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Abstract. Sentiment Analysis, also known as Opinion Mining, gained prominence in the early 2000s alongside the emergence of
internet forums, blogs, and social media platforms. Researchers and businesses recognized the imperative to automate the extraction
of valuable insights from the vast pool of textual data generated online. Its utility in the business domain is undeniable, offering
actionable insights into customer opinions and attitudes, empowering data-driven decisions that enhance products, services, and
customer satisfaction. The expansion of Sentiment Analysis into the financial sector came as a direct consequence, prompting
the adaptation of powerful Natural Language Processing models to these contexts. In this study, we rigorously test numerous
classical Machine Learning classification algorithms and ensembles against five contemporary Deep Learning Pre-Trained models,
like BERT, RoBERTa, and three variants of FinBERT. However, its aim extends beyond evaluating the performance of modern
methods, especially those designed for financial tasks, to a comparison of them with classical ones. We also explore how different
text representation and data augmentation techniques impact classification outcomes when classical methods are employed. The
study yields a wealth of intriguing results, which are thoroughly discussed.
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1. Introduction

The computational study of people’s sentiments, opinions, assessments, attitudes, and emotions regarding
entities and their characteristics expressed in text is commonly referred in the literature as Sentiment
Analysis (SA) or Opinion Mining (OM) [1]. This scientific field is considered to be a subdomain of Natural
Language Processing (NLP) and experienced a significant development following the advent of Web
2.0. In our contemporary times, more than ever before, a substantial portion of human activities unfolds
in the online realm. Businesses and services have swiftly adjusted to the digital landscape, presenting
online platforms for a spectrum of activities, including shopping, banking, communication, entertainment,
and beyond. This phenomenon, widely recognized as digital transformation, is indeed a hallmark of our
era. Furthermore, online work and learning offer a remarkable degree of flexibility and convenience, a
reality that became especially evident during the COVID-19 pandemic. Social media platforms enable
individuals to connect, engage, share information, and exchange viewpoints. Simultaneously, streaming
and on-demand services have captured a significant segment of the entertainment market. The substantial
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volume of online activities has resulted in the generation of a vast amount of data containing valuable
information that holds the potential to benefit numerous areas of human activity.

In specific domains such as industry, markets, and digital entertainment, the viewpoints of customers
or service users play a pivotal role. This significance arises not only from gathering feedback but also
from enhancing the quality of services and fostering the growth of products. This is when the need for
systematic extraction of meaningful information from user product reviews [2], films and movies [3,4]
emerged. The engagement of users on social networks, coupled with their activities within these platforms,
constitutes an immense wellspring of information. This resource can be effectively harnessed to extract
insights into the opinions and intentions of individuals a task that, prior to the internet’s expansion, would
have required substantial effort, time, and financial investment. The necessity for extracting insights from
user comments on social media platforms such as Facebook [5], YouTube [6], and Twitter [7-9] also led to
the advancement of methodologies and tools for SA. For a contemporary comprehensive overview of SA
in the aforementioned social media domains, the interested reader is referred to [10].

Besides social media — but in some cases through social media posts — SA found applications in domains
such as healthcare [11-14], politics [15-17], public policy [18], psychology [19,20], marketing [21],
scientific citations [22] business [23-25] and finance [26] and so on. In [27], the authors formulated
a taxonomy of research topics in which the interested reader can seek additional information on SA
application domains.

Financial Sentiment Analysis (FSA) can be defined as the application of concepts and methods of SA
in the financial domain and, more specifically, in documents of financial nature. FSA can be a valuable
tool for traders, investors, financial institutions, and analysts to gauge market sentiment, assess risks,
and make more informed financial decisions. The underlying philosophy for the uprise of SA in the
financial domain is that the Efficient Market Hypothesis (EMH) seems to give its position to the Adaptive
Market Hypothesis (AMH) due to criticism from behavioural economics [26]. According to EMH theory,
financial markets are perfectly efficient and asset prices always reflect all available information. The AMH
challenges the strict assumptions of EMH. It acknowledges that market participants are not always perfectly
rational and that market dynamics can change over time. AMH suggests that market participants adapt
to new information and market conditions, and this adaptation can lead to changes in asset prices. In a
dynamic and ever-evolving environment, the active processing and assessment of every incoming piece of
information are deemed vital for shaping future decisions. Consequently, the significance of employing
SA techniques in matters pertaining to financial data can be exceptionally advantageous and profitable,
guiding stakeholders towards more informed choices and decisions. Examples where SA is applied in
the financial world are abundant. Stock prediction [28], FOREX exchange rate prediction [29], market
volatility [30], asset allocation [31,32], credit worthiness [33], initial public offering valuation (IPO) [34],
cryptocurrency [35-38] are — among numerous others — some applications of SA in financial domain.

It is essential to recognize that FSA comes with unique challenges. Factors such as the limited availability
of extensive data and the complexity of annotating financial texts without domain expertise or expert
input [39] set it apart from SA in more general contexts. For instance, financial documents like reports,
social media posts, and news articles are replete with specialized terminology, economic jargon, and
technical terms. Any inaccuracies in FSA can have severe and unacceptable consequences, potentially
leading to significant financial losses. As a result, findings derived from FSA demand careful evaluation
and should be approached with a high degree of caution. In the financial domain, where decisions can have
far-reaching impacts on investments and markets, the necessity for precision in sentiment analysis cannot
be overstated. Rigorous methodologies, access to accurate domain-specific data, and collaboration with
experts in the field are indispensable in ensuring the reliability of FSA outcomes.

The conventional SA techniques may not exhibit the same level of effectiveness within the financial
domain. The performance of existing models tends to degrade when applied to FSA as opposed to more
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traditional SA tasks. This underscores the importance of critically assessing and adapting the existing
methodologies to suit the unique demands of the economic domain. The process of evaluation serves as a
compass to help us identify and embrace the most efficacious techniques for FSA. Meanwhile, modification
efforts pave the way for developing more tailored and efficient methodologies suited explicitly to this
intricate domain. In essence, through evaluation and modification, we can enhance the applicability and
precision of SA within finance.

The structure of this study is as follows: In Section 2, we conduct a comprehensive review of recent
literature pertaining to the current research. In Section 3, we provide detailed insights into the experimental
setup, including the dataset employed, the pre-processing methodology, the ML models utilized, and
the metrics for evaluating model performance. Section 4 presents the outcomes of the aforementioned
experimental process. Finally, the paper is concluded in the Conclusions section.

2. Literature review

Three primary approacheslexicon-based, machine learning, and hybridconstitute the main methodologies
employed for SA in the general domain, as highlighted in [40]. In the context of financial SA, these
three methodologies remain pivotal, each with its own unique characteristics. Lexicon-based methods, for
instance, diverge into two categories: generic lexicon-based methods, as discussed in [41], and domain-
specific lexicon-based methods, like those tailored for the financial sector. The initial group of methods,
characterized by a significant misclassification rate, has since given way to the adoption of financial
lexicon-based methods. This shift was pioneered by Loughran and McDonald in their work [42], marking
the inception of financial lexicon development. Subsequently, research in this domain has continued
unabated, exemplified by recent contributions such as the ones presented in [43—45].

Sometimes, it is difficult to distinguish which approach a paper uses because many of them use a mix of
methods. For instance, the LPS model [46] is a widely cited example in recent research papers. It’s used as
a basic model to predict the meaning of words in short economic texts, especially in finance. The model
works by understanding finance-specific terms and their meanings in three stages: in the first two stages, it
uses sentence structure and domain knowledge, and in the final stage, it uses a special type of classifier.
This approach is in line with the current trend in research where traditional ML and deep learning models
are combined with methods that select important words from lexicons and process sentences or individual
words, as discussed in [47]. Although some researchers, like those in [40], distinguish between ML and
Neural Network approaches, we consider it part of the broader ML category for our study. Since our focus
is mainly on ML, this literature review concentrates on methods within that domain. FinSSLx [48] is a
multi-class classifier for financial sentiment analysis using a layer for simplifying text based on phrases or
clauses followed by a LSTM neural network. This model seems to outperform the LPS and Reduced-LPS
models [46].

When considering the deployment of classical ML models in FSA scenarios, a multitude of studies
can be found in recent literature. For instance, in [49], the authors employ a Support Vector Machine
(SVM) approach optimized through particle swarm optimization (PSO) for SA stock market prediction.
Similarly, [50] employs Multivariate Linear Regression in conjunction with SA techniques to address
the same stock market prediction problem. In [51], seven well-established ML algorithms are applied,
leveraging SA on data sourced from microblogging sites to predict stock prices. SVMs are also employed
in [28] in tandem with SA to forecast stock market movement directions. In [52], three prominent
ML algorithmsNeural Networks (NN), SVMs, and Random Forest (RF) are compared for predicting
cryptocurrency market movements. They utilize pertinent information from Twitter and market data as
input features. Lastly, regarding studies where a wide array of classical ML methods are compared in
financial domain tasks, along with the incorporation of SA, [53] employs twenty-seven ML models on a
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comprehensive dataset. This extensive analysis encompasses various sentiment configurations to predict
the closing prices of fifteen companies in the financial markets.

It was evident that the emergence of Deep Learning models would significantly impact the field of FSA.
These more advanced models started to find application in financial tasks, yielding impressive results.
In [54], a range of neural network models, including Long Short-Term Memory (LSTM), Doc2Vec, and
Convolutional Neural Networks (CNNs), were employed to analyze stock market opinions extracted
from StockTwits. The goal was to predict the sentiment of the authors. Furthermore, [55] delved into the
utilization of traditional LSTM and attention-based LSTM deep neural networks for predicting future
stock market movements, incorporating SA on data collected from Twitter. In [56], various deep learning
architectures, spanning from Multilayer Perceptrons (MLPs) to CNNs and Recurrent Neural Networks
(RNNSs), were harnessed alongside sentiment data gathered from diverse online sources to detect changes
in Bitcoin prices. Regarding the real-time BITCOIN price prediction, [57] leveraged RNNs equipped
with LSTMs in conjunction with data extracted from Twitter and Reddit. [58] presented an extensive
comparative study encompassing thirty contemporary Deep Learning models, with the aim of not only
shedding light on model performance but also exploring a multitude of sentiment feature configurations.
For a more comprehensive understanding of the application of modern Deep Learning methods in the FSA
domain, additional information can be found in the following survey papers: [59-61].

After the emergence of general language representation models like BERT and RoBERTa (further
information on these models can be found in next session), domain-specific models based on the pre-
existing general ones began to appear. FinEAS model [62], for example, is based on the Sentence-BERT
model with an extra linear layer for regression due to the reason that sentiment is modelled as a continuous
variable (—1 to 1), contrary to FinBERT models, which uses discrete values (—1, 0, 1) for sentiment
categorization. For the domain we are interested in (economics, finance) the language representation models
that have recently appeared, to our best knowledge, are FinBERT models [63-67], that we are going to
present in the next section. Agarwal in [68] proposed a novel neural network model for company-specific
financial sentiment analysis that transformed general word embeddings into domain-specific embeddings
and used a knowledge-base to enrich the training vocabulary. Evaluating benchmark datasets from the
SemEval-2017 shared task on financial SA demonstrated the feasibility and effectiveness of the proposed
model.

At this point, it should be noted that in this section, only a representative portion of the relevant literature
is provided. The reader is encouraged to use these sources as a starting point for further in-depth research.

3. Experimental procedure
3.1. Dataset description

The publicly available financial dataset [69] was used for the experimental procedure. This dataset
resulted from the merging of two separate datasets FIQA [70] and Financial PhraseBank [71] combined
into a ready to use csv file.

The FiQA dataset, introduced for the WWW °18 conference’s financial OM and question-answering
competition [70], comprises questions and answers rooted in financial reports. This dataset has gained sig-
nificant prominence as it serves as a valuable resource for training and assessing NLP models, particularly
those tailored for finance-related tasks. Notably, FiQA provides sentiment scores ranging continuously
from —1 (indicating negativity) to 1 (indicating positivity). The Financial PhraseBank comprises a total
of 4,845 financial sentences that were randomly selected from pertinent information available in the
LexisNexis database [72]. Each sentence in this dataset has been categorized as positive (1), neutral (0), or
negative (—1) through the collaborative efforts of 16 annotators possessing expertise in business or finance.
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Fig. 1. Distribution of instances among classes.

The resultant dataset comprises 5,842 labelled financial sentences, categorized as positive (1), neutral
(0), or negative (—1). It’s worth noting that some sentences appear as duplicates with varying sentiment
annotations. For instance, the sentence “However, the company saw its net profit for the third quarter
decline to EUR 1.4 million from EUR 1.5 million for the corresponding period of 2009” occurs twice and
has been characterized as both neutral and negative. These discrepancies likely arose from the rounding
of continuous sentiment scores in the FiQA dataset to integer values (—1, 0, 1). To address this issue, we
conducted pre-processing by removing duplicate sentences.

Another noteworthy concern pertains to the potential presence of similar sentences assigned different
sentiment labels. For instance, consider the following sentences: “Earnings per share (EPS) amounted to a
loss of EUR0.05” and “Earnings per share (EPS) amounted to a loss of EUR0.06.” These sentences exhibit
close semantic meaning and, according to the authors, should ideally carry the same sentiment score.
However, it remains unclear how many sentences fall into this category, warranting further investigation.
The implication of the above issue may be the reduced performance of any algorithm we use for SA in
sequel.

In Fig. 1, the distribution of sentences in the dataset among the three classes is presented. It is observed
that the number of sentences falling into each class is not evenly distributed. The count of sentences
labelled as neutral is significantly higher than that of the other classes, while those labelled as negative
constitute the smallest percentage of the dataset. As a result, this specific dataset can be considered as an
imbalanced one.

3.2. Pre-processing procedure

The next step after creating the dataset is its pre-processing. Data pre-processing is a significant phase
of the experimental process in SA scenarios, allowing the data to acquire the appropriate structure for
subsequent use by ML algorithms. The steps that were followed are presented below, both in natural
language and graphically, as depicted in Fig. 2, to provide the reader with a clearer understanding of the
process.

Concerning the above, data pre-processing includes the following steps:

— Duplicate Removal: We identified approximately 520 duplicated sentences with potentially different
sentiments. As a prepossessing step, we opted to remove these duplicates.
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Fig. 2. Pre-processing stage.

— Tokenization: Tokenization is a fundamental technique in NLP that dissects text strings into sequences
of words (tokens) [73]. For this purpose, we utilized the Python NLTK library in this study.

— Stop Word Removal: Although not universally applicable, removing of stop words is a common
practice in text prepossessing. This is done to prioritize meaningful words and reduce the overall
number of tokens (words) [73].

— Lemmatization: In this study, we chose lemmatization over stemming. While both techniques aim
to normalize text, lemmatization tends to deliver better performance with minimal computational
overhead [73]. We employed the WordNet Lemmatizer package available in the Python Natural
Language Toolkit (NLTK).

— Lowercase Conversion: Lowercasing is a standard text normalization technique, as word meanings
remain consistent regardless of letter case. Research has shown that converting text to lowercase can
enhance SA performance [74].

3.3. Machine learning models

In the context of this work, a plethora of algorithms was utilized, which can be categorized into two
groups: the first group comprises classical ML algorithms for classification problems, as well as ensembles
of some of them. The second group pertains to a series of Deep Learning Pre-trained Models, which
represent a more promising approach for tackling NLP problems. Subsequently, the necessary information
about the models used is provided to describe the outline of the experimental process.

In this study, classical ML models were trained and evaluated using the PyCaret [75] library. PyCaret
is a powerful open-source low-code ML toolkit written in Python, functioning as a versatile wrapper for
various Python libraries, including scikit-learn. It streamlines the ML pipeline, enabling practitioners to
efficiently train and test a range of algorithms for both supervised (e.g., classification) and unsupervised
learning tasks with just a few lines of code. The complete list of models used, along with their abbreviations
can be found in Table 1.

Note that the Dummy Classifier used in this context is a Stratified Dummy Classifier, which predicts
class labels in a manner that mirrors their distribution in the training dataset. This strategic choice ensures
that the baseline model generates predictions that accurately reflect the natural class distribution in the
data. By doing so, it establishes a meaningful starting point for the comparison and evaluation of other
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Table 1
List of classic ML classification algorithms
Method Abbreviation
1 AdaBoost Classifier AdaBoost
2 CatBoost Classifier CatBoost
3 Decision Tree Classifier DT
4 Dummy Classifier DC
5 Extra Trees Classifier ET
6 Extreme Gradient Boosting XGBoost
7 Gradient Boosting Classifier GBC
8 K-Nearest Neighbors KNN
9 Light Gradient Boosting Machine  LightGBM
10  Linear Discriminant Analysis LDA
11 Logistic Regression LR
12 Naive Bayes NB
13 Quadratic Discriminant Analysi QDA
14 Random Forest Classifier RF
15  Ridge Classifier Ridge
16  Support Vector Machine SVM

ML models. An extra pre-processing technique that we use for testing classical ML models is Bag of
Words (BoW), which is implemented in Pycaret. Alternatively, it can be used Term Frequency — Inverse
Document Frequency (TF-IDF) weighting using PyCaret ecosystem.

The Bag of Words (BoW) approach constructs a vector for ML models by tallying the occurrences of
each unique word in the corpus. To create a BoW representation, a vocabulary is initially compiled from
all unique words in a collection of documents. Each document is then depicted as a vector, with each
vector dimension corresponding to a word in the vocabulary. The value in each dimension signifies how
many times that word appears in the document. This results in a sparse numerical representation of text
data, where each document essentially represents a count of word occurrences. The TF-IDF approach is
considered to be the product of two distinct statistical measures: TF (Term Frequency) and IDF (Inverse
Document Frequency). The TF measure quantifies the number of times a term occurs within the entire
document, reflecting the importance of the word within that specific document. Meanwhile, the IDF
measure gauges the rarity of each term across the entire document corpus and is calculated by taking the
logarithm of the total number of documents in the corpus divided by the number of documents containing
the word. Finally, the TF-IDF score for a word in a document is calculated by multiplying its TF and IDF
values. This results in a numerical representation where each document is characterized by the TF-IDF
scores of its words. Higher TF-IDF scores signify that a word is significant within a particular document
but relatively infrequent across the entire corpus.

Both techniques come with their own set of advantages and disadvantages. BoW is straightforward and
easy to understand, involving basic counting operations, which makes it computationally efficient even
when dealing with large text corpora. However, BoW does not capture word semantics or relationships
between words, making it less suitable for tasks that require understanding meaning. On the other hand,
TF-IDF considers the importance of words within individual documents and the entire corpus, capturing
the context and significance of words. It scales well to large text corpora and remains effective even with
extensive datasets. However, its calculation can be more computationally intensive compared to BoW,
especially with such datasets. It is worth noting that both techniques have the drawback of ignoring word
order in sentences, leading to a loss of context and potentially important information. Although in detecting
hate speech [76] TF-IDF performed better than Bow for the same classifiers, in the present paper, we will
use both as an attempt to compare them in FSA.

As referenced in Section 3.1, the dataset used in this study exhibits class imbalance. To address this
issue, we employ two approaches. In the first approach, we utilize both stratified k-fold cross-validation and
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Synthetic Minority Over-sampling Technique (SMOTE). SMOTE is an ML method designed to mitigate
class imbalance by generating artificial data points for the minority class, resembling existing instances
through a process of selecting each minority class example and identifying its nearest neighbors, creating
new synthetic instances as interpolations between them. By incorporating these synthetic examples into
the dataset, SMOTE enhances the learning process of ML models, making them more effective at handling
imbalanced data and improving overall predictive accuracy. Notably, SMOTE has been applied successfully
in SA, resulting in improved classifier performance [77,78]. In the second approach, we rely solely on
Stratified k-fold cross-validation. These approaches enable us to compare whether the inclusion of SMOTE
leads to superior classification results for each classifier.

A classic method to enhance classification accuracy involves building a meta-ensemble ML model that
combines the top-performing models, typically three in number, as measured by the Matthews Correlation
Coefficient (MCC). MCC is considered a superior metric to F1 score and accuracy, particularly in datasets
with imbalanced classes [79]. Two primary approaches are commonly used to aggregate classifier results:
hard voting and soft voting.

The hard voting technique, also known as majority voting, entails each individual classifier casting a vote
for a class, and the class with the most votes becomes the final prediction. Conversely, soft voting involves
calculating the average probabilities for each class across the individual classifiers, and the class with the
highest average probability is chosen as the final prediction. Both of these techniques are not unfamiliar in
the domain of SA. For instance, in [80], soft voting is employed to formulate a meta-ensemble classifier for
SA in movie reviews, while in [81] hard voting is utilised for sentiment analysis on Twitter data related to
airline services. In our research, we opt for the soft voting technique due to its consideration of confidence
levels, making it a more sophisticated and suitable choice.

As a result of the above we are going to run using PyCaret library the experiments below:

1. Classic ML classifiers + BoW + SMOTE.

. Classic ML classifiers + TF-IDF + SMOTE

. Classic ML classifiers + BoW.

. Classic ML classifiers + TF-IDF.

. Soft Voting (Combinations of three) + BoW + SMOTE.

. Soft Voting (Combinations of three) + TF-IDF + SMOTE.
. Soft Voting (Combinations of three) + BoW.

. Soft Voting (Combinations of three) + TF-IDF.

0N N bW

3.4. Deep learning pre-trained models

3.4.1. BERT

BERT (Bidirectional Encoder Representations from Transformers) [82] is a state-of-the-art language
representation model that leverages the Transformer architecture [83]. As a pre-trained model, BERT is
able to capture the contextual relationships and meanings of words in sentences and can also be fine-tuned
for specific NLP tasks such as text classification, question-answering, and more. Moreover, the term
bidirectional refers to the model’s ability to consider both the left and right context of a word when
determining its meaning, leading to better contextual embeddings. There are two primary iterations of the
BERT model: the Base model, characterized by 12 layers, 768 hidden states, 12 attention mechanisms, and a
total of 110 million trainable parameters; and the Large model, comprising 24 layers, 1024 hidden states, 16
attention mechanisms, and a total of 340 million trainable parameters. The BERT Large model possesses
enhanced capabilities for capturing intricate linguistic relationships, albeit at the cost of heightened
computational resource demands.

BERT undergoes a two-stage training process. In the first stage, it undergoes pre-training through a
dual-task framework encompassing Masked Language Modeling and Next Sentence Prediction. This
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initial phase capitalizes on the vast textual resources of the BooksCorpus (800 million words) and English
Wikipedia (2.5 billion words). The primary objective of this pre-training stage is to equip the model with a
robust understanding of general language patterns and structures. Subsequently, in the second stage, BERT
is fine-tuned for specific NLP tasks, such as SA. During fine-tuning, BERT is exposed to task-specific
datasets containing labelled data. In this stage, task-specific layers are added on top of the pre-trained
BERT model. These layers may include feedforward neural networks and output layers tailored to the
specific task. Moreover, during fine-tuning, the pre-trained BERT weights are updated to adapt to the task
at hand. This process enables the model to adjust its pre-trained, generalized language representations to
the intricacies of the target task.

Notably, BERT has demonstrated exceptional performance across a spectrum of NLP benchmarks,
including the General Language Understanding Evaluation (GLUE) benchmark, Stanford Question An-
swering Dataset (SQuAD v1.1), SQuAD v2.0, and the SWAG dataset, reaffirming its prowess in language
understanding and comprehension [82]. Note that although this model has not been designed for eco-
nomic texts, it has nevertheless been used among other models in FSA research papers with quite good
results [84,85].

3.4.2. RoBERTa

RoBERTa (A Robustly Optimized BERT Pretraining Approach) [86], represents an advanced lan-
guage representation model that evolved from the BERT architecture. This evolution involved a series of
meticulous adjustments, including extended training duration, exposure to an augmented training dataset,
heightened batch size, and the incorporation of longer sequences, alongside the deliberate omission of the
Next Sentence Prediction (NSP) task in favor of dynamic masking. These strategic refinements, crucially,
do not compromise the model’s classification capabilities. Quite the opposite, ROBERTa demonstrates
superior performance in comparison to its predecessor, BERT, across a spectrum of key NLP bench-
marks, including SQuAD v1.1, SQuAD v2.0, the General Language Understanding Evaluation (GLUE)
benchmark, RACE, MNLI-m, and SST-2.

One remarkable facet of RoOBERTa’s training regimen is its exposure to a substantially enlarged corpus
of text data. This corpus encompasses additional datasets like CC-News, Open WebText, and STORIES,
aggregating a vast collection totalling 160 GB [86]. This rich and diverse training data amplifies ROBERTa’s
language comprehension prowess significantly. Like original BERT, RoBERTa has not been designed for
economic text, but also have been used also in FSA research papers with very remarkable performance [87-
89].

3.4.3. Financial BERT models

FinBERT models are specialized language representation models designed for financial applications and
built upon the BERT architecture. These models are explicitly trained to analyze and comprehend textual
data pertaining to financial markets, stocks, investments, and economic news. Their primary objective
is to evaluate sentiment and extract valuable insights from financial text. Similar to BERT, the typical
training process for FinBERT includes an initial pre-training phase. During this phase, the model acquires
general language representations by processing a substantial corpus of financial text data. This pre-training
stage enables the model to capture specific language patterns and financial terminology relevant to its
domain. Following pre-training, FinBERT undergoes fine-tuning, focusing on FSA tasks. Fine-tuning
entails training the model on specialized datasets containing labelled data, refining its performance for
sentiment analysis within the financial context. It is worth noting that within the term “FinBERT,” the
literature identifies four distinct models that we are aware of. The first model was introduced by Araci [63],
while the subsequent three models were developed by Desola et al. [64], Liu et al. [65], and Yang et
al. [2,67], respectively. These variations reflect the evolving landscape of research and applications within
the domain of FSA.
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The FinBERT model from Araci [63] was pre-trained on the financial subdataset of Reurers dataset
TRC2. It was then evaluated on the Financial Phrase Bank and FiQA Sentiment datasets, i.e. the same
datasets used in this paper. The only difference lies in the evaluation, where this model was evaluated
with the original FiQA dataset, where sentiment values range continuously from -1 to 1. In the existing
literature, this model seems to outperform all the other testing models in accuracy and F1 score, even
those that are more suitable for the financial domain, such as the LPS model [46], FinSSLx [48], HSC
model [90]. Implementation of this model can be found via Hugging Face Al repository [91].

The FinBERT model developed by Desola et al. [64] comprises three distinct variants: FinBERT Prime,
FinBERT Pre2K, and the combination of both, referred to as the FinBERT Combo model. FinBERT
Prime was pre-trained on 10-K filing reports, specifically those submitted by companies to the SEC
and accessible via the EDGAR system, spanning the years 2017 to 2019. In contrast, FinBERT Pre2K
underwent pretraining on 10-K filings dating back to 1998 and 1999. The FinBERT Combo model benefits
from the fusion of data from both of these datasets. According to the authors, their FinBERT model
demonstrates superior performance when compared to the standard BERT model, particularly in Next
Sentence Prediction and Masked Language Modeling tasks. For those interested in implementing these
models, the necessary resources and code can be found on Github [92].

The FinBERT model, as developed by Liu et al. [65], underwent a comprehensive pre-training process
utilizing three substantial financial datasets: a) The Financial Web dataset (comprising 24GB of text and
6.38 billion words). b) Yahoo! Finance dataset (with a size of 19GB and 4.71 billion words). ¢) RedditFi-
nanceQA dataset (amounting to 5GB and 1.62 billion words). Following this extensive pre-training phase,
the model underwent fine-tuning and subsequent evaluation on two critical datasets: the Financial Phrase
Bank and the original FiQA Sentiment datasets. Remarkably, the results of this implementation showcase
a noteworthy performance improvement compared to the conventional BERT model. Furthermore, it’s
noteworthy that this particular model exhibits superior performance when compared to the FinBERT model
by Araci [63], demonstrating its prowess across both the PhraseBank and FiQA datasets.

The FinBERT model, as proposed by Huang et al. [2,67], comprises four distinct variants: the initial pair
includes FinBERT-BaseVocab, both in uncased and cased versions, while the subsequent pair encompasses
FinBERT-FinVocab, also in uncased and cased versions. This comprehensive model family underwent
pre-training on three distinct financial corpora, namely Corporate Reports (10-K & 10-Q), Earnings
Call Transcripts, and Analyst Reports. A pivotal distinction arises between the BaseVo-cab and FinVocab
subfamilies: the former employs the original BERT base model, pre-trained on the aforementioned financial
corpora, while the latter is fashioned from the ground up, utilizing a newly crafted financial vocabulary.
These resulting models underwent subsequent fine-tuning and rigorous evaluation, encompassing datasets
such as the Financial Phrase Bank, AnalystTone, and the FiQA Sentiment dataset. Notably, in the case of
the FiQA Sentiment dataset, a conversion from regression to classification was implemented, mirroring the
methodology utilized in the present study. Remarkably, the FinBERT-FinVocab uncased model exhibits
superior performance, surpassing not only its predecessor BERT but also outperforming deep learning
models like LSTM and CNN. Additionally, it outshines classical ML models such as Naive Bayes, Support
Vector Machines, and Random Forests across multiple metrics, including accuracy, precision, recall, and
F1 score. For those interested in implementing these models, the requisite resources and code can be
accessed through the Hugging Face repository [93].

Another notable BERT-based model tailored for the financial domain is Financial BERT, as introduced
by Hazourli [94]. It is worth noting that, to our knowledge, this model has not been officially presented
at any conferences or published in a journal; instead, it is available through the academic social network
known as ResearchGate. Financial BERT underwent pre-training on a comprehensive array of four financial
datasets, encompassing the TRC2 financial sub-dataset, Bloomberg Financial News spanning from 2006 to
2013, Corporate Reports sourced from the EDGAR database, and Earnings Call Transcripts. According to
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its creator, this model exhibits remarkable performance, surpassing not only the BERT base model but
also outperforming the FinBERT model by Huang et al. [2,67] on the Financial PhraseBank dataset. For
instance, the aforementioned FinBERT model achieves an accuracy of 0.87 and an F1 score of 0.85, whereas
Financial BERT excels with scores of 0.99 and 0.98, respectively. For those interested in implementing this
model, resources and code can be accessed through the Hugging Face Al repository [95].

In the Hugging Face Al repository, several implementations of FinBERT models are available. However,
providing a comprehensive presentation or conducting exhaustive testing of these models is beyond the
scope of this current paper. To facilitate a comparative analysis of various general and domain-specific
Deep Learning Pre-Trained models, we will conduct the following experiments:

BERT.

RoBERTa [86].

FinBERT Araci Model [63].
FinBERT (Huang et. al. Model) [2,67]
Financial BERT [94]

FinBERT (Desola et al. model) [64] and FinBERT (Liu et al. model) [65] are not part of the aforemen-
tioned series of experiments. The reason for their exclusion is that these models appear to be unavailable
through the Hugging Face Al repository. Note here that to deploy all the aforementioned Deep-Learning
Pre-Trained models, the Transformers library, developed by Hugging Face was used to drawn the corre-
sponding models and tokenizers. Moreover, in the training phase of the models, ADAM optimizer was
used [96].

NhABD =

3.5. Metrics

The main metrics, that the majority of research papers approach the SA task as a classification problem
use, are accuracy, recall, precision, F1-score and Matthews Correlation Coefficient (MCC). Before we give
some short definitions for these metrics, let define the concepts below:

— True Positive (TP): Number of identifications as positive when negative.
— True Negative (TN): Number of identifications as negative when negative.
— False Positive (FP): Number of identifications as positive when negative.
— False Negative (FN): Number of identifications as negative when positive.

3.5.1. Accuracy

Accuracy is defined as the overall correctness of the model and mathematically as the ratio of correctly
classified predictions to the overall number of predictions. The mathematical formula for computing
Accuracy is:

TP + TN
TP + TN + FP + FN
While accuracy is straightforward to understand or interpret and clearly indicates how well a model
performs in correctly classifying instances, it can be misleading when dealing with imbalanced datasets,

where one class significantly outnumbers the others. Accuracy alone does not provide insights into why a
model makes specific errors or which classes it struggles with.

Accuracy =

3.5.2. Recall
Recall or Sensitivity is defined as the ratio of positive predictions to the actual positive ones. The
mathematical formula for computing Recall is:
TP

Recall = — —
A= TP EN
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Due to its inherent characteristics, this metric primarily emphasizes accurately identifying positive
instances. Consequently, it proves particularly valuable when the cost of missing a positive instance (false
negative) outweighs the cost of mistakenly classifying a negative instance as positive (false positive).
Furthermore, recall underscores the model’s proficiency in capturing minority classes and is generally
less susceptible to the effects of imbalanced datasets compared to accuracy. However, since this metric
primarily centres on true positives, it offers limited insight into true negatives. Therefore, it is advisable to
use it in conjunction with other metrics, such as precision or the F1-score, to achieve a more comprehensive
evaluation.

3.5.3. Precision
Precision indicates the ratio of predictions classified as positive and being actually positive. The mathe-
matical formula for computing precision is:

TP
TP + FP

As precision focuses on the accuracy of positive predictions, it is particularly useful when false positives
are costly, such as in tasks where making mistakes has significant consequences. Combining with recall
can give a better insight into the predictions, as high precision and low recall indicate that the model is
cautious about making positive predictions and avoids false alarms. Using precision in isolation can lead to
an incomplete evaluation of the model. One of the critical drawbacks is that optimizing for high precision
may lead to missed positive instances (false negatives), especially in situations where it’s vital to identify
all positive cases.

Precision =

3.5.4. Fl-score

F1-score is defined as the harmonic mean of Recall and Precision. It is considered to be an important
metric for achieving the balance between precision and recall. The mathematical formula for computing
the F1 score is:

F1 score — 2 x Precision * Recall

Precision + Recall

F1 score can be a more informative metric than accuracy in cases where the dataset is imbalanced, as it
provides the model’s ability to classify minority class instances correctly. It is particularly useful when
you want a comprehensive view of a model’s classification accuracy and condenses the evaluation of its
performance into a single value, simplifying model comparison. On the other hand, like precision and
recall, the F1 score primarily focuses on positive predictions and does not provide information about the
model’s ability to classify negative instances correctly. It should be used in conjunction with other metrics
for a complete evaluation.

3.5.5. Matthews correlation coefficient
Matthews Correlation Coefficient, or MCC, is a classification performance metric that takes values from
-1 (worst performance) to 1 (best performance). It is given by the following mathematical formula:

TP+ TN — FP xFN
/(TP + FP)(FN + TN)(FP + TN)(TP + FN)

It is considered to be a more efficient and balanced metric for imbalanced classes than the F1 score
and accuracy [79]. In fact, MCC considers all four outcomes of a confusion matrix (true positives, true
negatives, false positives, and false negatives) in its calculation. This makes its formula more complex than
some other metrics, but in the era of computational machines, this problem can be easily handled. On the
other hand, the use of all kinds of outcomes makes it robust and less sensitive to imbalanced datasets.

MCC =
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3.5.6. Receiver operating characteristic area under the curve (ROC-AUC)

ROC-AUC measures the area under the Receiver Operating Characteristic curve, which is a graphical
representation of a model’s performance across different classification thresholds. It quantifies the model’s
ability to distinguish between positive and negative classes, regardless of the threshold chosen. ROC-AUC
is not typically expressed by a simple mathematical formula like some other metrics. Instead, it is calculated
by plotting the Receiver Operating Characteristic (ROC) curve and then calculating the area under that
curve. ROC-AUC is a valuable metric for assessing a model’s ability to discriminate between classes
across different thresholds, especially when threshold selection is flexible or when dealing with imbalanced
datasets.

4. Results

The structure of this section will mirror the design and execution of the experimental procedure. Four
distinct experimental setups were conducted in relation to the classical ML models. These setups focused
on utilising two different word embedding techniques (BoW and TF-IDF), as well as the inclusion or
exclusion of the SMOTE technique. In addition to the pool of 16 classical ML classification algorithms,
ensembles were crafted from the highest-performing among them. This involved selecting a group of
five methods, those positioned within the top three for each setup as per the MCC metric. These selected
methods were then used to generate all conceivable combinations of three, creating ten distinct ensembles.
The soft voting technique, also accessible in the Pycaret library, was employed for this purpose. It is
worth noting that in cases of RidgeClassifier and SVM classifier, which do not support soft voting, a
bagged version of the same algorithm was employed as a workaround to address this limitation. The
outcomes of both the individual methods and the ensembles, comprising the most effective methods for
each experimental setup, are presented below.

4.1. Classic ML classifiers

4.1.1. Classical ML classifiers + BoW + SMOTE

In the initial experimental setup, CatBoost outperforms all other methods, both individual and in en-
semble configurations. The sole exception arises in the case of the AUC metric, where the ensemble
CatBoost+LR+XGBoost achieves the highest score, albeit with a marginal variance. LR and XGBoost
follow Catboost, with slightly inferion performance, reaching second and third place among individual
algorithms. Regarding ensembles, the combination of CatBoost+LR+XGBoost outperforms other com-
posite methods by attaining the highest scores across all metrics except for precision and F1. This is closely
followed by the CatBoost+XGBoost+SVM ensemble, which secures the second-best performance within
the ensemble category. Subsequent ensembles follow suit, generally exhibiting superior performance
compared to individual methods. The full results considering this scenario are presented in Table 2.

4.1.2. Classical ML classifiers + TF-IDF + SMOTE

Concerning the second scenario in which classic ML methods are used along with TF-IDF and SMOTE
techniques, the combination of CatBoost+LR+SVM comes first in terms of AUC, Precision and F1 score
and second in all other metrics, while the single Catboost method scores slightly higher in accuracy and
recall. It should be noted here that in imbalanced datasets, like the one in our case, the examination of
recall, precision and F1 gives better insight into the results than accuracy, as these metrics are particularly
useful when dealing with imbalanced classes. Precision measures how many of the predicted positive
instances are actually positive, and recall measures how many of the actual positive instances were correctly
predicted. F1-Score is the harmonic mean of precision and recall and helps find a balance between the two.
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Table 2
Classic ML models + BoW + SMOTE

Model Accuracy AUC Recall  Precision F1 Kappa MCC

Classic ML models
CatBoost 0.6371 0.7908 0.6371 0.6684 0.6481 0.4074 0411
LR 0.6215 0.7816  0.6215 0.6422 0.6296 0.3785 0.3804
XGBoost 0.6137 0.7847 0.6137 0.6473 0.6263 0.3723 0.3758
LightGBM 0.6101 0.7721 0.6101 0.6336 0.6193 0.36 0.362
SVM 0.6045 0.7584  0.6045 0.642 0.6187 0.3549 0.3585
GBC 0.5705 0.763 0.5705 0.6391 0.5905 0.3302 0.3415
ET 0.6022 0.6807 0.6022 0.6142 0.6073  0.333 0.3337
Ridge 0.581 0.7433  0.581 0.6285 0.5985 0.3273 0.3323
RF 0.5754 0.7149 0.5754 0.5961 0.5845 0.2971 0.2981
AdaBoost 0.5125 0.6881 0.5125 0.664 0.5424 0.2678 0.2958
NB 0.5072 0.6286  0.5072  0.5687 0.5249 0.2348 0.2424
DT 0.5115 0.6199 0.5115 0.5489 0.5266 0.2128 0.2151
KNN 0.2833 0.5537 0.2833  0.6057 0.2519 0.0884 0.1317
LDA 0.268 0.357 0.268 0.2973 0.279 0.0754 0.077
QDA 0.4937 0.5191 0.4937 0.4987 0.4354 0.0487 0.0573
DC 0.1472 0.5 0.1472  0.0217 0.0378 0 0

Ensembles

CatBoost+LR+XGBoost 0.6326 0.7951 0.6326  0.6581 0.6422  0.3983  0.4008
CatBoost+XGBoost+SVM  0.6317 0.7933  0.6317 0.6629 0.6433 03968 0.4

CatBoost+XGBoost-+Ridge  0.6257 0.7889  0.6257 0.66 0.6386  0.3905 0.3942
CatBoost+LR+SVM 0.6244 0.7896 0.6244 0.6514 0.6349 0.3826  0.385
LR+XGBoost+SVM 0.6221 0.7911 0.6221  0.6507 0.6332  0.38 0.3826
LR+XGBoost+Ridge 0.6142 0.7862 0.6142  0.6442 0.626 0.3698 0.3724
CatBoost+LR+Ridge 0.6142 0.7845 0.6142 0.6432 0.6256 03694 0.372
CatBoost+-SVM+-Ridge 0.6105 0.7811 0.6105 0.6434 0.6233  0.364 0.367
XGBoost+SVM+Ridge 0.6088 0.7832  0.6088  0.6425 0.6218 0.3616  0.3646
LR-+SVM-+Rigde 0.6054 0.7772  0.6054  0.6369 0.6178 0.3544  0.357

In addition, among the standalone methods, CatBoost and LR demonstrate superior performance relative
to others. As for ensembles, a blend of CatBoost and LR with SVM and Ridge, respectively, emerges
as the configuration that yields the most favorable outcomes. In conclusion, it is evident that ensembles
consistently yield improved performance compared to individual methods, leading to slight enhancements
across all metrics. The corresponding results, concerning all metrics, are presented in Table 3.

4.1.3. Classical ML classifiers + BoW

In this context, the standalone CatBoost classifier exhibits superior performance compared to other single
and ensemble methods across accuracy, precision, recall, and MCC metrics. However, in terms of AUC, F1,
and Kappa, CatBoost ranks second. Among ensemble methods, the combination of CatBoost and XGBoost
with SVM and Ridge, respectively, appears to surpass not only other ensembles but also the majority of
individual methods. Once again, ensembles demonstrate a prevailing trend of better performance. Yet, it is
important to acknowledge that the individual CatBoost method consistently achieves the highest scores in
the majority of metrics. Table 4 presents the full results concerning this scenario.

4.1.4. Classical ML Classifiers + TF-IDF

In this particular context, the standalone LR method claims the top position across all metrics except
AUC and F1. Among the individual methods, CatBoost and Ridge follow in the hierarchy after LR. Turning
to ensemble methods, the combination of CatBoost+LR+SVM emerges as the standout, surpassing all
other ensembles. While LR showcases prominence in this scenario, it’s evident that ensembles consistently
display superior performance compared to standalone methods. Notably, only a handful of individual
methods within each metric manage to surpass the weakest-performing ensemble, underscoring the
advantage of employing ensembles. The corresponding results can be found in Table 5.
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Table 3
Classic ML models + TF-IDF + SMOTE

Model Accuracy AUC Recall  Precision Fl Kappa MCC

Classic ML models
LR 0.6826 0.8285 0.6826 0.6986 0.6887 0.4727 0.4741
SVM 0.6794 0.8294 0.6794 0.6987 0.6862 0.4704 0.4726
CatBoost 0.6882 0.8223  0.6882 0.6941 0.6865 0.4619 0.4658
Ridge 0.6713 0.7947 0.6713 0.6938 0.6794 0.4594 0.462
XGBoost 0.6715 0.8155 0.6715 0.6723 0.666 0.4242 0.4294
LightGDM 0.6638 0.8121 0.6638 0.6623 0.6595 0.4155 0.4186
GBC 0.6629 0.791 0.6629 0.6733 0.6549 0.4048 0.4151
ET 0.6492 0.7123  0.6492 0.6472 0.6435 0.3861 0.3903
RF 0.645 0.7727  0.645 0.6433 0.6369 0.3732 0.3794
AdaBoost 0.6306 0.6746  0.6306 0.6384 0.6153 0.3435 0.3568
DT 0.5927 0.6642 0.5927 0.6038 0.5974 0.3162 0.3167
KNN 0.3775 0.6447 0.3775 0.662 0.3636 0.1744 0.2276
NB 0.4946 0.6164 0.4946 0.5533 0.5129 0.2118 0.218
LDA 0.4256 0.5844 0.4256 0.4749 0.4376 0.1074 0.1115
DC 0.1472 0.5 0.1472  0.0217 0.0378 0 0
QDA 0.4868 0.4924 0.4868 0.5209 0.3978 —0.0082 —0.0104

Ensembles
CatBoost+LR+Ridge 0.6839 0.8346 0.6839 0.7014 0.6902 0.4753 0.4773
CatBoost+LR+SVM 0.688 0.8365 0.688 0.7014 0.692 0.4753 0.4772
CatBoost+XGBoost+Ridge  0.6871 0.8335 0.6871 0.701 0.6918 0.4754 0.4771
CatBoost+SVM+Ridge 0.6831 0.8335 0.6831 0.7014 0.6896 0.4748 0.4769
LR-+XGBoost+SVM 0.6865 0.8357 0.6865 0.6979 0.6894 0.47 0.4719
LR+XGBoost+Ridge 0.6814 0.8346 0.6814 0.698 0.6873 0.47 0.4719
LR+SVM+Ridge 0.6775 0.8298 0.6775 0.6976 0.6848 0.4683 0.4706
XGBoost+SVM+Ridge 0.6786 0.8339 0.6786 0.696 0.6848 0.4661 0.4681
CatBoost+XGBoost+SVM  0.6854 0.8345 0.6854 0.6937 0.6862 0.4621 0.4646
CatBoost+LR+XGBoost 0.6854 0.8354 0.6854 0.6926 0.6855 0.4603 0.463

4.1.5. Deep learning pre-trained models

Regarding Deep Learning Pre-Trained models, RoBERTa exhibits a remarkable performance, outper-
forming all other models across all metrics. The BERT model follows in second place, while Fiancial BERT
and FinBERT (Yang & Hung) secure the third and fourth positions, respectively. FinBERT (Araci) can
be found in the last place, considering all metrics. The indisputable dominance of RoOBERTa is evident,
as it consistently achieves superior scores, surpassing competitors by margins ranging from 2% to 7%
in different metrics, as indicated in Table 6. It’s worth noting that ROC-AUC values for the FinBERT
models could not be obtained due to the absence of necessary class probabilities from these models, which
are crucial for calculating this metric. The corresponding results for all metrics are also depicted with a
graphical representation of them, which can be found in Fig. 3. The AUC metric is excluded, as it could
not be calculated for FinBERT models, due model limitations.

4.1.6. General discussion

The design of the experimental procedure was thoughtfully structured to offer valuable insights into
several distinct inquiries. The primary focus revolves around comparing the utilization of Deep Learning
Pre-Trained Models and classic ML models, with a particular emphasis on assessing whether integrating
more sophisticated models translates to improved performance. Within the domain of traditional ML
models, two pivotal questions come to the forefront.

Firstly, there is the question of choosing between BoW and TF-IDF techniques, aiming to discern
which among them yields more favorable outcomes. This inquiry directly concerns word representation,
investigating which technique better captures the nuances of language and ultimately contributes to superior
model performance.
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Table 4
Classic ML models + BoW
Model Accuracy AUC Recall  Precision Fl1 Kappa MCC
Classic ML models
CatBoost 0.6931 0.8339 0.6931 0.689 0.6657 0.4271 0.4542
XGBoost 0.6818 0.8232 0.6818 0.6722 0.6594 0.4148 0.4337
LR 0.6741 0.8194 0.6741 0.6634 0.6648 0.4273 0.4314
SVM 0.6711 0.8204 0.6711 0.6558 0.6588 0.4177 0.4224
GBC 0.6702 0.8028 0.6702 0.6837 0.6321 0.3671 0.413
Ridge 0.6591 0.7832 0.6591 0.6519 0.6516 0.4014 0.4052
AdaBoost 0.6606 0.6788 0.6606 0.6699 0.6295 0.3604 0.3953
ET 0.6535 0.717 0.6535 0.6356 0.6406 0.3879 0.3921
LightGBM 0.6542 0.7933 0.6542 0.6376 0.6382 0.3805 0.388
RF 0.6448 0.785 0.6448 0.6233 0.6262 0.3607 0.3692
DT 0.6137 0.6807 0.6137 0.6165 0.6143 0.3444 0.345
NB 0.5191 0.6365 0.5191 0.5769 0.5363 0.2498 0.2569
KNN 0.5716 0.6558 0.5716 0.5681 0.5063 0.1605 0.2001
LDA 0.4089 0.5747 0.4089 0.4522 0.4212 0.073 0.0751
DC 0.5358 0.5 0.5358 0.2871 0.3739 0 0
QDA 0.233 0.4855 0.233 0.3782 0.2423  —0.0237 —0.0313
Ensembles
CatBoost+XGBoost+SVM  0.6865 0.8363 0.6865 0.673 0.6644 0.425 0.4419
CatBoost+XGBoost+Ridge  0.685 0.8324  0.685 0.6714 0.666 0.4275 0.4409
CatBoost+LR+SVM 0.6816 0.8303 0.6816 0.6678 0.6664 0.4284 0.4373
CatBoost+LR+XGBoost 0.6831 0.8347 0.6831 0.6695 0.6627 0.4215 0.4366
CatBoost+SVM+Ridge 0.6799 0.8282 0.6799 0.6654 0.6647 0.4258 0.4342
LR+XGBoost+SVM 0.6792 0.8282 0.6792 0.6651 0.6647 0.426 0.4339
XGBoost+SVM+Ridge 0.679 0.8271  0.679 0.6656 0.665 0.426 0.4336
CatBoost+LR+Ridge 0.6773 0.828 0.6773  0.664 0.6637 0.4236 0.4309
LR+XGBoost+Ridge 0.6737 0.8266 0.6737 0.6617 0.6616 0.4195 0.4259
LR+SVM-+Ridge 0.6696 0.8187 0.6696 0.6564 0.6588 0.4166 0.421
0.9
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Fig. 3. Deep learning pre-trained models’ performance.

Secondly, an additional aspect under scrutiny is the potential benefit derived from employing the SMOTE
technique to artificially augment our data in order to tackle the problem of the initial imbalanced dataset.
This question delves into the interplay between model performance and the integration of SMOTE, seeking
to uncover whether the introduction of this technique positively impacts the final outcomes of the models.

Through a comprehensive exploration of these questions, the experimental design seeks to shed light on
the intricate dynamics between various modelling approaches, offering nuanced insights into the strengths
and limitations of each technique and aiding in informed decision-making for optimal model selection.
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Table 5
Classic ML models + TF-IDF
Model Accuracy AUC Recall  Precision F1 Kappa MCC
Classic ML models
LR 0.6974 0.8338 0.6974 0.682 0.6671 0.4375 0.4608
CatBoost 0.6846 0.8168 0.6846 0.6764 0.6582 0.4138 0.4374
SVM 0.682 0.8347 0.682 0.6598 0.6546 0.415 0.4314
Ridge 0.6666 0.7863  0.6666 0.6524 0.651 0.402 0.4108
XGBoost 0.6647 0.806 0.6647  0.6537 0.6443 0.3874 0.4031
ET 0.6578 0.7096  0.6578 0.6387 0.6424 0.3899 0.3963
GBC 0.6604 0.7937 0.6604  0.6653 0.6202 0.3484 0.3923
AdaBoost 0.6514 0.6774 0.6514  0.6609 0.6212 0.3449 0.3778
RF 0.6463 0.7702  0.6463  0.6281 0.6281 0.3626 0.372
KNN 0.6306 0.7701  0.6306 0.6278 0.6233 0.3541 0.3587
LightGBM 0.6364 0.7772  0.6364 0.6211 0.6213 0.35 0.3572
DT 0.5878 0.6645 0.5878 0.6016 0.5939 0.3103 0.3109
NB 0.5076 0.6252 05076  0.5639 0.5256 0.2288 0.2349
LDA 0.2429 0.3461 0.2429 0.2736 0.2521 0.0447 0.046
DC 0.5358 0.5 0.5358 0.2871 0.3739 0 0
QDA 0.2093 0.4684 0.2093 0.3587 0.2267 —0.0534 —0.0716
Ensembles
CatBoost+LR+-SVM 0.6882 0.8408 0.6882 0.67 0.6588 0.4216 0.4432
CatBoost+LR+Ridge 0.6837 0.837 0.6837  0.6638 0.6595 0.4216 0.4369
LR+XGBoost+SVM 0.6837 0.8372  0.6837 0.6647 0.6575 0.4177 0.436
CatBoost+SVM-+Ridge 0.682 0.8362  0.682 0.6611 0.6581 0.4192 0.4338
CatBoost+XGBoost+SVM  0.682 0.8349 0.682 0.6655 0.6562 0.4134 0.4328
LR+XGBoost+Ridge 0.6801 0.8341 0.6801 0.6591 0.6578 0.4181 0.4312
CatBoost+LR+XGBoost 0.6809 0.8351 0.6809 0.6635 0.6543 0.4105 0.4306
CatBoost+XGBoost+Ridge  0.679 0.831 0.679 0.6605 0.6566 0.4146 0.429
LR+SVM-+Ridge 0.6784 0.8338 0.6784 0.6561 0.6557 0.4155 0.4277
XGBoost+SVM-+Ridge 0.6771 0.8338 0.6771 0.6562 0.6552 0.4132 0.4258
Table 6
Deep learning pre-trained models’ performance
Model Accuracy AUC Recall Precision  F1 Kappa MCC
RoBERTa 0.775877  0.920793  0.775877 0.775877 0.775877 0.632183  0.634966
BERT 0.74166 0.89992 0.74166 0.74166 0.74166 0.554974  0.558077
Finalcial BERT 0.704876  — 0.704876  0.704876  0.704876  0.47108 0.486317
FinBERT (Yang & Huang) 0.65355 — 0.65355 0.65355 0.65355 0.355566  0.389141
FinBERT (Araci) 0.570573 — 0.570573  0.570573  0.570573  0.224854  0.256037

To give a better insight into the results, in Fig. 4, the results of the five single best methods (according to
MCC) are given in a graphical representation.

Regarding the initial question, the results do not provide a definitive answer. Concerning the utilization
of BoW or TF-IDF (when SMOTE is not applied), it appears that in certain methods, such as Catboost
and XGBoost, BoW exhibits superior performance, while in others, TF-IDF proves to be more effective.
However, when SMOTE is applied, TF-IDF outperforms BoW, notably enhancing performance across all
metrics.

Turning to the second question, which pertains to the potential advantages of utilizing SMOTE, the
answer becomes quite evident. When employing BoW, using SMOTE tends to lead to a reduction in model
performance across all metrics. In certain instances, such as when employing the Ridge Classifier, this
decline in performance is notably significant. On the other hand, when TF-IDF is employed, the results
provide a clear picture. Specifically, in terms of Precision, F1 Score, Kappa, and MCC, the outcomes
unambiguously indicate that SMOTE enhances model performance. However, when considering metrics
like accuracy, AUC, and Recall, the situation becomes less straightforward. While in the majority of cases,
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Fig. 4. Best 5 single classic ML methods.

the utilization of SMOTE proves beneficial, there are instances where its application appears to have a
minor detrimental effect on model performance in these three metrics.

Regarding the utilization of ensemble techniques, it is important to note two key observations. First and
foremost, ensembles generally tend to outperform the vast majority of individual ML. models. However,
it is worth noting that they do not surpass the best-performing single method in each specific scenario,
except the AUC metric, where ensembles consistently outperform single methods across all cases. Our
findings confirm the overall strong performance of ensembles. However, in the context of our study, their
contribution is not particularly significant, and they may not be the preferred choice. It is worth mentioning
that the tested ensembles were soft voting schemes. More sophisticated ensemble techniques may have the
potential to be more powerful and possibly yield better results.

As we arrive at the final point of our findings, which pertains to the overall performance of classical
ML classification algorithms compared to sophisticated Deep Learning Pre-Trained models, the outcome
appears quite promising. Deep Learning Pre-Trained models consistently outperform their classic counter-
parts across all metrics. To be more specific, regarding the best-performing pre-trained model, ROBERTa,
and the top single model from each of the four classical ML scenarios, ROBERTa showcases a substantial



A. Karanikola et al. / Financial sentiment analysis: Classic methods vs. deep learning models 911

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Accuracy AUC Recall Precision F1 Kappa MCC

Metrics

M RoBERTa B CatBoost +Bow + SMote LR +TF-IDF + SMOTE W CatBoost + Bow B LR + TF-IDF

Fig. 5. RoBERTa vs the best single classifier of each scenario.

improvement in every metric. For example, ROBERTa achieves a 7% higher accuracy compared to the
following method, which combines Logistic Regression (LR) with TF-IDF. In terms of the MCC metric,
the results are even more compelling, with RoOBERTa once again outperforming its closest rival by a margin
of 17%. In Fig. 5, the corresponding results of all metrics are depicted.

However, it is worth noting an unexpected yet valuable outcome: both ROBERTa and BERT outperform
the three variants of FinBERT. This discovery raises intriguing questions and warrants further investigation,
especially considering that FinBERT models are fine-tuned specifically for financial tasks.

5. Conclusions

In this work, a large number of classic ML algorithms is tested against five contemporary Deep Learning
PreTrained models. Specifically, fifteen well-known, traditional ML classification methods drawn from the
Pycaret python library are used. Four different scenarios are tested, using two different text representation
techniques (BoW and TF-IDF) and employing (or not) SMOTE data augmentation technique to balance
our initially imbalanced dataset. Concerning these factors, four variants of each classification method
are formed (BoW, TF-IDF, BoW + SMOTE and TF — IDF 4+ SMOTE). Moreover, ten ensembles of
the bestperforming single models are formed, along with their corresponding variants according to the
aforementioned factors. In the perspective of Deep Learning PreTrained models, BERT, RoBERTa and
three variants of FinBERT, i.e. BERT-based models pre-trained and fine-tuned on financial data, are
utilized. All the models — classic and contemporary are tested over a dataset that emerged in the financial
domain consisting of two well-known publicly available datasets, FiQA and Financial PhraceBank.

The analysis of the results has unveiled several intriguing findings, some of which align with expectations
while others come as surprises. First and foremost, the unquestionable supremacy of pre-trained models
is evident, with RoOBERTa and BERT emerging as the top-performing methods. However, this leads to
one of the unexpected revelations in this study: the three variants of FinBERT, despite being tailored for
financial tasks, do not outperform BERT and RoBERTa. This intriguing outcome underscores the need for
further investigation and future research to shed light on this matter. Turning our attention to the variants
of traditional machine learning classification algorithms and their ensembles, when SMOTE is applied, the
TF-IDF versions of classifiers outperform their BoW counterparts. Furthermore, with respect to SMOTE
utilization, it is evident that it notably enhances performance when combined with TF-IDF while also
yielding improvements in most metrics when paired with BoW.

Regarding potential future extensions of this study, exploring ensembles consisting of classic and
contemporary pre-trained models is advisable. This concept aligns with ensemble theory, emphasizing
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the importance of accurate and diverse base methods within an ensemble. Additionally, exploring more
sophisticated ensemble schemes should be considered and empirically tested. Another noteworthy aspect
arising from the results is the need for further investigation into the performance of FinBERT models.
Their performance, ranking below general-purpose models, defies initial expectations and merits deeper
scrutiny to understand the factors at play better.

References

(1]
(2]
(3]

(4]
(5]
(6]
(7]
(8]
[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

Zhang L, Liu B. Sentiment Analysis and Opinion Mining. Encyclopedia of Machine Learning and Data Mining. 2017; 1:
1152-61.

Yang L, Li Y, Wang J, Sherratt RS. Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment
Lexicon and Deep Learning. IEEE Access. 2020; 82: 3522-30.

Harish BS, Kumar K, Darshan HK. Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method.
International Journal of Interactive Multimedia and Artificial Intelligence. 2019; 06/2019; 5(5): 109-14. Available from:
https//www.ijimai.org/journal/sites/default/files/files/2018/12/ijimai_5_5_13_pdf 67503.pdf.

Shaukat Z, Zulfigar AA, Xiao C, Azeem M, Mahmood T. Sentiment analysis on IMDB using lexicon and neural networks.
SN Applied Sciences. 2020 Jan; 2(2): 148. Available from: doi: 10.1007/s42452-019-1926-x.

Ortigosa A, Martin JM, Carro RM. Sentiment analysis in Facebook and its application to e-learning. Computers in Human
Behavior. 2014; 31: 527-41. Available from: https//www.sciencedirect.com/science/article/pii/S0747563213001751.
Thelwall MA. Social media analytics for YouTube comments: potential and limitations. International Journal of Social
Research Methodology. 2018; 21: 303; 316. Available from: https//api.semanticscholar.org/CorpusID:148591270.
Jianqiang Z, Xiaolin G, Xuejun Z. Deep Convolution Neural Networks for Twitter Sentiment Analysis. IEEE Access. 2018;
6:23253-60.

Zimbra D, Abbasi A, Zeng D. The State-of-the-Art in Twitter Sentiment Analysis: A Review and Benchmark Evaluation.
ACM Transactions on Management Information Systems. 2018; 05; xx, No. x.

Kumar A, Jaiswal A. Systematic literature review of sentiment analysis on Twitter using soft computing techniques.
Concurrency and Computation: Practice and Experience. 2020; 32(1): e5107; E5107 CPE-18-1167.R1. Available from: doi:
10.1002/cpe.5107.

Xu QA, Chang V, Jayne C. A systematic review of social media-based sentiment analysis: Emerging trends and chal-
lenges. Decision Analytics Journal. 2022; 3: 10007; Available from: https//www.sciencedirect.com/science/article/pii/
$2772662222000273.

Korkontzelos I, Nikfarjam A, Shardlow M, Sarker A, Ananiadou S, Gonzalez G. Analysis of the effect of sentiment analysis
on extracting adverse drug reactions from tweets and forum posts. Journal of Biomedical Informatics. 2016; 06; 62.

Liu J, Zhao S, Zhang X. An ensemble method for extracting adverse drug events from social media. Artificial intelligence
in medicine. 2016; 70: 62-76 Available from: https//api.semanticscholar.org/CorpusID:205694936.

Peng Y, Yan S, Lu Z. Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on
Ten Benchmarking Datasets. In: Proceedings of the 18th BioNLP Workshop and Shared Task. Florence, Italy: Association
for Computational Linguistics; 2019. p. 58-65. Available from: https//aclanthology.org/W19-5006.

Zunic A, Corcoran P, Spasic I. Sentiment Analysis in Health and Well-Being: Systematic Review. JMIR Med Inform. 2020
Jan; 8(1): €16023. Available from: http//www.ncbi.nlm.nih.gov/pubmed/32012057.

Chauhan P, Sharma N, Sikka G. The emergence of social media data and sentiment analysis in election prediction. Journal
of Ambient Intelligence and Humanized Computing. 2020; 12: 2601-27. Available from: https//api.semanticscholar.org/
CorpuslD:225442640.

Santos J, Bernardini F, Paes A. A survey on the use of data and opinion mining in social media to political electoral
outcomes prediction. Social Network Analysis and Mining. 2021; 12; 11.

Rita P, Antonio N, Afonso A. Social media discourse and voting decisions influence: sentiment analysis in tweets during an
electoral period. Social Network Analysis and Mining. 2023; 03: 13.

Beigi G, Hu X, Maciejewski R, Liu H. An overview of sentiment analysis in social media and its applications in disaster
relief. Sentiment Analysis and Ontology Engineering: An Environment of Computational Intelligence. 2016; 313-40.
Birjali M, Beni-Hssane A, Erritali M. Machine Learning and Semantic Sentiment Analysis based Algorithms for Suicide
Sentiment Prediction in Social Networks. Procedia Computer Science. 2017; 113: 65-72; The 8th International Conference
on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2017)/The 7th International Conference on Current
and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2017)/Affiliated Workshops.
Available from: https//www.sciencedirect.com/science/article/pii/S187705091731699X.

Swain D, Khandelwal A, Joshi C, Gawas A, Roy P, Zad V. A Suicide Prediction System Based on Twitter Tweets
Using Sentiment Analysis and Machine Learning. In: Swain D, Pattnaik PK, Athawale T, editors. Machine Learning and
Information Processing. Singapore: Springer Singapore 2021; pp. 45-58.



[21]
[22]
(23]
[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

(33]

(34]

[35]

[36]
(37]
[38]

[39]

[40]
[41]
[42]
[43]
(44]

[45]

[46]

A. Karanikola et al. / Financial sentiment analysis: Classic methods vs. deep learning models 913

Rambocas M, Pacheco B. Online sentiment analysis in marketing research: a review. Journal of Research in Interactive
Marketing. 2018; 01: 12.

Yousif A, Niu Z, Tarus JK, Ahmad A. A Survey on Sentiment Analysis of Scientific Citations. Artificial Intelligence
Review. 2019 Oct; 52(3): 1805-1838. Available from: doi: 10.1007/s10462-017-9597-8.

Alaei AR, Becken S, Stantic B. Sentiment Analysis in Tourism: Capitalizing on Big Data. Journal of Travel Research. 2019;
58(2): 175-91. Available from: doi: 10.1177/0047287517747753.

Seki K, Ikuta Y. S-APIR: News-based Business Sentiment Index. ArXiv. 2020abs/2003.02973. Available from: https//api.
semanticscholar.org/CorpusID:212628659.

Seki K, Ikuta Y, Matsubayashi Y. News-based business sentiment and its properties as an economic index. Information
Processing & Management. 2022; 59(2): 102795. Available from: https//www.sciencedirect.com/science/article/pii/S030
6457321002739.

Xing F, Cambria E, Welsch RE. Natural language based financial forecasting: a survey. Artificial Intelligence Review.
2017; 50: 49-73. Available from: https//api.semanticscholar.org/CorpusID:207079655.

Mintyld MV, Graziotin D, Kuutila M. 4The evolution of sentiment analysis — A review of research topics, venues, and top
cited papers. Computer Science Review. 2018; 27: 16-32; Available from: https//www.sciencedirect.com/science/article/pii/
S1574013717300606.

Ren R, Wu DD, Liu T. Forecasting Stock Market Movement Direction Using Sentiment Analysis and Support Vector
Machine. IEEE Systems Journal. 2019; 13: 760-70. Available from: https//api.semanticscholar.org/CorpusID:67870584.
Papaioannou P, Russo L, Papaioannou G, Siettos CI. Can social microblogging be used to forecast intraday exchange rates?
NETNOMICS: Economic Research and Electronic Networking. 2013; 14: 47-68; Available from: https//api.semanticscholar.
org/CorpusID:2516894.

Deveikyte J, Geman H, Piccari C, Provetti A. A sentiment analysis approach to the prediction of market volatility. Frontiers
in Artificial Intelligence. 2022; 5. Available from: https//www.frontiersin.org/articles/10.3389/frai.2022.836809.
Malandri L, Xing F, Orsenigo C, Vercellis C, Cambria E. Public MoodiCDriven Asset Allocation: the Importance of
Financial Sentiment in Portfolio Management. Cognitive Computation. 2018; 10: 1167-76; Available from: https//api.
semanticscholar.org/CorpusID:53795790.

Xing FZ, Cambria E, Welsch RE. Intelligent Asset Allocation via Market Sentiment Views. IEEE Computational Intelligence
Magazine. 2018; 13(4): 25-34.

Zhang D, Xu W, Zhu Y, Zhang X. Can Sentiment Analysis Help Mimic Decision-Making Process of Loan Granting?
A Novel Credit Risk Evaluation Approach Using GMKL Model. 2015 48th Hawaii International Conference on System
Sciences. 2015: 949-58. Available from: https//api.semanticscholar.org/CorpusID:17733609.

Bajo E, Raimondo C. Media sentiment and IPO underpricing. Journal of Corporate Finance. 2017; 46: 139-53; Available
from: https//www.sciencedirect.com/science/article/pii/S092911991730370X.

Kraaijeveld O, De Smedt J. The predictive power of public Twitter sentiment for forecasting cryptocurrency prices. Journal of
International Financial Markets, Institutions and Money. 2020; 65: 101188; Available from: https//www.sciencedirect.com/
science/article/pii/S104244312030072X.

Rognone L, Hyde S, Zhang SS. News sentiment in the cryptocurrency market: An empirical comparison with Forex.
International Review of Financial Analysis. 2020; 69(C).

Aslam N, Rustam F, Lee E, Washington PB, Ashraf I. Sentiment Analysis and Emotion Detection on Cryptocurrency
Related Tweets Using Ensemble LSTM-GRU Model. IEEE Access. 2022 Jan.

Mardjo A, Choksuchat C. HyVADRF: Hybrid VADERICRandom Forest and GWO for Bitcoin Tweet Sentiment Analysis.
IEEE Access. 2022; 10: 101889-97.

Xing F, Malandri L, Zhang Y, Cambria E. Financial Sentiment Analysis: An Investigation into Common Mistakes and Silver
Bullets. In: Proceedings of the 28th International Conference on Computational Linguistics. Barcelona, Spain (Online): In-
ternational Committee on Computational Linguistics; 2020. pp. 978-87. Available from: https//aclanthology.org/2020.coling-
main.85.

‘Wankhade M, Rao ACS, Kulkarni C. A survey on sentiment analysis methods, applications, and challenges. Artificial
Intelligence Review. 2022 Oct; 55(7): 5731-80. Available from: doi: 10.1007/10462-022-10144-1.

Tetlock PC. Giving Content to Investor Sentiment: The Role of Media in the Stock Market. The Journal of Finance. 2007,
62(3): 1139-68; Available from: doi: 10.1111/.1540-6261.2007.01232.x.

Loughran T, Mcdonald B. When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10-Ks. The Journal of
Finance. 2011; 66(1): 35-65. Available from: doi: 10.1111/j.1540-6261.2010.01625.x.

Yekrangi M, Abdolvand N. Financial markets sentiment analysis: developing a specialized Lexicon. Journal of Intelligent
Information Systems. 2021 Aug; 57(1): 127-46. Available from: doi: 10.1007/s10844-020-00630-9.

Bos T, Frasincar F. Automatically Building Financial Sentiment Lexicons While Accounting for Negation. Cognitive
Computation. 2021; 14: 442-60; Available from: https//api.semanticscholar.org/CorpusID:233890630.

Consoli S, Barbaglia L, Manzan S. Fine-Grained, Aspect-Based Sentiment Analysis on Economic and Financial Lexicon.
WGSRN: Data Collection & Empirical Methods (Topic). 2021. Available from: https//api.semanticscholar.org/CorpusID:
233755615.

Malo P, Sinha A, Korhonen PJ, Wallenius J, Takala P. Good debt or bad debt: Detecting semantic orientations in
economic texts. Journal of the Association for Information Science and Technology. 2013; 65; Available from: https//api.



914

[47]

(48]

[49]

[50]

[51]
[52]
[53]
[54]
[55]

[56]

[57]
(58]
[59]
[60]
[61]
[62]
[63]
[64]

[65]

[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]

[74]

A. Karanikola et al. / Financial sentiment analysis: Classic methods vs. deep learning models

semanticscholar.org/CorpusID:7700237.

Mishev K, Gjorgjevikj A, Vodenska I, Chitkushev LT, Trajanov D. Evaluation of Sentiment Analysis in Finance: From
Lexicons to Transformers. IEEE Access. 2020; 8: 131662-82; Available from: https//api.semanticscholar.org/CorpusID:
220836326.

Maia M, Freitas A, Handschuh S. FinSSLx: A Sentiment Analysis Model for the Financial Domain Using Text Sim-
plification 2018 IEEE 12th International Conference on Semantic Computing (ICSC). 2018: 318-9. Available from:
https//api.semanticscholar.org/CorpusID:4884174.

Chiong R, Fan Z, Hu Z, Adam MTP, Lutz B, Neumann D. A sentiment analysis-based machine learning approach for
financial market prediction via news disclosures. Proceedings of the Genetic and Evolutionary Computation Conference
Companion. 2018; Available from: https//api.semanticscholar.org/CorpusID:49668701.

Sharma V, Khemnar RK, Kumari RA, Mohan BR. Time Series with Sentiment Analysis for Stock Price Prediction 2019 2nd
International Conference on Intelligent Communication and Computational Techniques (ICCT). 2019: 178-81. Available
from: https//api.semanticscholar.org/CorpusID:210971954.

Koukaras P, Nousi C, Tjortjis C. Stock Market Prediction Using Microblogging Sentiment Analysis and Machine Learning.
Telecom. 2022; Available from: https//api.semanticscholar.org/CorpusID:249248047.

Valencia F, Gémez-Espinosa A, Valdés-Aguirre B. Price Movement Prediction of Cryptocurrencies Using Sentiment
Analysis and Machine Learning. Entropy. 2019; 21; Available from: https//api.semanticscholar.org/CorpusID:195825545.
Liapis CM, Karanikola A, Kotsiantis SB. A Multi-Method Survey on the Use of Sentiment Analysis in Multivariate
Financial Time Series Forecasting. Entropy. 2021; 23; Available from: https//api.semanticscholar.org/CorpusID:245444145.
Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM. Big Data: Deep Learning for financial sentiment analysis. Journal
of Big Data. 2018; 5: 1-25; Available from: https//api.semanticscholar.org/CorpusID:4033865.

Xu'Y, Keselj V. Stock Prediction using Deep Learning and Sentiment Analysis 2019 IEEE International Conference on Big
Data (Big Data). 2019; 5573-80. Available from: https//api.semanticscholar.org/CorpusID:211298482.

Passalis N, Avramelou L, Seficha S, Tsantekidis A, Doropoulos S, Makris G, et al. Multisource financial sentiment
analysis for detecting Bitcoin price change indications using deep learning. Neural Computing and Applications. 2022; 34:
19441-19452. Available from: https//api.semanticscholar.org/CorpusID:250272176.

Raju SM, Tarif AM. Real-Time Prediction of BITCOIN Price using Machine Learning Techniques and Public Sentiment
Analysis. ArXiv. 2020; abs/2006.14473. Available from: https//api.semanticscholar.org/CorpusID:220056249.

Liapis CM, Karanikola A, Kotsiantis SB. Investigating Deep Stock Market Forecasting with Sentiment Analysis. Entropy.
2023; 25; Available from: https//api.semanticscholar.org/CorpusID:256296957.

Zhang L, Wang S, Liu B. Deep learning for sentiment analysis: A survey. Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery. 2018; 8; Available from: https//api.semanticscholar.org/CorpusID:10694510.

Yadav A, Vishwakarma DK. Sentiment analysis using deep learning architectures: a review. Artificial Intelligence Review.
2019; 53: 4335-4385. Available from: https//api.semanticscholar.org/CorpusID:208539187.

Ozbayoglu AM, Gudelek MU, Sezer OB. Deep Learning for Financial Applications: A Survey. Appl Soft Comput. 2020;
93: 106384; Available from: https//api.semanticscholar.org/CorpusID:211126927.

Gutiérrez-Fandifio A, Kolm PN, i Alonso MN, Armengol-Estapé J. FInEAS: Financial Embedding Analysis of Sentiment.
The Journal of Financial Data Science. 2022; 4(3): 45-53.

Araci D. FinBERT: Financial Sentiment Analysis with Pre-trained Language Models. ArXiv. 2019; abs/1908. 10063.
Available from: https//api.semanticscholar.org/CorpusID:201646244.

DeSola V, Hanna K, Nonis P. Finbert: pre-trained model on sec filings for financial natural language tasks. University of
California. 2019.

Liu Z, Huang D, Huang K, Li Z, Zhao J. Finbert: A pre-trained financial language representation model for financial
text mining. In: Proceedings of the twenty-ninth international conference on international joint conferences on artificial
intelligence; 2021; pp. 4513-9.

Yang Y, Uy MCS, Huang A. FinBERT: A Pretrained Language Model for Financial Communications. ArXiv.2020abs/
2006.08097. Available from: https//api.semanticscholar.org/CorpusID:219687757.

Huang A, Wang H, Yang Y. FinBERT: A Large Language Model for Extracting Information from Financial Text.
Contemporary Accounting Research. 2022; Available from: https//api.semanticscholar.org/CorpusID:252666016.
Agarwal B. Financial sentiment analysis model utilizing knowledge-base and domain-specific representation. Multimedia
Tools and Applications. 2022; 82: 8899-920; Available from: https//api.semanticscholar.org/CorpusID:246849870.
Financial Sentiment Analysis — kaggle.com; [Accessed 29-09-2023]. https://www.kaggle.com/datasets/sbhatti/financial-
sentiment-analysis.

Maia M, Handschuh S, Freitas A, Davis B, McDermott R, Zarrouk M, et al. WWW’18 Open Challenge: Financial Opinion
Mining and Question Answering. Companion Proceedings of the The Web Conference. 2018; 2018. Available from:
https//api.semanticscholar.org/CorpusID:13866508.

Malo P, Sinha A, Takala P, Korhonen P, Wallenius J. FinancialPhraseBank-v1.0; 2013.

Lexis Nexis Database; [Accessed 29-09-2023]. https://www.lexisnexis.com/en-us/home.page.

Chai CP. Comparison of text preprocessing methods. Natural Language Engineering. 2022; 29: 509-553. Available from:
https//api.semanticscholar.org/CorpusID:249657675.

HaCohen-Kerner Y, Miller D, Yigal Y. The influence of preprocessing on text classification using a bag-of-words



[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]
(83]
[84]

[85]

[86]

[87]

(88]

(89]

[90]

(91]
[92]
(93]
[94]
[95]
[96]

A. Karanikola et al. / Financial sentiment analysis: Classic methods vs. deep learning models 915

representation. PLoS ONE. 2020; 15; Available from: https//api.semanticscholar.org/CorpusID:218479987.

Ali M. PyCaret: An open source, low-code machine learning library in Python; 2020. PyCaret version 1.0.0. Available
from: https//www.pycaret.org.

Akuma S, Lubem T, Adom IT. Comparing Bag of Words and TF-IDF with different models for hate speech detection
from live tweets. International Journal of Information Technology. 2022; Available from: https//api.semanticscholar.org/
CorpusID:252449382.

Flores AC, Icoy RI, Pefia CF, Gorro K. An Evaluation of SVM and Naive Bayes with SMOTE on Sentiment Analysis Data
Set 2018 International Conference on Engineering, Applied Sciences, and Technology (ICEAST). 2018; 1-4. Available
from: https//api.semanticscholar.org/CorpusID:52014088.

Satriaji W, Kusumaningrum R. Effect of Synthetic Minority Oversampling Technique (SMOTE), Feature Representation,
and Classification Algorithm on Imbalanced Sentiment Analysis 2018 2nd International Conference on Informatics and
Computational Sciences (ICICoS). 2018: 1-5. Available from: https//api.semanticscholar.org/CorpusID:59231725.
Chicco D, Jurman G. The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary
classification evaluation. BMC Genomics. 2020; 21; Available from: https//api.semanticscholar.org/CorpusID:209528322.
Athar A, Ali S, Sheeraz MM, Bhattacharjee S, Kim H. Sentimental Analysis of Movie Reviews using Soft Voting Ensemble-
based Machine Learning 2021 Eighth International Conference on Social Network Analysis, Management and Security
(SNAMS). 2021: 01-5. Available from: https//api.semanticscholar.org/CorpusID:247477419.

Wan Y, Gao Q. An Ensemble Sentiment Classification System of Twitter Data for Airline Services Analysis 2015 IEEE
International Conference on Data Mining Workshop ICDMW). 2015: 1318-25. Available from: https//api.semanticscholar.
org/CorpusID:21442.

Devlin J, Chang MW, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv181004805. 2018.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Advances in Neural
Information Processing Systems. 2017; 30.

Lee CC, Gao Z, Tsai CL. BERT-Based Stock Market Sentiment Analysis 2020 IEEE International Conference on Consumer
Electronics — Taiwan (ICCE-Taiwan). 2020: 1-2. Available from: https//api.semanticscholar.org/CorpusID:227220140.
Soong GH, Tan CC. Sentiment Analysis on 10-K Financial Reports using Machine Learning Approaches 2021 IEEE
11th International Conference on System Engineering and Technology (ICSET). 2021; 124-9. Available from: https//api.
semanticscholar.org/CorpuslD:244778394.

Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al. RoOBERTa: A Robustly Optimized BERT Pretraining Approach.
ArXiv. 2019; abs/1907.11692. Available from: https//api.semanticscholar.org/CorpusID:198953378.

Bozanta A, Angco S, Cevik M, Basar A. Sentiment Analysis of StockTwits Using Transformer Models 2021 20th IEEE
International Conference on Machine Learning and Applications (ICMLA). 2021: 1253-8. Available from: https//api.
semanticscholar.org/CorpusID:246289092.

Sinha A, Kedas S, Kumar R, Malo P. SEntFiN 10: Entity-aware sentiment analysis for financial news. Journal of the Associ-
ation for Information Science and Technology. 2022; 73: 1314-1335. Available from: https//api.semanticscholar.org/Corpus
1D:247341717.

Gupta A, Tayal VK. Analysis of Twitter Sentiment to Predict Financial Trends 2023 International Conference on Ar-
tificial Intelligence and Smart Communication (AISC). 2023: 1027-31. Available from: https//api.semanticscholar.org/
CorpusID:257930671.

Krishnamoorthy S. Sentiment analysis of financial news articles using performance indicators. Knowledge and Information
Systems. 2018; 56: 373-94; Available from: https//api.semanticscholar.org/CorpusID:32437011.

ProsusAl Finbert Model; [Accessed 29-09-2023]. https//huggingface.co/ProsusAl/finbert.

psnonis. FinBERT model; [Accessed 29-09-2023]. https//github.com/psnonis/FinBERT.

yiyanghkust. finbert-tone model; [Accessed 29-09-2023]. https//huggingface.co/yiyanghkust/finbert-tone.

Hazourli A. Financialbert-a pretrained language model for financial text mining. Technical Report. 2022.

Hazourli A. ahmedrachid/Financial BERT; 2022. [Accessed 29-09-2023]. https//huggingface.co/ahmedrachid/Financial BERT.
Kingma DP, Ba J. Adam: A Method for Stochastic Optimization. CoRR. 2014; abs/1412.6980. Available from: https//api.
semanticscholar.org/CorpusID:6628106.



