivity, respectively. Equations (6)–(9) give

𝛿 𝜕𝐵𝑋
𝜕𝑋 + 𝜕𝐵𝑌

𝜕𝑌 + 𝜕𝐵𝑍
𝜕𝑍 = 0, (20)

Ω𝜕𝐵𝑋
𝜕𝜏 = 𝛿2 𝜕2𝐵𝑋

𝜕𝑋2
+ 𝜕2𝐵𝑋

𝜕𝑌 2
+ 𝜕2𝐵𝑋

𝜕𝑍2
, (21)

Ω𝜕𝐵𝑌
𝜕𝜏 = 𝛿2 𝜕2𝐵𝑌

𝜕𝑋2
+ 𝜕2𝐵𝑌

𝜕𝑌 2
+ 𝜕2𝐵𝑌

𝜕𝑍2
, (22)

Ω𝜕𝐵𝑍
𝜕𝜏 = 𝛿2 𝜕2𝐵𝑍

𝜕𝑋2
+ 𝜕2𝐵𝑍

𝜕𝑌 2
+ 𝜕2𝐵𝑍

𝜕𝑍2
, (23)

where 𝛺 = f 𝜎𝜂b2 and 𝛿 = b∕l. However, note that the values for 𝛺 for steel and air, 𝛺s and 𝛺a respectively,
are different; from the data in Table 1, it is evident that 𝛺s ≫ 𝛺a. Also, from (11), (10) and (12),
respectively, we have

⎛
⎜
⎜
⎝

𝐽𝑋
𝐽𝑌
𝐽𝑍

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝐵𝑍
𝜕𝑌 − 𝜕𝐵𝑌

𝜕𝑍
𝜕𝐵𝑋
𝜕𝑍 − 𝛿 𝜕𝐵𝑍

𝜕𝑋
𝛿 𝜕𝐵𝑌

𝜕𝑋 − 𝜕𝐵𝑋
𝜕𝑌

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (24)

𝐹𝑋 = 𝐽𝑌 𝐵𝑍 − 𝐽𝑍𝐵𝑌 , 𝐹𝑌 = 𝐽𝑍𝐵𝑋 − 𝐽𝑋𝐵𝑍 , 𝐹𝑍 = 𝐽𝑋𝐵𝑌 − 𝐽𝑌 𝐵𝑋 , (25)

̄𝐹𝐾 = ∫
1

0
𝐹𝐾d𝑡′, 𝐾 = 𝑋, 𝑌 , 𝑍. (26)

The boundary conditions (13)–(18) are then: at Y = 0,

𝐵𝑋 = {
𝛼̄(𝑍) cos(2𝜋𝜏 − Λ𝑋) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2,

� (27)

𝐵𝑍 = {
̄𝛽(𝑍) cos(2𝜋𝜏 − Λ𝑋) for |𝑍| ≤ 𝐻/2

0 for |𝑍| > 𝐻/2,
� (28)

where

𝛼̄ = 𝛼
[𝛼] , ̄𝛽 = 𝛽

[𝛽] , Λ = 𝜆𝑙, 𝐻 = ℎ
𝑏 ,



42 A.S. Nick et al. / Analysis of a model for longitudinal electromagnetic stirring

with [𝛼] and [𝛽] denoting, respectively, the scales for 𝛼 and 𝛽; at Y = 1, |Z| ≤ H∕2 and |Z| = H∕2,0 ≤ Y
≤ 1,

[
B ⋅ t

𝜂 ]
+

−
= 0, (29)

[B ⋅ n]+
− = 0, (30)

[E ⋅ t]+
− = 0; (31)

as R →∞, where 𝑅 = √𝑋2 + 𝑌 2 + 𝑍2,

B → 0. (32)

4. Analysis

As in [22], equation (20) and the boundary conditions in (27) imply that the solutions for BX , BY and
BZ will have the form

𝐵𝑋 , 𝐵𝑌 , 𝐵𝑍 ∼ {
cos(2𝜋𝜏 − Λ𝑋)
sin(2𝜋𝜏 − Λ𝑋).

�

Thus, we will first set

�𝐵𝑘 = ℜ𝔢(ℬ𝑘(𝑌 , 𝑍)𝑒i(2𝜋𝜏−Λ𝑋)),
𝐸𝑘 = ℜ𝔢(ℰ𝑘(𝑌 , 𝑍)𝑒i(2𝜋𝜏−Λ𝑋)),}

𝑘 = 𝑋, 𝑌 , 𝑍,

with i = √ − 1 and ℜ𝔢 denoting the real part of a complex number. Equations (20)–(23) become

−Δiℬ𝑋 + 𝜕ℬ𝑌
𝜕𝑌 + 𝜕ℬ𝑍

𝜕𝑍 = 0, (33)

(2𝜋Ω𝑖i + Δ2)ℬ𝑋 = 𝜕2ℬ𝑋
𝜕𝑌 2

+ 𝜕2ℬ𝑋
𝜕𝑍2

, (34)

(2𝜋Ω𝑖i + Δ2)ℬ𝑌 = 𝜕2ℬ𝑌
𝜕𝑌 2

+ 𝜕2ℬ𝑌
𝜕𝑍2

, (35)

(2𝜋Ω𝑖i + Δ2)ℬ𝑍 = 𝜕2ℬ𝑍
𝜕𝑌 2

+ 𝜕2ℬ𝑍
𝜕𝑍2

, (36)

where 𝛥 = 𝜆b and i = a, s. In terms of ℬ𝑋 , ℬ𝑌 and ℬ𝑍 , the boundary conditions are now: at Y = 0,

ℬ𝑋 = {
𝛼̄(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2,

� (37)

ℬ𝑍 = {
̄𝛽(𝑍) for |𝑍| ≤ 𝐻/2

0 for |𝑍| > 𝐻/2;
� (38)

at Y = 1, |Z| ≤ H∕2,

[
ℬ𝑋
𝜂 ]

+

−
= 0, (39)
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[ℬ𝑌 ]+
− = 0, (40)

[
ℬ𝑍
𝜂 ]

+

−
= 0, (41)

[
1

𝜎𝜂 (
𝜕ℬ𝑍
𝜕𝑌 − 𝜕ℬ𝑌

𝜕𝑍 )]
+

−
= 0, (42)

[
1

𝜎𝜂 (−iΔℬ𝑍 − 𝜕ℬ𝑋
𝜕𝑍 )]

+

−
= 0; (43)

at |Z| = H∕2, 0 ≤ Y ≤ 1,

[
ℬ𝑋
𝜂 ]

+

−
= 0, (44)

[
ℬ𝑌
𝜂 ]

+

−
= 0, (45)

[ℬ𝑍]+
− = 0, (46)

[
1

𝜎𝜂 (
𝜕ℬ𝑍
𝜕𝑌 − 𝜕ℬ𝑌

𝜕𝑍 )]
+

−
= 0, (47)

[
1

𝜎𝜂 (−iΔℬ𝑌 − 𝜕ℬ𝑋
𝜕𝑌 )]

+

−
= 0; (48)

and, as R →∞,

ℬ𝑋 , ℬ𝑌 , ℬ𝑍 → 0. (49)

Our earlier work [22] considered the case 𝛥 ≫ 1, and we identified a boundary layer of thickness 1∕𝛥
near the surface of the stirrer. This time, we consider the other extreme when 𝛥 ≪ 1, whilst treating the
parameters 𝛺a and 𝛺s as being of O (1). Note also that if we had had 𝛺s ≫ 1, this would have led to the
skin-effect case; however, 𝛺s ≫ 1 still does not lead to the 𝛥 ≫ 1 case considered in [22], since there is
no term in 𝛺s in (33). This further emphasizes the fact that the problem treated in [22] was not that of the
classical skin-effect type.

We first determine the solutions for BX , BY and BZ ; thereafter, these are used to constitute expressions
for JX , JY , JZ , FX , FY and FZ .

4.1. BX, BY, BZ

In what follows, we assume that 𝛼̄, ̄𝛽 ≠ 0 and that 𝛼̄, ̄𝛽 ∼ 𝑂(1); the analysis proceeds slightly differently
if 𝛼̄ ≠ 0, ̄𝛽 = 0 or 𝛼̄ = 0, ̄𝛽 ≠ 0, and these cases are considered in appendices A and B, respectively.

We set

�𝐵𝑘 = 𝐵(0)
𝑘 + Δ𝐵(1)

𝑘 + 𝑂(Δ2)
ℬ𝑘 = ℬ(0)

𝑘 + Δℬ(1)
𝑘 + 𝑂(Δ2)}

, 𝑘 = 𝑋, 𝑌 , 𝑍, (50)
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which is motivated by the appearance of the terms in 𝛥 in Eqs (33), (43) and (48). We have, at O (𝛥0),

𝜕ℬ(0)
𝑌

𝜕𝑌 +
𝜕ℬ(0)

𝑍
𝜕𝑍 = 0, (51)

2𝜋Ω𝑖iℬ
(0)
𝑋 =

𝜕2ℬ(0)
𝑋

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑋

𝜕𝑍2
, (52)

2𝜋Ω𝑖iℬ
(0)
𝑌 =

𝜕2ℬ(0)
𝑌

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑌

𝜕𝑍2
, (53)

2𝜋Ω𝑖iℬ
(0)
𝑍 =

𝜕2ℬ(0)
𝑍

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑍

𝜕𝑍2
, (54)

subject to: at Y = 0,

ℬ(0)
𝑋 = {

𝛼̄(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2,

� (55)

ℬ(0)
𝑍 = {

̄𝛽(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2;

� (56)

at Y = 1, |Z| ≤ H∕2,

[
ℬ(0)

𝑋
𝜂 ]

+

−

= 0, (57)

[ℬ(0)
𝑌 ]+

− = 0, (58)

[
ℬ(0)

𝑍
𝜂 ]

+

−

= 0, (59)

[
1

𝜎𝜂 (
𝜕ℬ(0)

𝑍
𝜕𝑌 −

𝜕ℬ(0)
𝑌

𝜕𝑍 )]

+

−

= 0, (60)

[
1

𝜎𝜂
𝜕ℬ(0)

𝑋
𝜕𝑍 ]

+

−

= 0; (61)

at |Z| = H∕2,  0 ≤ Y ≤ 1,

[
ℬ(0)

𝑋
𝜂 ]

+

−

= 0, (62)

[
ℬ(0)

𝑌
𝜂 ]

+

−

= 0, (63)

[ℬ(0)
𝑍 ]+

− = 0, (64)

[
1

𝜎𝜂 (
𝜕ℬ(0)

𝑍
𝜕𝑌 −

𝜕ℬ(0)
𝑌

𝜕𝑍 )]

+

−

= 0, (65)
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[
1

𝜎𝜂
𝜕ℬ(0)

𝑋
𝜕𝑌 ]

+

−

= 0; (66)

as R → ∞,

ℬ(0)
𝑋 , ℬ(0)

𝑌 , ℬ(0)
𝑍 → 0. (67)

We can now see that, in contrast to the case when 𝛥≫ 1, the equations for ℬ(0)
𝑌 and ℬ(0)

𝑍 , i.e. (51), (53)
and (54), subject to (56), (58)–(60), (63)–(65) and the last two conditions in (67), decouple from those
for ℬ(0)

𝑋 , i.e. (52), subject to (55), (57), (61), (62), (66) and the first condition in (67), and can therefore be
solved separately.

4.1.1. ℬ(0)
𝑋

Further simplification is now possible in view of the fact that 𝜎a∕𝜎s ≪ 1, 𝜂a∕𝜂s = 1, as seen from
Table 1. Therefore, equations (61) and (66) reduce to

(
𝜕ℬ(0)

𝑋
𝜕𝑍 )

+

≈ 0,

(
𝜕ℬ(0)

𝑋
𝜕𝑌 )

+

≈ 0,

respectively; this means that the solution in the air has effectively decoupled from that in the steel.
Moreover, since ℬ(0)

𝑋 satisfies a homogeneous partial differential equation (PDE) and is subject to
homogeneous boundary conditions, it is clear that ℬ(0)

𝑋 ≡ 0 in the air; hence, (57) and (62) then both
give

(ℬ(0)
𝑋 )− = 0,

which then leads to the following problem for ℬ(0)
𝑋 , which needs only to be solved in the steel:

equation (52), subject to

ℬ(0)
𝑋 = 𝛼̄(𝑍) for 𝑌 = 0, |𝑍| ≤ 𝐻/2, (68)

ℬ(0)
𝑋 = 0 for 𝑌 = 1, |𝑍| ≤ 𝐻/2, (69)

ℬ(0)
𝑋 = 0 for |𝑍| = 𝐻/2, 0 < 𝑌 < 1. (70)

It is now possible to construct an analytical series solution for ℬ(0)
𝑋 for 0 ≤ Y ≤ 1, |Z| ≤ H∕2. Trying a

solution of the form

ℬ(0)
𝑋 ∼ 𝑔𝑛(𝑌 ) sin 𝑛𝜋

𝐻 (𝑍 − 𝐻
2 ) , (71)

since this satisfies (70), we have

𝑔′′
𝑛 − 𝜇2

𝑛𝑔𝑛 = 0, (72)

where

𝜇2
𝑛 = 𝑛2𝜋2

𝐻2
+ 2𝜋Ω𝑠i, (73)
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which will give

𝑔𝑛 = 𝐴𝑛 sinh(𝜇𝑛(1 − 𝑌 )) + 𝐵𝑛 cosh(𝜇𝑛(1 − 𝑌 )), (74)

where An and Bn are constants to be determined. Since we require gn(1) = 0 from (69), where the prime
denotes differentiation with respect to Y , we must have Bn = 0. To determine An, we will have, on using
(68),

𝛼̄(𝑍) =
∞

∑
𝑛=1

𝐴𝑛 sinh 𝜇𝑛 sin 𝑛𝜋
𝐻 (𝑍 − 𝐻

2 ) . (75)

Multiplying both of sides of (75) by sin 𝑚𝜋
𝐻 (𝑍 − 𝐻

2
), m = 1,2, …, and integrating from Z = −H∕2 to Z =

H∕2, we obtain

𝐴𝑛 = 2𝐼𝑛
𝐻 sinh 𝜇𝑛

, 𝑛 = 1, 2, … , (76)

where

𝐼𝑛 = ∫
𝐻/2

−𝐻/2
𝛼̄(𝑍′) sin 𝑛𝜋

𝐻 (𝑍′ − 𝐻
2 ) d𝑍′, 𝑛 = 1, 2, … , (77)

leading to

ℬ(0)
𝑋 =

∞

∑
𝑛=1

𝐴𝑛 sinh(𝜇𝑛(1 − 𝑌 )) sin 𝑛𝜋
𝐻 (𝑍 − 𝐻

2 ) (78)

as the solution. From this, it is evident that

𝐵(0)
𝑋 = ℜ𝔢

(
𝑒i(2𝜋𝜏−Λ𝑋)

∞

∑
𝑛=1

𝐴𝑛 sinh(𝜇𝑛(1 − 𝑌 )) sin 𝑛𝜋
𝐻 (𝑍 − 𝐻

2 ))
. (79)

4.1.2. ℬ(0)
𝑌 and ℬ(0)

𝑍

As regards ℬ(0)
𝑌 and ℬ(0)

𝑍 , it is convenient to consider a formulation in terms of a magnetic vector
potential, A = (A (Y, Z), 0, 0), such that

ℬ(0)
𝑌 = 𝜕𝐴

𝜕𝑍 , ℬ(0)
𝑍 = −𝜕𝐴

𝜕𝑌 , (80)

i.e. (0, BY
(0), BZ

(0)) =  𝛻 × A. Equations (53) and (54) give, respectively,

𝜕
𝜕𝑍 (2𝜋Ω𝑖i𝐴 − 𝜕2𝐴

𝜕𝑌 2
− 𝜕2𝐴

𝜕𝑍2 ) = 0, (81)

𝜕
𝜕𝑌 (2𝜋Ω𝑖i𝐴 − 𝜕2𝐴

𝜕𝑌 2
− 𝜕2𝐴

𝜕𝑌 2 ) = 0, (82)

leading, on integrating with respect to Z and Y respectively, to

2𝜋Ω𝑖i𝐴 = 𝜕2𝐴
𝜕𝑌 2

+ 𝜕2𝐴
𝜕𝑍2

+ 𝛾1(𝑌 ), (83)
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2𝜋Ω𝑖i𝐴 = 𝜕2𝐴
𝜕𝑌 2

+ 𝜕2𝐴
𝜕𝑍2

+ 𝛾2(𝑍), (84)

where 𝛾1 and 𝛾2 are functions to be determined; however, since Y and Z are independent variables, clearly
𝛾1 and 𝛾2 can only be constants, with 𝛾1 = 𝛾2(= 𝛾). We can write 𝐴𝑖 = ̄𝐴𝑖 + 𝛾

2𝜋Ω𝑖i
, so that (83) and (84)

both give

2𝜋Ω𝑖i ̄𝐴 = 𝜕2 ̄𝐴
𝜕𝑌 2

+ 𝜕2 ̄𝐴
𝜕𝑍2

. (85)

For the boundary conditions, we have, in terms of ̄𝐴: at Y = 0,

𝜕 ̄𝐴
𝜕𝑌 = {

− ̄𝛽(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2;

� (86)

at Y = 1, |Z| ≤ H∕2,

[
𝜕 ̄𝐴
𝜕𝑍 ]

+

−
= 0, (87)

[
1
𝜂

𝜕 ̄𝐴
𝜕𝑌 ]

+

−
= 0, (88)

[
1

𝜎𝜂 (
𝜕2 ̄𝐴
𝜕𝑌 2

+ 𝜕2 ̄𝐴
𝜕𝑍2 )]

+

−
= 0; (89)

at |Z| = H∕2,  0 ≤ Y ≤ 1,

[
1
𝜂

𝜕 ̄𝐴
𝜕𝑍 ]

+

−
= 0, (90)

[
𝜕 ̄𝐴
𝜕𝑌 ]

+

−
= 0, (91)

[
1

𝜎𝜂 (
𝜕2 ̄𝐴
𝜕𝑌 2

+ 𝜕2 ̄𝐴
𝜕𝑍2 )]

+

−
= 0; (92)

as R →∞,

𝜕 ̄𝐴
𝜕𝑌 , 𝜕 ̄𝐴

𝜕𝑍 → 0. (93)

Using (85), we find that (89) and (92) give, at Y = 1, |Z| ≤ H∕2 and |Z|  = H∕2,  0 ≤ Y ≤ 1,

[ ̄𝐴]+
− = 0, (94)

which will in turn mean that (87) and (91) are automatically satisfied. At this stage, the equations that
remain to be solved are (85), subject to (88), (90), (93) and (94), and we can note that, in general, it is not
possible to determine the magnetic field for 0 ≤ Y ≤ 1, |Z| ≤ H∕2 without considering the region outside
it.
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4.2. JX, JY, JZ, FX, FY, FX

Next, with the expansions

�
𝐽𝑘 = 𝐽 (0)

𝑘 + Δ𝐽 (1)
𝑘 + …

𝐹𝑘 = 𝐹 (0)
𝑘 + Δ𝐹 (1)

𝑘 + …
̄𝐹𝑘 = ̄𝐹 (0)

𝑘 + Δ ̄𝐹 (1)
𝑘 + …

⎫⎪
⎬
⎪⎭

, 𝑘 = 𝑋, 𝑌 , 𝑍, (95)

we have

⎛
⎜
⎜
⎜
⎝

𝐽 (0)
𝑋

𝐽 (0)
𝑌

𝐽 (0)
𝑍

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝐵(0)
𝑍

𝜕𝑌 −
𝜕𝐵(0)

𝑌
𝜕𝑍

𝜕𝐵(0)
𝑋

𝜕𝑍

−
𝜕𝐵(0)

𝑋
𝜕𝑌

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (96)

and the Lorentz force at leading order in 𝛥 is given by

⎛
⎜
⎜
⎜
⎝

𝐹 (0)
𝑋

𝐹 (0)
𝑌

𝐹 (0)
𝑍

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

𝐽 (0)
𝑌 𝐵(0)

𝑍 − 𝐽 (0)
𝑍 𝐵(0)

𝑌

𝐽 (0)
𝑍 𝐵(0)

𝑋 − 𝐽 (0)
𝑋 𝐵(0)

𝑍

𝐽 (0)
𝑋 𝐵(0)

𝑌 − 𝐽 (0)
𝑌 𝐵(0)

𝑋

⎞
⎟
⎟
⎟
⎠

; (97)

then, the leading order time-averaged Lorentz force, F̄(0) = ( ̄𝐹 (0)
𝑋 , ̄𝐹 (0)

𝑌 , ̄𝐹 (0)
𝑍 ), is given by

F̄(0) = 1
2

(ℜ𝔢(𝒥 (0)) × ℜ𝔢(ℬ(0)) + ℑ𝔪(𝒥 (0)) × ℑ𝔪(ℬ(0))), (98)

where

𝒥 (0) = ∇ × ℬ(0), (99)

with ℬ(0) = (ℬ(0)
𝑋 , ℬ(0)

𝑌 , ℬ(0)
𝑍 ).

5. Numerical solution

5.1. 3D computations

In order to verify the correctness of the asymptotic analysis, equations (6)–(9), subject to (13)–(18), were
also solved numerically. For this, the Magnetic Fields module of the finite-element software Comsol
Multiphysics was used, as in [22]. Second-order Lagrangian quadrilateral elements were employed on a
mesh having approximately 55000 elements, corresponding to around 1.3 million degrees of freedom. As
regards the size of the computational domain, its outer edge was taken to be a half-cylinder with a radius
of 0.4 m and a height of 1.2 m. The geometry and the mesh are shown in Figs 4–6. Note that the mesh
is somewhat different to that used in [22], since there is no need to refine the mesh near y = 0, as there is
no boundary layer for the values of 𝛥 used; on the other hand, the magnetic flux density in the steel does
not decay rapidly to zero away from the stirrer, meaning that a more or less uniform mesh is necessary
throughout the steel region.
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Fig. 4. Geometry and mesh used for three-dimensional computations.

Fig. 5. Mesh used for three-dimensional computations, adjacent to the stirrer face at y = 0.
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Fig. 6. A cross-section in the y-z plane of the mesh used for three-dimensional computations.

Adaptive time-stepping was used for the numerical integration, and the convergence criterion at each
time step was taken as

⎛
⎜
⎜
⎝

1
𝑁𝑑𝑜𝑓

𝑁𝑑𝑜𝑓

∑
𝑖=1

(
|𝐸𝑖|

𝐴𝑖 + 𝑅|𝑈𝑖|)
2⎞
⎟
⎟
⎠

1

2

< 1, (100)

where (U i) is the solution vector corresponding to the solution at each time step, Ei is the estimated error
in the latest approximation to the ith component of the true solution vector, Ai is the absolute tolerance for
the ith degree of freedom, and R is the relative tolerance; for the computations, R = 10−2, Ai = 10−3 for i
= 1, …, Ndof were used, where Ndof is the number of degrees of freedom. Note that all computations were
carried out on an architecture with an Intel® CoreTM  i7 CPU 970 @ 3. 20 GHz × 6 processor with a 11.6
GB RAM. In order to collect data that is appropriate for computing the time-averaged Lorentz force, it is
necessary to run the simulation long enough to overcome the initial transient. For this purpose, the model
was run for three periods of oscillation, corresponding to 0.06 s; as consequence, typical computation
times for one simulation were found to be of the order of 9–11 hours.

5.2. 2D computations

In order to ascertain the correctness of asymptotic reduction of the 3D model, it was also necessary to
carry out 2D computations pertaining to the reduced form of Eqs (6)–(9), subject to (13)–(18). These are:



51A.S. Nick et al. / Analysis of a model for longitudinal electromagnetic stirring

• for Bx,

𝜎𝜂 𝜕𝐵𝑥
𝜕𝑡 = 𝜕2𝐵𝑥

𝜕𝑦2
+ 𝜕2𝐵𝑥

𝜕𝑧2
, (101)

subject to

𝐵𝑥 = {
𝛼(𝑧) cos 𝜔𝑡 for |𝑧| ≤ ℎ/2
0 for |𝑧| > ℎ/2

� at 𝑦 = 0, (102)

[
𝐵𝑥
𝜂 ]

+

−
= 0, [

1
𝜎𝜂

𝜕𝐵𝑥
𝜕𝑧 ]

+

−
= 0, at 𝑦 = 1, |𝑧| ≤ ℎ/2, (103)

[
𝐵𝑥
𝜂 ]

+

−
= 0, [

1
𝜎𝜂

𝜕𝐵𝑥
𝜕𝑦 ]

+

−
= 0, at 𝑧 = ℎ/2, 0 < 𝑦 < 𝑏, (104)

𝐵𝑥 → 0 as 𝑦2 + 𝑧2 → ∞; (105)

• for By and Bz

𝜕𝐵𝑦

𝜕𝑦 + 𝜕𝐵𝑧
𝜕𝑧 = 0, (106)

𝜎𝜂
𝜕𝐵𝑦

𝜕𝑡 =
𝜕2𝐵𝑦

𝜕𝑦2
+

𝜕2𝐵𝑦

𝜕𝑧2
, (107)

𝜎𝜂 𝜕𝐵𝑧
𝜕𝑡 = 𝜕2𝐵𝑧

𝜕𝑦2
+ 𝜕2𝐵𝑧

𝜕𝑧2
, (108)

subject to

𝐵𝑧 = {
𝛽(𝑧) cos 𝜔𝑡 for |𝑧| ≤ ℎ/2
0 for |𝑧| > ℎ/2

� at 𝑦 = 0, (109)

�
[𝐵𝑦]+

− = 0, [
𝐵𝑧
𝜂 ]

+

−
= 0,

[
1

𝜎𝜂 (
𝜕𝐵𝑧
𝜕𝑦 −

𝜕𝐵𝑦

𝜕𝑧 )]
+

−
= 0,

⎫⎪
⎪
⎬
⎪
⎪⎭

at 𝑦 = 1, |𝑧| ≤ ℎ/2, (110)

�[
𝐵𝑦

𝜂 ]
+

−
= 0, [𝐵𝑧]+

− = 0,

[
1

𝜎𝜂 (
𝜕𝐵𝑧
𝜕𝑦 −

𝜕𝐵𝑦

𝜕𝑧 )]
+

−
= 0,

⎫⎪
⎪
⎬
⎪
⎪⎭

at 𝑧 = ℎ/2, 0 < 𝑦 < 𝑏, (111)

𝐵𝑦, 𝐵𝑧 → 0 as 𝑦2 + 𝑧2 → ∞. (112)

For Eqs (106)–(112), the Magnetic Fields module of the Comsol Multiphysics software mentioned
previously was used; on the other hand, equations (101)–(105) are readily solved using the software’s
General Form PDE module. For both modules, second-order Lagrangian quadrilateral elements were
employed on a mesh having approximately 11000 elements, corresponding to around 22000 degrees of
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freedom. The geometry used was an y-z plane from the geometry shown in Fig. 4. For the numerical
integration, adaptive time-stepping with a maximum step equal to 0.001 s was used and the convergence
criterion (100) was again used, this time with R = 10−5, Ai = 10−6 for i = 1, …, Ndof . Note that all
computations for this reduced model were carried out on an architecture similar to that used for the 3D
model (Intel(R) Core(TM) i7-8700 CPU @ 3. 20 GHz × 6 processor with a 32 GB RAM). The typical
computation time was of the order of 20 seconds; this constitutes running the asymptotically reduced
model for three periods of oscillations, for the same reason as mentioned in Section 5.1. One can therefore
note that these computations required around two orders of magnitude less computational time than those
outlined in Section 5.1, which provides further justification for pursuing the asymptotic approach.

6. Results

We focus on results for the following cases:

(i) 𝛼 = B0, 𝛽 = B0, which are the simplest profiles that provide non-trivial solution for Bx, By, Bz;
(ii) 𝛼 = B0, 𝛽 = 0, which is the same as that considered in [22], and which was in turn motivated by the

original model equations in [7];
(iii) 𝛼 = 0, 𝛽 = B0, as this is, in some sense, the mirror image of case (ii).

However, the first step is to determine how small 𝛥 needs to be in order for the asymptotic behaviour
to become apparent in the full 3D computations. To this end, Fig. 7 compares the 3D numerical solution
for Bx for 𝛥 = 10−3,  10−2,  10−1 and the asymptotic solution at z =  0 m, t =  0. 06 s, x = −0. 6 m when (𝛼,
𝛽) = (B0, B0) and (B0,0); here, the asymptotic solution is the series expression from Eq. (79), for which
An is calculated from (76) and (77) as

𝐴𝑛 = 2(1 − (−1)𝑛)
𝑛𝜋 sinh 𝜇𝑛

, 𝑛 = 1, 2, …

From this figure, it is evident that the numerical solution does not change once 𝛥 becomes as small as 10−2

and that it agrees with the asymptotic solution. Moreover, a comparison of the (a) and (b) plots indicates
that the choice of 𝛽 does not affect the solution, as was suggested by the asymptotic analysis. In addition,
Fig. 8 shows the corresponding plots at z = 0.0875 m and indicates that the same trends are repeated. We
can also note that Figs 7 and 8 look almost identical, principally because the boundary condition for Bx
at y = 0 is independent of z.

Next, Fig. 9 shows corresponding plots for By, this time when (𝛼, 𝛽) = (B0, B0) and (0, B0); here, the
asymptotic solution is the numerical 2D solution for By and Bz. Analogous to Fig. 7, the plots indicate that
the choice of 𝛽 does not affect By. Note that we could equally have presented plots for Bz, but plots for By
are more instructive, since By was not prescribed at y = 0; hence, plots for By provide stronger evidence
that the asymptotic limit has been reached. Observe also that this plot is for z = 0. 0875 m, rather than z
= 0 m; this is because, as explained in Appendix C, By is odd about z = 0 as 𝛥 →0, meaning it will be
zero there. Hence, to provide a comparison at a location at which By is not zero, we chose the mid-plane
between the axis of symmetry and the steel-air interface.

The quantities of principal interest are the time-averaged Lorentz force components, and it is therefore of
interest to see whether the asymptotic approach is able to reproduce the 3D numerical approach, especially
in view of the considerably smaller computational load in being able to do so. Thus, Figs 10(a)–(c) show

̄𝐹𝑥, ̄𝐹𝑦 and ̄𝐹𝑧, respectively, for 𝛼 = B0, 𝛽 = B0, as functions of y at z = 0 m, x = −0.6 m, and given
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Fig. 7. The x-component of magnetic flux density vector, Bx, vs. distance from the stirrer, y, for z = 0 m, t = 0.06 s, x = −0.6 m,
for 𝛥 = 0.001, 0.01, 0.1, as obtained from full 3D computations and the asymptotic solution for: (a) 𝛼 = B0, 𝛽 = 0; (b) 𝛼 = B0,
𝛽 = B0.

Fig. 8. The x-component of magnetic flux density vector, Bx, vs. distance from the stirrer, y, for z = 0.0875 m, t = 0.06 s, x =
−0.6 m, for 𝛥 = 0.001, 0.01, 0.1, as obtained from full 3D computations and the asymptotic solution for: (a) 𝛼 = B0, 𝛽 = 0;
(b) 𝛼 = B0, 𝛽 = B0.

by the 3D numerical solution for 𝛥 = 10−2 and the leading-order asymptotic solution, i.e. ̄𝐹 (0)
𝑋 , ̄𝐹 (0)

𝑌 and
̄𝐹 (0)
𝑍 in Eq. (98). As is evident, the asymptotic solution successfully reproduces the numerical one for

all three profiles. Note also that we made this comparison for 𝛥 = 10−2, rather than 𝛥 = 10−3 as might
have been expected from looking at Fig. 9, in order to demonstrate the extended range of validity of the
asymptotic solution. In fact, this agreement reinforces the common experience that asymptotic solutions
are often useful numerically far beyond their nominal range of validity, as discussed by Crighton [24] and
Andrianov and Awrejcewicz [25].

Lastly, we point out that, although we have not presented a comparison of these results with those of
[7] here, such a comparison is discussed in Appendix C.
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Fig. 9. The y-component of magnetic flux density vector, By, vs. distance from the stirrer, y, for z = 0.0875 m, t = 0.06 s, x =
−0.6 m, for 𝛥 = 0.001, 0.01, 0.1, as obtained from full 3D computations and the asymptotic solution for: (a) 𝛼 = 0, 𝛽 = B0;
(b) 𝛼 = B0, 𝛽 = B0.

7. Conclusions

This paper has provided an extended analysis of a recent 3D model [22] that revisited earlier theoretical
work for longitudinal electromagnetic stirring in the continuous casting for steel blooms [7], in order
to explore how bloom width interacts with the pole pitch of the stirrer. The work in [22] indicated the
presence of a boundary layer in the steel near the interface with the stirrer, with all three components of
the magnetic flux density vector being coupled to each other. In the current work, it was found that the
component along the direction of the travelling wave decouples from those in the other two directions,
and can even be determined analytically in the form of a series solution, regardless of the form of the
boundary condition at the stirrer; this decoupling is possible because the electrical conductivity of the
steel is much greater than that of the surrounding air. On the other hand, the components in the remaining
two directions remain coupled and need to be calculated numerically, albeit only with a 2D simulation.
Moreover, the validity of the asymptotic structure of the solution obtained was confirmed via numerical
computations carried out using the finite-element software Comsol Multiphysics. Overall, the significance
of this result is that the numerical work associated with the asymptotic approach is around two order of
magnitude smaller than that required when performing a numerical simulation of the originally posed 3D
problem.

Lastly, it is worth considering how these results would be used to simulate a real caster with longitudinal
stirring. In practice, such stirring, referred to as S-EMS (strand electromagnetic stirring), is applied several
metres below the mould region where solidification of the steel shell begins. Thus, in the S-EMS zone,
one can expect the presence of solid, mushy and molten regions, and the magnetic field will operate across
all three. From the point of view of modelling, the governing partial differential equations consist of the
Maxwell’s equations, the energy equation with conduction and convection, and the turbulent Navier–
Stokes equations with Lorentz force and Darcy-like damping terms, the latter to take account of the
transition to the porous mushy zone and then to the solid phase that translates with uniform speed in
the casting direction; see, for example, [26]. However, it is normally found that the magnetic Reynolds
number, Rem, which is given by Rem = Vl𝜎𝜂, where V is a characteristic velocity scale for the flow, is
small enough for the velocity to be neglected from the Maxwell equations; thus, they decouple from the
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Fig. 10. Comparison of the time-averaged component of the Lorentz force in the (a) x-direction, ̄𝐹𝑥, (b) y-direction, ̄𝐹𝑦 and
(c) z-direction, ̄𝐹𝑧 vs. distance from the stirrer, y, for z = 0.0875 m, x = −0.6 m, using the asymptotic solution and the full 3D
numerical solution for 𝛥 = 0.01.

Navier–Stokes equations, meaning that the components of the Lorentz force can be determined a priori.
Hence, the quantities determined in this paper can be used directly in subsequent computations of the
Navier–Stokes equations and energy equation.
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Appendix A: 𝛼̄ ≠ 0, ̄𝛽 = 0

For this case, we set

�𝐵𝑋 = 𝐵(0)
𝑋 + Δ𝐵(1)

𝑋 + 𝑂(Δ2)

ℬ𝑋 = ℬ(0)
𝑋 + Δℬ(1)

𝑋 + 𝑂(Δ2)}
, (A.1)

�𝐵𝑘 = Δ𝐵(1)
𝑘 + Δ2𝐵(2)

𝑘 + 𝑂(Δ3)

ℬ𝑘 = Δℬ(1)
𝑘 + Δ2ℬ(2)

𝑘 + 𝑂(Δ3)}
, 𝑘 = 𝑌 , 𝑍. (A.2)

We have, at leading order,

−iℬ(0)
𝑋 +

𝜕ℬ(1)
𝑌

𝜕𝑌 +
𝜕ℬ(1)

𝑍
𝜕𝑍 = 0, (A.3)

2𝜋Ω𝑖iℬ
(0)
𝑋 =

𝜕2ℬ(0)
𝑋

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑋

𝜕𝑍2
, (A.4)

2𝜋Ω𝑖iℬ
(1)
𝑌 =

𝜕2ℬ(1)
𝑌

𝜕𝑌 2
+

𝜕2ℬ(1)
𝑌

𝜕𝑍2
, (A.5)

2𝜋Ω𝑖iℬ
(1)
𝑍 =

𝜕2ℬ(1)
𝑍

𝜕𝑌 2
+

𝜕2ℬ(1)
𝑍

𝜕𝑍2
, (A.6)

subject to: at Y = 0,

ℬ(0)
𝑋 = {

𝛼̄(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2,

� (A.7)

ℬ(1)
𝑍 = 0; (A.8)

at Y = 1, |Z| ≤ H∕2,

[
ℬ(0)

𝑋
𝜂 ]

+

−

= 0, (A.9)

[ℬ(1)
𝑌 ]+

− = 0, (A.10)

[
ℬ(1)

𝑍
𝜂 ]

+

−

= 0, (A.11)

[
1

𝜎𝜂 (
𝜕ℬ(1)

𝑍
𝜕𝑌 −

𝜕ℬ(1)
𝑌

𝜕𝑍 )]

+

−

= 0, (A.12)

[
1

𝜎𝜂 (
𝜕ℬ(0)

𝑋
𝜕𝑍 )]

+

−

= 0; (A.13)
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at |Z| = H∕2, 0 ≤ Y ≤ 1,

[
ℬ(0)

𝑋
𝜂 ]

+

−

= 0, (A.14)

[
ℬ(1)

𝑌
𝜂 ]

+

−

= 0, (A.15)

[ℬ(1)
𝑍 ]

+

−
= 0, (A.16)

[
1

𝜎𝜂 (
𝜕ℬ(1)

𝑍
𝜕𝑌 −

𝜕ℬ(1)
𝑌

𝜕𝑍 )]

+

−

= 0, (A.17)

[
1

𝜎𝜂
𝜕ℬ(0)

𝑋
𝜕𝑌 ]

+

−

= 0; (A.18)

as R → ∞,

ℬ(0)
𝑋 , ℬ(1)

𝑌 , ℬ(1)
𝑍 → 0. (A.19)

This system of equations decouples, so that ℬ(0)
𝑋 can be found first, and then ℬ(1)

𝑌 and ℬ(1)
𝑍 . In fact,

the equations for ℬ(0)
𝑋 are identical to those given in Section 4.1, although the ones for ℬ(1)

𝑌 and ℬ(1)
𝑍 are

different to those for ℬ(1)
𝑌 and ℬ(1)

𝑍 in the same section, on account of the source term in Eq. (A.3), which
was not present in Eq. (51).
Appendix B: 𝛼̄ = 0, ̄𝛽 ≠ 0

For this case, we set

�𝐵𝑋 = Δ𝐵(0)
𝑋 + Δ2𝐵(1)

𝑋 + 𝑂(Δ3)

ℬ𝑋 = Δℬ(0)
𝑋 + Δ2ℬ(1)

𝑋 + 𝑂(Δ3)}
, (B.1)

�𝐵𝑘 = 𝐵(1)
𝑘 + Δ𝐵(2)

𝑘 + 𝑂(Δ2)

ℬ𝑘 = ℬ(1)
𝑘 + Δℬ(2)

𝑘 + 𝑂(Δ2)}
, 𝑘 = 𝑌 , 𝑍. (B.2)

We have, at leading order,

𝜕ℬ(0)
𝑌

𝜕𝑌 +
𝜕ℬ(0)

𝑍
𝜕𝑍 = 0, (B.3)

2𝜋Ω𝑖iℬ
(1)
𝑋 =

𝜕2ℬ(1)
𝑋

𝜕𝑌 2
+

𝜕2ℬ(1)
𝑋

𝜕𝑍2
, (B.4)

2𝜋Ω𝑖iℬ
(0)
𝑌 =

𝜕2ℬ(0)
𝑌

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑌

𝜕𝑍2
, (B.5)

2𝜋Ω𝑖iℬ
(0)
𝑍 =

𝜕2ℬ(0)
𝑍

𝜕𝑌 2
+

𝜕2ℬ(0)
𝑍

𝜕𝑍2
, (B.6)
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subject to: at Y = 0,

ℬ(0)
𝑋 = 0, (B.7)

ℬ(0)
𝑍 = {

̄𝛽(𝑍) for |𝑍| ≤ 𝐻/2
0 for |𝑍| > 𝐻/2;

� (B.8)

at Y = 1, |Z| ≤ H∕2,

[
ℬ(1)

𝑋
𝜂 ]

+

−

= 0, (B.9)

[ℬ(0)
𝑌 ]

+

−
= 0, (B.10)

[
ℬ(0)

𝑍
𝜂 ]

+

−

= 0, (B.11)

[
1

𝜎𝜂 (
𝜕ℬ(0)

𝑍
𝜕𝑌 −

𝜕ℬ(0)
𝑌

𝜕𝑍 )]

+

−

= 0, (B.12)

[
1

𝜎𝜂 (
−iℬ(0)

𝑍 +
𝜕ℬ(1)

𝑋
𝜕𝑍 )]

+

−

= 0; (B.13)

at |Z| = H∕2, 0 ≤ Y ≤ 1,

[
ℬ(0)

𝑋
𝜂 ]

+

−

= 0, (B.14)

[
ℬ(1)

𝑌
𝜂 ]

+

−

= 0, (B.15)

[ℬ(1)
𝑍 ]

+

−
= 0, (B.16)

[
1

𝜎𝜂 (
𝜕ℬ(0)

𝑍
𝜕𝑌 −

𝜕ℬ(0)
𝑌

𝜕𝑍 )]

+

−

= 0, (B.17)

[
1

𝜎𝜂 (
−iℬ(0)

𝑌 +
𝜕ℬ(1)

𝑋
𝜕𝑌 )]

+

−

= 0; (B.18)

as R → ∞,

ℬ(0)
𝑋 , ℬ(1)

𝑌 , ℬ(1)
𝑍 → 0. (B.19)

This system of equations decouples, so that ℬ(0)
𝑌 and ℬ(0)

𝑍 can be found first, and then ℬ(1)
𝑋 . In fact,

the equations for ℬ(0)
𝑌 and ℬ(0)

𝑍 are identical to those given in Section 4.1, although the ones for ℬ(1)
𝑋 are

different to those for ℬ(0)
𝑋 in the same section, on account of the source term in Eqs (B.13) and (B.18),

which was not present in Eqs (61) and (66).
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It is also of note that the new source terms that have appeared in the leading-order problems where either
𝛼̄ or ̄𝛽 are identically zero in appendices B and A, respectively, turn up in different places: in Appendix
A, it is in the magnetic constraint equation, whereas in this appendix it is at the steel-air interface.
Appendix C: Solution from Dubke et al. [7]

Nick and Vynnycky [22] showed that by replacing (13) with

𝐵𝑥 = −𝐵0 sin(𝜔𝑡 − 𝜆𝑥), (C.1)

it is possible to obtain a solution for which By behaves at y = 0 in the same way as the solution of Dubke
et al. [7], which is given by

𝐵𝑥 = −𝐵0

𝜆 𝑒−ℜ𝔢(𝛾)𝑦 {ℜ𝔢(𝛾) sin 𝜙 + ℑ𝔪(𝛾) cos 𝜙} , (C.2)

𝐵𝑦 = 𝐵0𝑒−ℜ𝔢(𝛾)𝑦 cos 𝜙, (C.3)

𝐽𝑧 = −𝜎𝑠𝜔𝐵0

𝜆 𝑒−ℜ𝔢(𝛾)𝑦 cos 𝜙, (C.4)

𝐹𝑥 =
𝜎𝑠𝜔𝐵2

0

𝜆 𝑒−2ℜ𝔢(𝛾)𝑦 cos2 𝜙, (C.5)

𝐹𝑦 =
𝜎𝑠𝜔𝐵2

0

𝜆2
𝑒−2ℜ𝔢(𝛾)𝑦 cos 𝜙 {ℜ𝔢(𝛾) sin 𝜙 + ℑ𝔪(𝛾) cos 𝜙} , (C.6)

where ℑ𝔪 denotes the imaginary part of a complex number, 𝜙 = 𝜔𝑡 − 𝜆𝑥 − ℑ𝔪(𝛾)𝑦 and

𝛾 = √𝜎𝑠𝜂𝑠𝜔i + 𝜆2, (C.7)

so that

ℜ𝔢(𝛾) = √
𝜆2

2
+ 1

2√𝜆4 + 𝜎2
𝑠 𝜂2

𝑠 𝜔2, ℑ𝔪(𝛾) = √−𝜆2

2
+ 1

2√𝜆4 + 𝜎2
𝑠 𝜂2

𝑠 𝜔2, (C.8)

with

̄𝐹𝑥 =
𝜎𝑠𝜔𝐵2

0𝑒−2ℜ𝔢(𝛾)𝑦

2𝜆 , ̄𝐹𝑦 =
𝜎𝑠𝜔𝐵2

0ℑ𝔪(𝛾)𝑒−2ℜ𝔢(𝛾)𝑦

2𝜆2
. (C.9)

Moreover, it was demonstrated in [22] that whilst the two expressions in (C.9) agreed with the results
of 3D simulations, Eqs (C.2)–(C.6) did not. However, it was also remarked that the results in the original
work [7] were presented for the situation for which 𝛥 ≈13.1, i.e. 𝛥≫ 1. It is therefore of interest to see to
what extent the solution in [7] is valid for the 𝛥 ≪1 regime that this paper has focused on.

First, we may ask whether (C.1) would once again be suitable in order that By behaves at y = 0 in the
same way as the solution in [7], i.e. By = B0 cos(𝜔t −𝜆x). However, we have seen already that, for 𝛥≪ 1,
the choice of Bx at y = 0 will not affect By at all; the only way to alter By at y = 0 would be through the
choice of Bz at y = 0, which was not considered at all in [7]. If we now consider this possibility, we see
that this also would not resolve the problem. In view of the geometry, it would be reasonable to take 𝛽 to
be an even function of z; however, equations (106)–(112) would then permit a solution for which

𝐵𝑦(𝑦, 𝑧) = −𝐵𝑦(𝑦, −𝑧), 𝐵𝑧(𝑦, 𝑧) = 𝐵𝑧(𝑦, −𝑧),



60 A.S. Nick et al. / Analysis of a model for longitudinal electromagnetic stirring

meaning that By is an odd function of z. Hence, By = 0 at z = 0, which would not be able to replicate (C.3)
for any choice of 𝛽(z).

Thus, overall, for the 𝛥 ≪ 1 regime, the solution from [7] is even further removed from the actual
solution than was the case for 𝛥 ≫ 1.
References

[1] W.S. Kim and J.K. Yoon, Numerical prediction of electromagnetically driven flow in ASEA-SKF ladle refining by straight
induction stirrer, Ironmak. Steelmak. 18 (1991), 446–453.

[2] S.I. Chung, Y.H. Shin and J.K. Yoon, Flow characteristics by induction and gas stirring in ASEA-SKF ladle, ISIJ Intl. 32
(1992), 1287–1296.

[3] A.A. Tzavaras and H.D. Brody, Electromagnetic stirring and continuous-casting - achievements, problems, and goals, J.
Metals 36(3) (1984), 31–37.

[4] Q.-C. Le, S.-J. Guo, Z.-H. Zhao, J.-Z. Cui and X.-J. Zhang, Numerical simulation of electromagnetic DC casting of
magnesium alloys, J. Mat. Proc. Tech. 183 (2007), 194–201.

[5] A. Peel and P.Y. Menet, The application of MHD side stirring technology to aluminium melting furnaces for operational
efficiency improvement - a case study, J. Manuf. Sci. Prod. 15 (2015), 59–67.

[6] K.H. Spitzer, M. Dubke and K. Schwerdtfeger, Rotational electromagnetic stirring in continuous-casting of round strands,
Metall. Mater. Trans. B 17 (1986), 119–131.

[7] M. Dubke, K.-H. Tacke, K.-H. Spitzer and K. Schwerdtfeger, Flow fields in electromagnetic stirring of rectangular strands
with linear inductors: Part I. Theory and experiments with cold models, Metall. Mater. Trans. B 19B (1988), 581–593.

[8] M. Dubke, K.-H. Tacke, K.-H. Spitzer and K. Schwerdtfeger, Flow fields in electromagnetic stirring of rectangular strands
with linear inductors: Part II. Computation of flow fields in billets, blooms, and slabs of steel, Metall. Mater. Trans. B 19B
(1988), 595–602.

[9] M. Dubke, K.H. Spitzer and K. Schwerdtfeger, Spatial-distribution of magnetic-field of linear inductors used for electro-
magnetic stirring in continuous-casting of steel, Ironmak. Steelmak. 18 (1991), 347–353.

[10] K.-H. Tacke, A. Grill, K. Miyazawa and K. Schwerdtfeger, Macrosegregation in strand cast steel - computation of
concentration profiles with a diffusion-model, Arch. Eisenhüttenwes. 52(1) (1981), 15–20.

[11] K.H. Tacke and K. Schwerdtfeger, Stirring velocities in continuously cast round billets as induced with rotating
electromagnetic-fields, Stahl und Eisen 99 (1979), 7–12.

[12] C. Zhang, V. Shatrov, J. Priede, S. Eckert and G. Gerbeth, Intermittent behavior caused by surface oxidation in a liquid
metal flow driven by a rotating magnetic field, Metall. Mater. Trans. B 42 (2011), 1188–1200.

[13] H. Liu, M. Xu, S. Qiu and H. Zhang, Numerical simulation of fluid flow in a round bloom mold with in-mold rotary
electromagnetic stirring, Metall. Mater. Trans. B 43B (2012), 1657–1675.

[14] J. Yang, Z. Xie, J. Ning, W. Liu and Z. Ji, A framework for soft sensing of liquid pool length of continuous casting round
blooms, Metall. Mater. Trans. B 45 (2014), 1545–1556.

[15] G.M. Poole, M. Heyen, L. Nastac and N. El-Kaddah, Numerical modeling of macrosegregation in binary alloys solidifying
in the presence of electromagnetic stirring, Metall. Mater. Trans. B 45 (2014), 1834–1841.

[16] B.Z. Ren, D.F. Chen, H.D. Wang, M.J. Long and Z.W. Han, Numerical simulation of fluid flow and solidification in bloom
continuous casting mould with electromagnetic stirring, Ironmak. Steelmak. 42 (2015), 401–408.

[17] B.Z. Ren, D.F. Chen, H.D. Wang and M.J. Long, Numerical analysis of coupled turbulent flow and macroscopic
solidification in a round bloom continuous casting mold with electromagnetic stirring, Steel Res. Intl. 86 (2015), 1104–
1115.

[18] Q. Fang, H. Ni, H. Zhang, B. Wang and Z. Lv, The effects of a submerged entry nozzle on flow and initial solidification in
a continuous casting bloom mold with electromagnetic stirring, Metals 7(4) (2017), 146, (16 pages).

[19] Q. Fang, H. Ni, B. Wang, H. Zhang and F. Ye, Effects of EMS induced flow on solidification and solute transport in bloom
mold, Metals 7(3) (2017), 72, (19 pages).

[20] Y. Zhang, Z. Zeng, L. Yao, L. Qiao, L. Yin and Y. Lu, Modelling the rotating magnetic field with the skin effect, Intl. J.
Appl. Electromagnetics Mech. 53 (2017), 283–302.

[21] M. Vynnycky, On an anomaly in the modeling of electromagnetic stirring in continuous casting, Metall. Mater. Trans. B
49B (2018), 399–410.

[22] A.S. Nick and M. Vynnycky, On longitudinal electromagnetic stirring in the continuous casting of steel blooms, J. Engng
Maths 120 (2019), 129–151.



61A.S. Nick et al. / Analysis of a model for longitudinal electromagnetic stirring

[23] B. Ren, D. Chen, W. Xia, H. Wang and Z. Han, Numerical simulation of electromagnetic field in round bloom continuous
casting with final electromagnetic stirring, Metals 8(11) (2018), 903, (10 pages).

[24] D.G. Crighton, Asymptotics - an indispensible complement to thought, computation and experiment in Applied Mathe-
matical modelling, in: Seventh European Conf. on Mathematics in Industry, 2–6 March, A. Fasano and M.B. Primicerio
(eds), Montecatini Terme. Italy, 1993, pp. 3–19.

[25] I.V. Andrianov and J. Awrejcewicz, Asymptotic approaches in the theory of shells: Long history and new trends, in: Shell
Structures, Theory and Applications: Proceedings of the 8th SSTA Conference, 12–14 October, W. Pietraszkiewicz and C.
Szymczak (eds), Jurata, Poland, 2005, pp. 3–10.

[26] M. Vynnycky, Porous-media braking of electromagnetic stirring in the continuous casting of steel, in: COBEM-2017-2009,
24th ABCM International Congress of Mechanical Engineering, Curitiba, Brazil, 3–8 December, 2017.


