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Abstract. Disaster risk assessment is the foundation to carry out a comprehensive disaster reduction. Despite a growing body
of literature on this subject, dynamic risk assessment concerning the temporal characteristic of disaster risk receives relatively
inadequate attention in previous research. This paper focuses on analyzing the temporal disaster risk over a period to enable
decision makers to understand the risk variation explicitly and hence take long-term countermeasures for improving the prevention
and mitigation of hazards. It is achieved by firstly evaluating the risk temporally and then aggregating the alternatives through a
hybrid clustering method based on the similarity between risk vectors. The proposed method is employed to two case studies
of China concerning public health events and natural disasters respectively. The risk variation disclosed brings insight into the
properties of investigated alternatives and therefore contributes to effective disaster reduction.
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1. Introduction

Disaster is the sudden happened event, which may
cause serious harm to human being, society and econ-
omy. It can be categorized in different perspectives.
According to the generation, characteristics and form-
ing mechanism, disasters are divided into four groups,
namely natural disasters, accidental disasters, public
health events and social security events. Natural disas-
ters refer to the casualties, property loss and resource
damage caused by natural mutation, including meteoro-
logical disasters, geological disasters, marine disasters,
forest fires, biological disasters, etc. Accident disas-
ters mostly caused by man-made production and liv-
ing activities include traffic accidents, safety accidents,
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urban lifeline accidents, etc. Social security incidents
refer to the events that endanger the normal social order
and undermine the social stability. Public health events
include infectious diseases, unknown causes diseases,
major food and occupational poisoning, etc. Nowadays
the pandemic Coronavirus Disease-2019 (COVID-19)
is having a formidable impact on people and societies
all over the world since the first reported case in 2019.
Despite the remarkable progress on vaccine develop-
ment, the negative impact brought by COVID-19 will
continue and even escalate for a long time.

Decision making is the process of selecting a possible
solution from all available alternatives or ranking the
alternatives into preference-ordered classes according
to a predefined evaluation measurement. Risk assess-
ment is essential across many industries to determine
the likelihood of loss. It is usually solved as single-
objective decision making (SODM) or multi-criteria
decision making (MCDM) depended on the complexity
of problem. Single objective decision making which
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aims to meet the requirements of certain objective is
commonly solved by break-even point analysis, critical
cost method, differential analysis method, linear pro-
gramming, nonlinear programming, dynamic program-
ming, evolutionary programming, etc [4,28]. Multi-
criteria decision making concerns multiple objectives
that are usually complicated or even conflicting. The tra-
ditionally used approaches include TOPSIS (Technique
for Order Preference by Similarity to Ideal Solution),
VIKOR (VIsekriterijumska optimizacija i KOmpro-
misno Resenje), AIRM (Aggregated Indices Random-
ization Method), AHP (Analytic Hierarchy Process),
ANP (Analytic Network Process), BWM (Best Worst
Method), DEA (Data Envelopment Analysis), DEMA-
TEL (Decision Making Trial and Evaluation Labora-
tory), DEX (Decision EXpert), ER (Evidential Rea-
soning), GP (Goal Programming), GRA (Grey Rela-
tional Analysis), IPV (Inner Product of Vectors), Rough
Set etc [10,14,26]. Recently advanced computational
intelligence approaches such as artificial neural net-
work, support vector machine, genetic algorithm, fuzzy
cognitive maps have gained considerable attention in
multi-criteria decision making problems [13,25,31].

In emergency management, disaster risk assessment
is a process to evaluate the probability and degree of
potential hazards, and analyze what could happen if
a hazard occurs. Despite the diversity of hazards, risk
assessment is considered as a vital task for improving
the prevention and mitigation capability of the affected
body as well as reducing the harm caused by hazards
through effective emergency management countermea-
sures.

There is much evidence that the temporal charac-
teristic of data are more and more concerned recently.
Camacho-Munoz et al. studied the temporal evolution
of pharmaceuticals in the main river affecting Donana
Park (Spain) during one year [6]. Zhao et al. considered
the spatial and temporal variations in a long-term fore-
warning model of flood disaster for Tunxi area, Huang-
shan City of China using a back-propagation neural net-
work [34]. A dynamic risk assessment of drought disas-
ter was developed to maize production in the northwest
of Liaoning Province based on remote sensing data [24].
A methodology was proposed for risk assessment of
drought disaster using real-time precipitation and multi-
source remote sensing data [17]. Bach et al. employed
a dynamic and probability based methodology called
catastrophe simulation model to evaluate the present
and future disaster risk [5]. Chen et al. adopted fuzzy
matter element theory to analyse the contributing fac-
tors of world total-loss marine casualty and discuss the

different influence of these factors to the evolution trend
of total losses [8]. In brief, the previous studies con-
cerned either temporal risk of a single object or static
risk of multiple objects [12,27], however contained few
attempt to risk variation analysis of diverse objects.

This study is intended to analyze the variation of dis-
aster risk by temporal risk assessment and clustering.
The risk assessment is first performed temporally to
generate a risk vector for each alternative. Afterwards a
clustering process is employed based on the similarity
between risk vectors measured by a distance metric.
The proposed approach is applied to two case studies
of China concerning public health events and natural
disasters respectively. In the former, the occurrence of
26 infectious diseases was monitored in Zhengzhou, the
capital of Henan province, from May 2014 to March
2019. The risk of diseases is proportional to the fre-
quency of occurrence. The clusters of temporal risk
found reveal the seasonality and co-occurrence property
of infectious diseases. In the latter, the statistical data
of 31 Chinese regions to natural disasters was collected
from 2014 to 2018. After yearly evaluating the regional
risk defined as the risk of regions to natural disasters,
the regions are grouped to several clusters characterized
by risk variation. Different from the existing studies
that usually focus on trend detection of a single disaster
event, we provide a novel perspective on risk variation
analysis and clustering. The paper enriches the analysis
of temporal disaster risk by characterizing the varia-
tion of risk over the entire distribution. The findings
provide an improved understanding of the variation of
disaster risk and therefore have significant importance
to enhance the effectiveness of countermeasures to dis-
aster reduction. Although the case study did not in-
clude COVID-19 due to the data acquisition problem,
the proposed method could be applied to the issue for
analyzing the risk variation across different countries
(regions) and infectious diseases.

The rest of this paper is organized as follows. Sec-
tion 2 outlines the methodology of risk assessment and
variation analysis for temporal data. Section 3 is de-
voted to some analytic results of two case studies using
the proposed approach. Finally, section 4 concludes the
paper along with some suggestions and highlights the
future directions.

2. Methodology and framework of research

In this section we introduce an approach for tem-
poral risk assessment and variation analysis. Figure 1
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Fig. 1. Framework of dynamic risk assessment and variation analysis.

schematically describes the framework of the pro-
posed approach. The input is a temporal data set
{D1, D2, . . . , Dn} describing the investigated alterna-
tives at n time points. Firstly, the risk of temporal data
is evaluated respectively by risk assessment methods
depending on the property of decision making prob-
lems. Secondly, the obtained risk ratings are organized
to a risk vector for each alternative denoting the tempo-
ral risk. Afterwards the risk vectors are explored by a
clustering process so that the alternatives with similar
risk are grouped in the same cluster. In this approach a
hybrid clustering method composed of self-organizing
map (SOM) and K-means is employed. Finally the vari-
ation of alternatives within clusters is analyzed and
characterized along with some suggestions. The princi-
ple of SOM and K-means clustering is described in the
rest of the section.

Clustering as an unsupervised learning task by nature
divides the unlabeled data set into a number of groups
that maximize the intra-similarity and minimize the
inter-similarity. By definition, the former indicates the
similarities within groups and the latter indicates the
similarities across groups.

SOM [20] is a kind of neural network used for un-
supervised learning. It is composed of input neurons
and output neurons that set along a grid. Input neurons
are served as feeding the input data, and output neurons
adjust the spatial structure gradually in order to recog-
nize the distribution of input data. Each output neuron
is associated with a codebook vector which represents a
cluster of input. For each input SOM finds a neuron to
which best matches, called best-matching unit (BMU).
Then the codebook vector of BMU is updated by the
random gradient descent. Meantime the adjacent neu-
rons update the codebook vectors according to their dis-
tance from BMU. Consequently the neurons are topo-
logically ordered on the grid gradually in such manner
that if instances are similar in the input space, then they
will be likely projected to the same or nearby neurons
in the map grid space. SOM has some promising merits,

for example, clustering high dimensional data, preserv-
ing the topological properties, and visualizing cluster
structures in an easily understandable manner. SOM
has been widely applied as a standard analytical tool in
a wide range of applications, including fault diagnosis,
crop evapotranspiration, clinical voice analysis, satellite
images analysis, landslide susceptibility, motorcycle
hazard detection and so forth [1,18,23].

LetN denote the number of training instances,M the
number of neurons, xi(i = 1, . . . , N) the input vector,
mi(i = 1, . . . ,M) the coodebook vector of neuron i.
The steps of SOM training are as follows [9].

(1) For p = 1, . . . ,M , initialize the codebook vec-
tor mp of map neurons; (2) For i = 1, . . . , N , in-
put instance xi to the map one at a time and project
xi to BMU c, where c = argmin

16l6M
||xi,ml||; (3) For

p = 1, . . . ,M , update the prototypes proportional to
the learning rate α(t) and the neighborhood function
hc,p(t) bymp = mp+α(t)hc,p(t)(x−mp); (4) Repeat
from (2) a few iterations until the maximal number of
iterations is reached.

A neighborhood kernel function hij(t) = exp
−||ci,cj ||2

2δ(t)2 describes the inter-connectivity strength be-
tween two neurons, where ci (cj) is the position of neu-
ron i (j) on the map lattice, δ(t) is the neighborhood
radius function. The learning rate α(t) = αi(

αe

αi
)t/tmax

is a monotonically decreasing function with learning
epoch t, where αi and αe denote the initial and ending
learning rate respectively, and tmax denotes the total
number of iterations.

After training each neuron corresponds to a cluster
so that the input data is grouped to a number of clusters
with respect to BMU. Although SOM facilitates the
visualization and property exploration of data, it suffers
from some drawbacks. For instances, it requires the user
to specify the number of clusters. It is also difficult to
find obvious clustering boundaries in the SOM results
even with the easily understandable manner such as u-
matrix (unified distance matrix) for visualizing cluster
structures. To address these problems the hybrization of
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SOM and K-means proposed by [30] was found to per-
form well in market segmentation [21], classifying sen-
sor data [22], identifying dynamic of biogeochemical
properties [29], categorizing gene expression data [32],
etc. In this study, the hybrid approach is employed to
cluster the risk vectors. In specific the input is divided
into a number of small and compact groups with respect
to SOM neurons, and then aggregated to a few clusters
using K-means.

K-means aims to divide a set of objects {x1, x2, · · · ,
xN} into k (k 6 N ) sets {C1, C2, · · · , Ck} which
minimizes the within-cluster sum of squares:

∑k
i=1∑

x∈Ci
||x, µi||, where µi stands for the center of clus-

ter i, and || || is the distance metric. The termination
condition is usually the maximal number of iterations or
the convergence of cluster centers. To find the optimal
value of k, Davies-Bouldin (DB) index is commonly
used which evaluates the quality of clustering in terms
of both intra-cluster compactness (Si) and inter-cluster
separation (Mi,j) [11].

Si =
∑
x∈Ci

||x, µi||/|Ci|(i = 1, · · · , k)

Mi,j = ||ui, uj ||(i, j = 1, · · · , k)

DB index =

k∑
i=1

max
i 6=j

(Si + Sj)/Mi,j

3. Case studies: Results and discussions

In this section, the proposed method is utilized in
two case studies of China. One is the risk of infectious
diseases in Zhengzhou City, the other is the regional
risk to natural disasters of China. Both data sets are
temporal, however the latter is more complicated due
to the multiple criteria involved in risk assessment.

3.1. Risk of infectious diseases in Zhengzhou

Infectious disease can spread widely among people
or between people and animals. It can be transmitted
through air, water, food, soil, vertical transmission and
direct contact with infected individuals, body fluids and
excreta of infected persons, and objects contaminated
by patients. According to the transmission mode, in-
fectious diseases include: (1) respiratory infectious dis-
eases (e.g., influenza, tuberculosis, mumps, measles,
pertussis) commonly infected by air borne; (2) diges-
tive tract infectious diseases (e.g., ascariasis, bacillary
dysentery, hepatitis A) commonly infected by water

and food; (3) blood infectious diseases (e.g., hepatitis
B, malaria, epidemic encephalitis B, filariasis) mostly
spread through biological media; (4) surface infec-
tious diseases (e.g., schistosomiasis, trachoma, rabies,
tetanus) characterized by contact transmission; (5) sex-
ually transmitted diseases (e.g., gonorrhea, syphilis,
AIDS). According to the speed and degree of harm to
human beings as well as the measures of supervision,
monitoring and management, infectious diseases are
divided into three classes in China, i.e., compulsorily
managed infectious diseases (Class A), strictly man-
aged infectious diseases (Class B), supervisory infec-
tious diseases (Class C). The first class including plague
and cholera should be compulsively managed from the
occurrence of diseases, then the isolation and treatment
of patients and pathogen carriers, to the treatment of
epidemic spots and epidemic areas. The second class
including 26 infectious diseases should be prevented
and controlled in strict accordance with the relevant
regulations and prevention plans. The third class in-
cludes influenza, mumps, rubella, acute hemorrhagic
conjunctivitis, leprosy, epidemic and endemic typhus,
Kala Azar, hydatidosis, filariasis, infectious diarrhea,
hand-foot-mouth disease, bacterial and amoebic dysen-
tery, typhoid and paratyphoid.

Zhengzhou, the capital of Henan province, is an im-
portant megacity of more than 10 million population
in Central China. Referring to the international uni-
fied classification standards and the actual situation of
Zhengzhou, 26 kinds of acute and chronic infectious
diseases listed in Table 1 with high incidence, wide epi-
demic area and serious harm are concerned in the case
study. The occurrence of these infectious diseases was
monitored during the period from May 2014 to March
2019 (46 months totally) except some unavailable data.
Characterized by single objective of the problem, the
risk caused by infectious diseases to the city is sim-
ply measured by the occurrence frequency of diseases.
Quite evidently the more the value of occurrence, the
more the risk of the infectious disease. The absolute fre-
quency values are therefore normalized to [0, 1] where
1 indicates the highest risk and 0 indicates the lowest
risk. After risk assessment the data is transformed to a
matrix of [26× 46] standing for 26 infectious diseases
in 46 months.

The generated risk vectors are fed to a SOM model
for clustering. Figure 2 shows the u-matrix (a) and la-
bels (b) projected to each neuron after SOM training.
U-matrix visualizes the distances between the adjacent
neurons with different colorings so that the insight of
the data distribution can be observed without priori in-
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Table 1
Infectious diseases concerned in the first case study

No. Infectious disease Transmission mode Class
1 AIDS Sexually transmitted diseases B
2 HIV Sexually transmitted diseases B
3 Hepatitis A Digestive tract infectious diseases B
4 Hepatitis B Blood infectious diseases B
5 Hcv Blood infectious diseases B
6 Hev Digestive tract infectious diseases B
7 Measles Respiratory infectious diseases B
8 Hemorrhagic fever Respiratory/Digestive tract/Surface infectious diseases B
9 Rabies Surface infectious diseases B
10 Dengue fever Blood infectious diseases B
11 Dysentery Digestive tract infectious diseases B
12 Pulmonary tuberculosis Respiratory infectious diseases B
13 Typhoid + paratyphoid Digestive tract infectious diseases B
14 Cerebrospinal meningitis Blood infectious diseases B
15 Pertussis Respiratory infectious diseases B
16 Scarlet fever Respiratory infectious diseases B
17 Brucellosis Surface infectious diseases: B
18 Gonorrhea Sexually transmitted diseases B
19 Syphilis Sexually transmitted diseases B
20 Malaria Blood infectious diseases B
21 Influenza Respiratory infectious diseases C
22 Mumps epidemic Respiratory infectious diseases C
23 Rubella Respiratory infectious diseases C
24 Acute hemorrhagic conjunctivitis Surface infectious diseases C
25 Other infectious diarrhea Digestive tract infectious diseases C
26 Hand-foot-mouth disease Respiratory/Digestive tract/Surface infectious diseases C

Table 2
Five clusters of infectious diseases in terms of risk

Cluster Infectious diseases
#1 AIDS, HIV, Hepatitis-A, Hev, Measles, Hemorrhagic fever, Rabies, Dengue fever, Dysentery, Typhoid + paratyphoid,

Cerebrospinal meningitis, Pertussis, Scarlet fever, Brucellosis, Gonorrhea, Malaria, Rubella, Acute hemorrhagic conjunctivitis
#2 Influenza
#3 Hand-foot-mouth disease
#4 Hepatitis B, Other infectious diarrhea
#5 Hcv, Pulmonary tuberculosis, Syphilis, Mumps epidemic

Fig. 2. SOM representation of infectious diseases by (a) u-matrix, (b) labels.
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Fig. 3. Parallel coordinate visualization of infectious diseases for each
cluster.

formation about the clusters. In specific, a red color-
ing corresponds to a large distance and thus a gap be-
tween the codebook values in the input space. On the
contrary, a blue coloring corresponding to a small dis-
tance signifies that the codebook vectors are close to
each other in the input space. In this manner blue areas
can be thought as clusters separated by red areas. After
training each disease is assigned to the neuron whose
codebook vector is most similar. The corresponding
label of diseases are shown in the place of the neuron.
The u-matrix representation in Fig. 2a reveals that the
neurons in the upper left corner are close to each other,
but differ from those in the bottom. Referring to the
labels in Fig. 2b, the distribution of investigated infec-
tious diseases can be grasped roughly in a straight way.
In general, the diseases in the upper of SOM constitute
a separated cluster and those in the bottom belong to
several clusters respectively. In the following, K-means
is used to find the cluster structure on the basis of the
codebook vectors of SOM. The optimal cluster number
is determined by DB index. The resulted five clusters
are listed in Table 2. Accordingly the parallel coordi-
nate visualization of infectious diseases with respect to
each cluster is given in Fig. 3 where the x-axis denotes
the time (formatted as year/month), and the y-axis de-
notes the risk (calculated as normalized occurrence fre-
quency) of diseases. The 18 infectious diseases located
in Cluster #1 remain a low level risk (less than 0.15
mostly) during the period despite some small fluctua-
tions. The other 8 diseases occur more frequently char-
acterized by the obvious seasonality but with different
properties. Both Cluster #2 and Cluster #3 include one
disease, namely Influenza and Hand-foot-month disease
respectively. The corresponding parallel coordinate re-
veals that Influenza usually breaks out in winter and
spring called as flu season. Particularly people infected
by Influenza in 2017 and 2018 are significantly more
than the same period of previous years likely due to the
high air pollution [15]. It broke out since November and
gradually entered a high incidence period until Match
of the next year. Hand-foot-mouth disease caused by
enterovirus mostly occurs in children under 5 years old.
It can cause herpes in hands, feet, mouth and other parts
even along with complications such as myocarditis, pul-
monary edema, aseptic meningoencephalitis. In China
the disease was first found in Shanghai in 1981, and has
been reported in many regions so far. The occurrence
frequency of Hand-foot-month disease varies dramati-
cally during the whole year, and it usually breaks out
and transmits rapidly in spring and summer. Cluster
#4 includes Hepatitis B and other infectious diarrhea,
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which reach the peak for the incidence and infection in
winter. Among Chinese legal infectious diseases, the
incidence of Hepatitis B virus infection is reported very
high only next to epidemic influenza and diarrhea. Clus-
ter #5 comprises Hcv, Pulmonary tuberculosis, Syphilis
and Mumps epidemic which usually break out in win-
ter, spring and summer. As a high incidence area of
tuberculosis and hepatitis virus, the patients infected
by both Pulmonary tuberculosis and Hepatitis C virus
are clinically common. The co-occurrence of Hcv and
Pulmonary tuberculosis is distinctly presented in the
parallel coordinate visualization of the two diseases.

Referring to the resulting clusters, some evidences
can be found. Firstly, among the 26 infectious diseases,
the 8 acute diseases of high incidence should be moni-
tored carefully. Secondly, most infectious diseases are
characterized by obvious seasonality, namely a periodic
fluctuation that occurs regularly based on a particular
season. It is important to consider the effect of season-
ality when analyzing the variation of infectious diseases
from a fundamental point of view. High-risk infectious
diseases should be warned based on the seasonal dis-
tribution and the epidemic trend. Vaccination and other
prophylactic measures can be carried out in the upcom-
ing high incidence of infectious diseases. Thirdly, the
infectious diseases within clusters indicate a high rate
of co-occurrence which should be considered in early
warning and prevention of public health events caused
by infectious diseases.

3.2. Regional risk to natural disasters of China

Regional disaster risk assessment evaluates the natu-
ral disaster risk at the scale of regions so as to identify
the high risk regions, and hence improve the preven-
tion and mitigation capability of the vulnerable regions
against the disasters [9]. Nowadays it has become is a
major factor in risk reduction, resilience increase, and
adaptation improvement of regions. The alternatives
investigated in this case study are thirty-one regions
(including 23 provinces, 4 municipalities and 4 au-
tonomous regions) of China except Hong Kong, Macao
and Taiwan due to the lack of data. In this research, the
risk of Chinese regions to natural disasters is studied
spanned over five years from 2014 to 2018.

The regional risk to natural disasters can be measured
from the perspective of the harm caused by natural dis-
asters and the regional vulnerability against natural dis-
asters. Table 3 outlines the evaluation index system of
Chinese regional risk on the basis of [7] while delet-
ing or replacing some indicators due to the insufficient

reliable and complete data in some years. In specific,
the harm caused by natural disasters is measured by
the number of death, direct economic loss, number of
people affected by natural disasters, and area of dam-
aged crops. The regional vulnerability against natural
disasters is measured from three perspectives: sensitiv-
ity, response ability, and adaptability. Each second-class
indicator is further described by third-class indicators.
The majority of the data used were obtained from freely
available sources of National Bureau of Statistics of
China (http://www.stats.gov.cn/). In this case study, the
benefit indicators mean the more the value, the higher
the potential risk caused. The cost indicators (marked
by∗) mean the more the value, the lower the potential
risk caused. In pre-processing the original data is con-
verted to [0, 1] through min-max normalization and
meantime the cost indicators are subtracted by one.

In the first phase the risk of 31 regions is assessed
yearly concerning performance evaluation and multi-
criteria decision making. We employ TOPSIS, one of
the most widely used MCDM methods for risk assess-
ment of regions due to its universal applicability and
flexibility in solving complex decision-making prob-
lems [19]. In essence, TOPSIS evaluates the alternatives
(regions) in comparison with the positive ideal solution
(PIS) and negative ideal solution (NIS). By definition,
PIS refers to the ideal scheme with the maximal value
among all alternatives for each indicator, and NIS refers
to the negative ideal scheme that has the minimal value.
Afterwards the risk rating of alternatives is calculated
with respect to PIS and NIS. Consequently, an alterna-
tive closer to PIS and simultaneously farther from NIS
should have a higher rating.

Table 4 shows the risk rating and rank in descending
order of 31 Chinese regions during 5 years respectively.
For each year the regions having the highest (lowest)
risk rating are marked by H (L). As was shown Bei-
jing is found always holding the lowest risk to natural
disasters during the five years. In both 2014 and 2015
Yunnan has the highest risk. In the next year Hubei
province reaches the highest risk followed by Hebei and
Anhui. Hunan and Gansu achieve the highest risk rate
in 2017 and 2018 respectively. In general the risk of
regions varies differently during the past 5 years. Some
regions remain the rating stably such as Beijing and
Shanghai, however some regions change the risk rating
largely such as Hunan and Hebei. In the following, the
variation of regional risk will be explored by clustering
and visualization approaches.
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Table 3
Evaluation index system of Chinese regional risk to natural disasters (∗denote cost indicators)

Harm A1- Number of death (person)
A2- Number of people affected by natural disasters (ten thousand)
A3- Direct economic losses (100 million yuan)
A4- Area of damaged crops (thousand hectare)

Vulnerability Sensitivity A5- Regional population (ten thousand)
A6- Proportion of rural and urban population
A7- Urban population density (person/km2)
A8- Cultivated land (thousand hectare)
A9- Building density

Response Ability A10- Number of medical & technical personnel per ten thousand residence∗

A11- Number of medical beds per ten thousand people∗

A12- Original property insurance revenue∗ (100 million yuan)
A13- Number of medical institutions∗

A14- Budget expenditure for disasters∗ (100 million yuan)
A15- Number of seismic stations∗

A16- Number of automatic meteorological station∗

Adaptability A17- Water amount per capita∗ (m3/person)
A18- Sex ratio (per 100 female)∗

A19- Elderly population ratio (per 100 adults)
A20- Illiterate population more than 15 years old
A21- Local finance general budget expenditure∗ (100 million yuan)
A22- Urban green area∗ (ten thousand hectare)
A23- GDP per capita∗ (yuan)
A24- Disposable income per capita∗ (yuan)
A25- Forest coverage∗ (%)

Table 4
Risk rating and rank of 31 Chinese regions during 5 years (L denotes the lowest risk rating, and
H denotes the highest rating for each year)

Region 2014 2015 2016 2017 2018
Beijing 0.141(31)L 0.150(31)L 0.149(31)L 0.153(31)L 0.158(31)L
Tianjin 0.264(26) 0.249(29) 0.261(24) 0.259(25) 0.276(24)
Hebei 0.414(7) 0.564(3) 0.666(2) 0.301(18) 0.321(20)
Shanxi 0.297(21) 0.456(11) 0.313(15) 0.337(14) 0.425(10)
InnerMongolia 0.323(18) 0.518(6) 0.457(6) 0.495(4) 0.561(4)
Liaoning 0.425(5) 0.406(19) 0.213(28) 0.261(22) 0.377(14)
Jilin 0.324(17) 0.351(23) 0.282(19) 0.445(6) 0.330(16)
Heilongjiang 0.363(12) 0.391(21) 0.457(5) 0.400(9) 0.483(8)
Shanghai 0.193(29) 0.209(30) 0.207(29) 0.209(27) 0.212(29)
Jiangsu 0.216(27) 0.285(26) 0.258(25) 0.203(29) 0.249(27)
Zhejiang 0.179(30) 0.467(10) 0.204(30) 0.153(30) 0.160(30)
Anhui 0.363(11) 0.572(2) 0.652(3) 0.316(15) 0.541(5)
Fujian 0.213(28) 0.408(17) 0.465(4) 0.230(26) 0.246(28)
Jiangxi 0.347(15) 0.469(9) 0.387(11) 0.395(10) 0.471(9)
Shandong 0.280(23) 0.412(16) 0.251(26) 0.298(19) 0.572(3)
Henan 0.569(2) 0.407(18) 0.416(9) 0.520(2) 0.535(6)
Hubei 0.292(22) 0.490(8) 0.753(1)H 0.499(3) 0.409(11)
Hunan 0.470(3) 0.503(7) 0.438(7) 0.786(1)H 0.388(12)
Guangdong 0.346(16) 0.453(12) 0.233(27) 0.207(28) 0.387(13)
Guangxi 0.350(13) 0.416(15) 0.266(23) 0.373(12) 0.313(21)
Hainan 0.348(14) 0.274(27) 0.291(18) 0.260(24) 0.270(26)
Chongqing 0.300(20) 0.291(25) 0.274(21) 0.303(17) 0.279(23)
Sichuan 0.422(6) 0.539(4) 0.335(13) 0.432(7) 0.581(2)
Guizhou 0.460(4) 0.447(13) 0.372(12) 0.369(13) 0.323(18)
Yunnan 0.673(1)H 0.691(1)H 0.427(8) 0.420(8) 0.509(7)
Tibet 0.319(19) 0.393(20) 0.329(14) 0.308(16) 0.322(19)
Shaanxi 0.385(9) 0.535(5) 0.306(16) 0.446(5) 0.327(17)
Gansu 0.378(10) 0.423(14) 0.416(10) 0.391(11) 0.736(1)H
Qinghai 0.274(24) 0.297(24) 0.282(20) 0.295(20) 0.296(22)
Ningxia 0.268(25) 0.274(28) 0.272(22) 0.281(21) 0.273(25)
Xinjiang 0.390(8) 0.382(22) 0.298(17) 0.260(23) 0.376(15)
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Fig. 4. SOM representation of thirty-one Chinese regions with labels and component planes.

3.2.1. Clustering regions w.r.t risk ratings
After risk assessment each region is represented as a

risk vector [r1, r2, r3, r4, r5] where ri denotes the risk
rating of the region in the i-th year starting form 2014.
In the second phase a hybrid clustering approach is
used to separate the regions with respect to the risk
vectors over five years. The risk vectors are clustered
by SOM followed by K-means applied to the primary
clusters with varying k. After running multiple times
with randomly generated centers for each k, and the best
one is selected with respect to the sum of squared errors.
Then the DB index is calculated for each clustering
to determine the optimal value of k. In this case the
best value of k is 3 that achieves the smallest DB index
shown in Fig. 5a.

Figure 4 shows the labels and component planes
of map neurons. For easy understanding the regions
are marked in different colorings with respect to the
cluster information. In specific, the upper neurons
belong to Cluster #1 including Beijing, Shanghai,
Tianjin, Chongqing, Ningxia, Jiangsu, Hainan, Qing-
hai, and Zhejiang. The neurons on the bottom corre-
spond to Cluster #3 including Heibe, InnerMongolia,
Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan,
Sichuan, Guizhou, Yunnan, Shaanxi, Gansu. The other
neurons belong to Cluster #2 including Shanxi, Liaon-
ing, Jilin, Fujian, Shandong, Guangdong, Guangxi, Ti-

bet, Xinjiang. Component plane representation visu-
alizes the relative component distribution of the input
data for each component (i.e., risk rating of each year
in this case study). In this representation, blue values
represent relatively small values while red values rep-
resent relatively large values. By component planes and
corresponding labels along with cluster information
we can compare the distribution of risk ratings among
clusters. It is observed that the regions in Cluster #1
have relatively low-level risk during five years, those in
Cluster #3 have high-level risk and the others have the
middle-level risk.

The parallel coordinate of regions is visualized re-
spectively in Fig. 5b–d. The risk rating is mostly be-
tween 0.1 and 0.3 for Cluster #1, between 0.2 and 0.45
for Cluster #2, and between 0.3 and 0.8 for Cluster #3.
From the vertical (region) view, it is of value to find the
main factors on the disparity among regions, for exam-
ple between Cluster #1 (low-risk regions) and Cluster
#3 (high-risk regions) using a quantitative measure.

Given two clusters C1 and C2, the influence of an
indicator Ai contributed to the comprehensive risk can
be measured by the inter-cluster variation (ICV) [9],
defined as the average dissimilarity between the local
mean of clusters (Hj

i , j = 1, 2) and the global mean on
this indicator (Hi) on the indicator:

ICVi = (H1
i −Hi)

2 + (H2
i −Hi)

2/2
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Fig. 5. Clusters of thirty-one Chinese regions using K-means.

A higher value of ICV indicates a definite contri-
bution on the dissimilarity between two clusters. Fig-
ure 6a–e shows the inter-cluster variation (x-axis) of the
top 10 contributing factors (y-axis) between Cluster #1
and Cluster #3 from 2014 to 2018. It is observed the
yearly risk of regions to natural disasters is impacted
by some common factors. In summary, Cultivated land
(A8), GDP per capita (A23), Number of medical in-
stitutions (A13), Number of people affected by natu-
ral disasters (A2), Number of automatic meteorolog-
ical station (A16), Building density (A9), Disposable
income per capita (A24), Number of death (A1), Urban
population density (A7), and Illiterate population more
than 15 years old (A20) contribute significantly on the
distinction between the two clusters. Take Cultivated
land (A8) as example. In Fig. 6f, the box-and-whisker
plot of this indicator for Cluster #1 and Cluster #3 re-
spectively shows the the low-risk regions have signifi-
cantly smaller cultivated land than the high-risk regions.
As a large agricultural country, agriculture places an
important strategic position in China. Due to a diversity
of natural disasters occur in China such as meteoro-
logical disaster, ecological disaster, geological disaster,
biological disaster, cultivated land becomes a leading
influencing factor of regional risk to natural disasters.

3.2.2. Clustering regions w.r.t. risk variation
To further explore the similarity of regions with re-

spect to the risk variation, each region is represented as
a difference vector [r2 − r1, r3 − r2, r4 − r3, r5 − r4]

where ri denotes the risk rating of the region in the i-th
year starting from 2014. The hybrid clustering approach
is then applied to the difference vectors to analyze the
risk variation of Chinese regions over the five years.
In this case the best value of k is 5 that achieves the
smallest DB index.

Table 5 shows the clusters of regions with similar
risk variation during the five years. The parallel coor-
dinate of regions of five clusters is visualized respec-
tively in Fig. 7. Cluster #1 includes 12 regions, namely
Jiangsu, Beijing, Shanghai, Henan, Guizhou, Tianjin,
Ningxia, Chongqing, Qinghai, Hainan, Shandong and
Tibet. From the parallel coordinate visualization, the
risk of these regions are relatively stable despite the
minor variation on risk ratings. Cluster #2 includes
Shandong and Gansu, characterized by a marked in-
crease in 2018. Cluster #3 comprises 9 regions, namely
Shaanxi, InnerMongolia, Liaoning, Zhejiang, Shanxi,
Liaoning, Guangdong, Yunan, Sichuan, mostly reach-
ing the highest risk rating in 2015 and lowest rating in
2016. Cluster #4 comprises Hubei, Hebei, Anhui, Fu-
jian, Heilongjiang characterized by a peak in 2016. The
other three regions, i.e., Hunan, Jilin, Guanxi, belong
to Cluster #5 that keep stable risk during the five years
except a distinct peak in the year 2017.

From the horizonal (time) view, it is important to find
out the reasons that cause the strong variation on re-
gional risk. Take Hunan and Hebei provinces as exam-
ple. For the former an abrupt increase of risk is found
in the year 2017, and for the latter an abrupt decrease
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Fig. 6. Top 10 contributing indicators in terms of ICV where (a)–(e): Low-risk regions (Cluster #1) vs. High-risk regions (Cluster #3); (f): Box plot
of Cultivated land (A8) for Cluster #1 and Cluster #3.

of risk is observed from high-risk years (2014–2016) to
low-risk years (2017–2018). This is markedly due to the
serve harm of natural disasters represented by Number
of people affected by natural disasters (A2), Direct eco-
nomic losses (A3), Number of death (A1) and Number
of collapsed houses (A4) as shown in Fig. 8. In general

the influencing indicators reveal that the risk fluctuation
of a single region mainly depends on the harm of natu-
ral disasters, while the risk difference between regions
mainly depends on the vulnerability of regions. Natural
hazards are characterized by randomness and outbursts
so that the prevention schemes should be formulated
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Table 5
Clusters of regional risk variation during five years

Cluster Regions Variation
#1 Jiangsu, Beijing, Shanghai, Henan, Guizhou, Tianjin, Ningxia, Chongqing, Qinghai, Hainan, Xinjiang, Tibet →→→→
#2 Shandong, Gansu →→→↗
#3 Shanxi, InnerMongolia, Liaoning, Zhejiang, Shaanxi, Liaoning, Guangdong, Yunan, Sichuan ↗↘→→
#4 Hubei, Hebei, Anhui, Fujian, Heilongjiang ↗↗↘→
#5 Hunan, Jilin, Guangxi →→↗↘

Fig. 7. Parallel coordinate visualization of Chinese regions for each cluster.

in advance to lower the regional disaster risk reduction
and for the meantime increase the resilience to disas-
ters. These countermeasures may contain the follow-
ing contents from the two aforementioned perspectives.
(1) Take timely and effective disaster relief operations

to decrease the casualties and property losses due to
the natural disasters. (2) Set up more automatic me-
teorological stations and strengthen the disaster early
warning and monitoring systems; (3) Develop regional
economic for increased GDP and disposal income to
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Fig. 8. Top 10 contributing indicators in terms of ICV where (a): High-risk years (2017) vs. Low-risk years (2014–2016, 2018) of Hunan province;
(b): High-risk years (2014–2016) vs. Low-risk years (2017–2018) of Hebei province.

improve the financial resilience to natural disasters;
(4) Establish more medical institutions to enhance the
responsible ability of regions; (5) Decrease the building
density particular the urban population density for the
sake of improved vulnerability of regions; (6) Speed
up the construction of agricultural infrastructure and
increase the disaster resistance capacity of cultivated
land through comprehensive agricultural development
projects.

4. Conclusions and future work

Disasters not only bring threat to people’s safety and
property but also cause enormous economical losses
and serious influence on social stability. Risk assess-
ment plays an important role in the prediction, warning,
and mitigation of disasters. The previous studies of risk
assessment are mostly limited in static approaches to
risk assessment with inadequate attention on temporal
data. As was known temporal data that commonly ex-
ists in real world applications is of critical value to ana-
lyze the variation of disaster risk. With the increasing
interest on the temporal characteristic of data, dynamic
risk assessment arises naturally in practice and poses
unique challenges for research in analyzing the varia-
tion of long-term risk. However there is particularly lit-
tle related research comparing temporal risk. Given the
temporal data related to disaster risk, this paper intents
to explore the temporal risk from both horizontal and
vertical views, i.e., the temporal variation of risk and
the difference of objects.

A two stage risk assessment approach is developed
to analyze the variation of risk based on the similarity

between risk vectors using a hybrid clustering method
integrating SOM with K-means. Firstly the risk of alter-
natives is measured temporally resulting in a collection
of risk vectors. Afterwards based on the similarity mea-
sured by a distance metric, SOM groups the alternatives
into a number of sets identified by a representative syn-
thetic codebook vector for each group. These groups
are further aggregated by K-means to several clusters
characterized by risk variation. This approach is applied
to two temporal data over several years: infectious dis-
eases (single-objective decision making problem) and
regional risk to natural disasters (multi-criteria decision
making problem). The clustering of risk vectors implies
the similar variation of alternatives and provides insight
on understanding the properties of investigated alterna-
tives, for example, the seasonality and co-occurrence of
infectious diseases, or the influencing indicators on re-
gional risk to natural disasters. These findings can help
decision makers in two folds: (1) to take countermea-
sures commonly for the group of alternatives within the
context of risk reduction and planning; (2) to explore
the short-board of alternatives from the set of indica-
tors; (3) to characterize the properties (e.g., periodic-
ity) of variation of disaster risk. In general this study
can provide a comprehensive framework for disaster
risk analysis, which is helpful for the government and
relevant departments to analyze the temporal disaster
data, find out the variation characteristics and influenc-
ing factors of disaster risk, and therefore formulate dis-
aster prevention and mitigation strategies for disaster
prevention and management.

In the future study some research directions will be
investigated. Firstly, the variation analysis paradigm
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can be improved by prediction models for risk pre-
diction and missing value processing with historical
data [16,33] to enhance the capability of emergence
management system. Upon the basis of the preliminary
findings disclosed in this study, the evolution mecha-
nism behind disaster risk will be further investigated
with the aid of domain experts. Secondly, the approach
provides a general framework for risk variation anal-
ysis. Apart from the methods introduced here, other
congener techniques for risk assessment and clustering
are easily integrated in the framework. More extensive
studies will be performed to ascertain how generalizable
and applicable it is to other dynamic risk assessment
problems such as COVID-19 pandemic. Nowadays ar-
tificial intelligence and machine learning-based models
have driven new approaches to drug discovery, vaccine
development, and public health awareness [2,3]. The
approach proposed in this paper can be used to mine
the relevance between COVID-19 pandemic and exist-
ing infectious diseases so as to help discovering new
possible treatments and promoting emergency planning.
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