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Abstract. Coronaviruses constitute a family of viruses that gives rise to respiratory diseases. COVID-19 is an infectious disease
caused by a newly discovered coronavirus also termed Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As
COVID-19 is highly contagious, early diagnosis of COVID-19 is crucial for an effective treatment strategy. However, the reverse
transcription-polymerase chain reaction (RT-PCR) test which is considered to be a gold standard in the diagnosis of COVID-19
suffers from a high false-negative rate. Therefore, the research community is exploring alternative diagnostic mechanisms. Chest
X-ray (CXR) image analysis has emerged as a feasible and effective diagnostic technique towards this objective. In this work, we
propose the COVID-19 classification problem as a three-class classification problem to distinguish between COVID-19, normal,
and pneumonia classes. We propose a three-stage framework, named COV-ELM based on extreme learning machine (ELM).
Our dataset comprises CXR images in a frontal view, namely Posteroanterior (PA) and Erect anteroposterior (AP). Stage one
deals with preprocessing and transformation while stage two deals with feature extraction. These extracted features are passed as
an input to the ELM at the third stage, resulting in the identification of COVID-19. The choice of ELM in this work has been
motivated by its faster convergence, better generalization capability, and shorter training time in comparison to the conventional
gradient-based learning algorithms. As bigger and diverse datasets become available, ELM can be quickly retrained as compared
to its gradient-based competitor models. We use 10-fold cross-validation to evaluate the results of COV-ELM. The proposed
model achieved a macro average F1-score of 0.95 and the overall sensitivity of 0.94 ± 0.02 at a 95% confidence interval. When
compared to state-of-the-art machine learning algorithms, the COV-ELM is found to outperform its competitors in this three-class
classification scenario. Further, LIME has been integrated with the proposed COV-ELM model to generate annotated CXR images.
The annotations are based on the superpixels that have contributed to distinguish between the different classes. It was observed
that the superpixels correspond to the regions of the human lungs that are clinically observed in COVID-19 and Pneumonia cases.

Keywords: COVID-19, extreme learning machine, chest X-rays, pneumonia viral, pneumonia bacterial

1. Introduction

Coronavirus disease 2019 (COVID-19), known to
originate from Wuhan City in Hubei Province, China
is a contagious infection resulting in respiratory ill-
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ness in most cases. COVID-19 is caused by a novel
coronavirus, widely recognized as severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2; previ-
ously known as 2019-nCoV) [1]. As the COVID-19 out-
break has become a global health emergency, on March
11, 2020, the WHO declared COVID-19 a global pan-
demic [2]. Moreover, COVID-19 disease shares simi-
lar characteristics as observed in other forms of viral
or bacterial Pneumonia, making it difficult to separate
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between the two classes at the early stages. Thus, early
accurate diagnosis of COVID-19 is critically important
to contain the spread and the treatment of the affected
subjects.

The reverse transcription-polymerase chain reaction
(RT-PCR) test is popularly used for the detection of
SARS-CoV-2. Although COVID-19 may be asymp-
totic in several instances, it has been reported that even
many symptomatic cases showing characteristics of
COVID-19 were not correctly diagnosed by RT-PCR
test [3]. This has led to the search for alternative mech-
anisms that may be more accurate in the identification
of COVID-19 disease. Traditionally, chest X-ray im-
ages (CXRs) have been the popular choice for diagnosis
and treatment of respiratory disorders such as Pneumo-
nia [4,5]. As a result, several research groups are work-
ing on developing models based on CXR images [6–9].
However, most of them are struggling with the chal-
lenge to distinguish COVID-19 patients against those
suffering from other forms of pneumonia [10].

Although deep neural networks have emerged as a
popular tool for image-based analysis, these require
tuning millions of parameters and search for the op-
timal value of hyper-parameters [7,11–15]. Also, it is
well known that the training of a deep neural network
is a time-consuming task even on high-performance
computing platforms.

Khan et al. [7] proposed a deep convolutional neural
network (DCNN) model to automate the detection of
COVID-19 based on chest X-ray images. The model is
based on Xception architecture [16] pre-trained on Im-
ageNet [17] and achieved an overall accuracy of 89.6%.
Jain et al. [18] proposed a deep residual network for
the automatic detection of COVID-19 in CXR image
by differentiating it with the CXR images of bacterial
pneumonia, viral pneumonia, and normal cases and ex-
hibited an accuracy of 93.01% in differentiating three
classes using their first-stage model. They have further
analyzed the CXR images showing the viral pneumo-
nia features for the identification of COVID-19 case in
their second stage model showing an exceptional per-
formance with an accuracy of 97.22%. Altan et al. [19]
used an efficient hybrid model consisting of two-
dimensional (2D) curvelet transformation for the fea-
ture extraction, chaotic salp swarm algorithm (CSSA) to
optimize the feature matrix, and EfficientNet-B0 model
for the identification of COVID-19 cases. The model
achieved an accuracy of 99.69%. Mahmud et al. [8] pro-
posed a DCNN model using a variation in dilation rate
to extract distinguishing features from chest X-ray im-
ages and achieved an accuracy of 90.2% for multi-class

classification (COVID-19/Normal/Pneumonia). They
also used Gradient-weighted Class Activation Map-
ping (Grad-CAM) to visualize the abnormal regions in
CXR scans. Wang et al. [9] developed a computer-aided
screening tool for detection of COVID-19 from CXR
images based on a pre-trained network on ImageNet,
tuned with the Adam optimizer, and achieved 91% sen-
sitivity for the COVID-19 class. Basu et al. [20] used
domain extension transfer learning (DETL) framework
comprising 12 layers. They used an already-trained net-
work on the National Institutes of Health (NIH) CXR
image dataset [4] (comprising 108,948 frontal view
X-ray images of 32,717 unique patients) which was
fine-tuned for the COVID-19 dataset to obtain an over-
all accuracy 95.3% ± 0.02 on 5-fold cross-validation.
Marques et al. [21] made a novel attempt of applying
EfficientNet [22] (claimed to achieve an accuracy of
84.3% top-1 accuracy on ImageNet) and evaluated their
model using 10-fold stratified cross-validation method.
1092 samples have been used for training, and 122 im-
ages have been used for testing. They have achieved
an average F1-score value of 0.97 in multi-class sce-
narios whereas 0.99 in the case of binary classifica-
tion. Rajaraman et al. [23] iteratively pruned the task-
specific models (VGG-16, VGG-19, and Inception-V3)
by pruning 2% of the neurons in each convolutional
layer and retrained the model to obtain a macro aver-
aged F1-score of 0.99. Das et al. [11] proposed a deep
transfer learning approach for automated detection of
COVID-19 disease. The network is fed with the features
extracted using the Xception network. They obtained
97% sensitivity for classifying COVID-19 cases from
Pneumonia and respiratory diseases. They further show
that their proposed model outperformed other popular
deep networks such as VGGNet, ResNet50, AlexNet,
GoogLeNet.

Khuzani et al. [10] used multilayer neural networks
(MLNN) to distinguish the CXR images of COVID-19
patients from other forms of pneumonia. They extracted
a set of spatial and frequency domain features from
X-ray images. Based on the evaluation of extracted fea-
tures, they concluded that while Fast Fourier Trans-
form (FFT) features were best suited in detecting the
COVID-19, the normal class was best determined by
the gray level difference method (GLDM). Principal
Component Analysis (PCA) was applied to generate an
optimized set of synthetic features that served as input
to an MLNN to distinguish COVID-19 images from the
non-COVID-19 ones with an accuracy of 94%. Rasheed
et al. [24] applied PCA as a feature extraction tech-
nique resulting in 148 features. Further to investigate
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the suitability of the reduced feature set, CNN and lo-
gistic regression (LR) based models were developed to
distinguish between COVID-19 and healthy cases using
250 CXR images belonging to each class. Accuracy
of 100% and 97.6% for CNN and LR-based models
respectively was reported.

It is evident from the above discussion that so far the
research groups have mainly focused on the use of deep
neural networks which require millions of parameters
and the optimal choice of hyper-parameters. However, it
is well known that the training of a deep neural network
is a time-consuming task even on high-performance
computing platforms. Therefore, in order to improve
the computational efficiency of the classification mod-
els, in this work, we have proposed the use of a sin-
gle hidden layer feed-forward neural network (SLFN)
known as extreme learning machine (ELM) [25,26].
The ELM is a batch learning algorithm proposed by
Huang et al. [25] and has been used extensively in dif-
ferent domains like ECG signal classification [27] and
identification of arrhythmia disease [28]. The ELM and
its variants have also been applied in applications such
as fingerprint identification [29], lung cancer detec-
tion [30], image and video watermarking [31,32], and
3D object recognition [33]. Govindarajan and Swami-
nathan [34] present a comparison of ELM and online-
sequential ELM (OS-ELM) in the classification of tu-
berculosis from healthy subjects using CXR images.
They have performed feature extraction using median
robust extended local binary patterns and gradient lo-
cal ternary patterns. ELM achieved a sensitivity value
equal to 98.7% while OS-ELM performed better with
a sensitivity value of 99.3%. Ismael and Şengür [35]
present ELM based binary classification model that uses
multi-resolution approaches such as wavelet, shearlet,
and contourlet transform for decomposition of CXR
images. Features are extracted based on entropy and the
normalized energy approaches. Using the ELM classi-
fier, the sensitivity values obtained for wavelet, shear-
let, and contourlet transforms are 96.07%, 98.89%, and
87.82%, respectively. Thus, ELM is popularly applied
in several domains due to its fast learning capability
good generalization performance, and ease of imple-
mentation.

The main contribution of this paper is to explore the
suitability of ELM in the diagnosis of COVID-19 us-
ing CXR images. The faster convergence of ELM with
only one tunable parameter made it more efficient as
compared to conventional gradient-based learning algo-
rithms. Another challenge addressed in this work is the
identification of localized patterns to differentiate be-

tween the classes, namely, COVID-19, Pneumonia, and
Normal. Further, to clinically establish the relevance of
COV-ELM results, LIME has been integrated with it
to generate annotated CXR images. These annotations
represent regions that distinguish between the different
classes.

The rest of the paper is organized as follows: Sec-
tion 2 gives the dataset description followed by the de-
tailed methodology, preprocessing of the dataset, re-
view of Extreme Learning Machine, outcomes of the
experiments, and analysis of the results have been dis-
cussed in Section 3. Also, visualizations of COV-ELM
results using LIME have been discussed in Section 4.
Finally, the conclusions and scope for future work are
discussed in Section 5.

2. Material and methods

In this section, we present a list of CXR image
datasets used for experimentation in this work, followed
by details of the proposed methodology.

2.1. Dataset description

In the present work, we have used the following pub-
licly available CXR datasets for COVID-19, Normal,
and Pneumonia.

– COVID-19 Image Data Collection [6]. It com-
prises 760 samples, COVID-19: 538, ARDS: 14,
Other Diseases: 222.

– COVID-19 Radiography Database (Kaggle) [36].
It comprises 2905 samples, COVID-19: 219, Nor-
mal: 1341, Viral Pneumonia: 1345.

– Mendeley Chest X-ray Images [37]. It comprises
5856 samples, Pneumonia (Viral and Bacterial):
4273, Normal:1583.

In this work, we only consider the CXR images in a
frontal view, namely Poster anterior (PA) and Erect an-
teroposterior (AP). The first two databases in the above
list comprise 520 such images. For the training pur-
pose, we have used these images along with 520 CXR
images of normal and pneumonia cases from COVID-
19 Radiography Database (Kaggle) [36] and Mendeley
Chest X-ray Images [37]. Figure 1a and b depicts the
manually marked region of interest that distinguishes
between COVID-19 and Pneumonia cases in CXR im-
ages. The above regions are marked by a radiologist
after clinical evaluation of these CXR images.

2.2. Preprocessing

Due to diversity in the CXR image collection,
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Fig. 1. Manually annotated CXR images highlighting the regions of interest that distinguishes between COVID-19 and pneumonia cases. The
above regions are marked by a radiologist after clinical evaluation of these CXR images.

Fig. 2. COV-ELM framework: Dataset preprocessing, feature extraction, and ELM based classification model.

they are resized and subjected to min-max normaliza-
tion [38] to ensure uniformity. Further, to enhance the
local contrast in the CXRs, Contrast Limited Adaptive
Histogram Equalization (CLAHE), a variant of adaptive
histogram equalization is applied. Figure 2 depicts the
framework of the three-staged proposed model. In stage
one, the preprocessing includes resizing, normaliza-

tion, and CLAHE [39] applied in the sequence shown.
The preprocessed CXRs are passed to stage 2 of the
framework for feature extraction.

2.3. Feature extraction

Texture plays a significant role in the identification
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of the region of interest (ROI) and classification of im-
ages [40]. In this stage, we consider two types of fea-
tures: texture and frequency-based as shown in Fig. 2.
The texture features consisted of four groups. The first
group of features is directly generated from the pre-
processed image of 512 × 512. These include area,
mean, standard deviation, skewness, kurtosis, energy,
entropy, max, min, mean absolute deviation, median,
range, root mean square, and uniformity. Remaining
texture features are obtained by applying gray-level co-
occurrence matrix (GLCM) [41,42], histogram of ori-
ented gradients (HOG) [43–45], and gray-level differ-
ence matrix (GLDM) [10,46]. Apart from texture fea-
tures, the use of frequency features also plays an impor-
tant role in developing efficient classifiers in medical
imaging [47–49]. In the present work, the frequency
features are extracted using Fast Fourier Transform
(FFT) and Discrete Wavelet Transform (DWT). Zargari
et al. [50] used the aforementioned statistical features
for predicting chemotherapy response in ovarian can-
cer patients. Drawing inspiration from their work, we
computed these features for the FFT map and three-
level (LL3) DWT coefficients to generate a vector of
frequency features. Finally, a vector of features is ob-
tained by concatenating the textural feature vector of
length (140) with the frequency vector of length (28) to
generate a vector of size 168 for each CXR image.

2.4. Extreme learning machine

In stage three, the features extracted at stage 2 are
passed as input to the Extreme Learning Machine
(ELM) based classification model as shown in Fig. 2.
ELM was proposed by Huang et al. as an efficient alter-
native to the backpropagation algorithm for single-layer
feed-forward networks (SNFN) [25]. It is a fast learn-
ing algorithm with good generalization performance as
compared to other traditional feed-forward networks.
An ELM works by initializing a set of weights ran-
domly and computing the output weights analytically
by Moore-Penrose Matrix Inverse [51]. Figure 3 de-
picts the overall ELM architecture and the details of its
functioning are provided in Algorithm 1.

Given a training set (xj , tj), xj ∈ Rn, tj ∈ Rm for
j = 1, 2, . . . , N , where the pairs (xj , tj) denote the
training vectors and the corresponding target values,
following [25], the standard ELM having L nodes is
modeled as:

L∑
i=1

βigi(ai.xj + bi) = tj (1)

Fig. 3. ELM Architecture: The ELM network comprises an input
layer, a hidden layer, and an output layer.

In Eq. (1), ai denotes the weight vector that connects
the input layer to the ith hidden node and bi denotes the
corresponding bias. Further, βi denotes the weight vec-
tor connecting the ith hidden node and the output neu-
rons. The above N equations may also be represented
as:

Gβ = T (2)

The form of the hidden layer output matrix G, men-
tioned in Eq. (2), is given in Eq. (3). The form of vectors
β and T is given in Eq. (4).

G=

 g(a1.x1 + b1) . . . g(aL.x1 + bL)
... . . .

...
g(a1.xN + b1) . . . g(aL.xN + bL)


N×L

(3)

β=

β
T
1
...
βT
L


L×m

and T =

t
T
1
...
tTN


N×m

(4)

The solution of the above system of linear equations
is obtained using Moore-Penrose generalized inverse
(Eq. (5)).

β = G†T (5)

In Eq. (5), G† = (GTG)−1GT denotes the Moore-
Penrose generalized inverse [51] of matrix G.

Huang et al. [52] argue that ELM outperforms the
conventional learning algorithms in terms of learning
speed, and in most of the cases shows better general-
ization capability than the conventional gradient-based
learning algorithms such as backpropagation where the
weights are adjusted with a non-linear relationship be-
tween the input and the output [51]. They further stated
that ELM can compute the desired weights of the net-
work in a single step in comparison to classical meth-
ods.
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Algorithm 1 : ELM Algorithm

Input:

Training set: (xj , tj), xj ∈ Rn, tj ∈ Rm for j = 1,
2, . . . , N

Activation function: g : R→ R

Number of hidden nodes: L

Output:

Optimized weight matrix: β

1. Randomly assign hidden node parameters (ai, bi), i =
1, 2, . . . , L;

2. Compute the hidden-layer output matrix G;
3. Compute output weight vector β = G†T

Fig. 4. Effect of the increase in the number of hidden neurons (L) on
10-fold cross-validation accuracy. Accuracy increases with increase
in L upto L = 140, and witnessed highest 10-fold cross-validation
accuracy of 94.74% at L = 350.

2.5. COV-ELM

In this work, we use ELM discussed in Section 2.4
to develop an ELM classifier (COV-ELM) for the de-
tection of COVID-19 in CXR images. Based on experi-
mentation, we used L2-normalized radial basis function
(rbf-l2) activation function. We also experimented with
the different number of neurons in the hidden layer.
Using 10-fold cross-validation, we observed that with
an increase in the number of neurons in the hidden
layer, accuracy increases up to L = 140 neurons, and
the highest 10-fold cross-validation accuracy of 94.74%
was reached when the number of hidden neurons was
L = 350. Experimenting with different seeds, we found
the peak accuracy was reached for the number of hid-
den neurons in the range 350 to 380 but without any
further increase in 10-fold cross-validation accuracy.
So, for further experiments, we fixed the number of
hidden neurons as L = 350.

Fig. 5. Boxplot for sensitivity (recall) values using frequency fea-
tures, texture features, and combined set of frequency and texture
features. The combined set of features depicts the median sensitivity
of 0.945 which scores over the median values considering frequency
and texture features separately.

Boxplot in Fig. 5 depicts the variation in sensitivity
value. It is evident from the results that the texture fea-
tures score over frequency features. We also examined
the influence of a combined set of features (168) on the
classification process. It may be noted that the model
yields median sensitivity of 0.945 using the combined
set of features which scores over the median sensitivity
values considering the frequency and texture features
separately, exhibiting 0.90 and 0.93 respectively.

3. Results and discussion

We have carried out all the experiments using Python
3.6.9 on the NVIDIA Tesla K80 GPU provided by
Google Colaboratory. To evaluate the performance of
the proposed method for the three-class classification
problem, we trained the model on the CXR dataset
using 10-fold cross-validation. Following Handy and
Till [53], we depict the receiver operating charac-
teristic (ROC) curves for each of the three classes,
namely COVID-19, Normal, and Pneumonia for one
fold (please see in Fig. 6). It is apparent from the ROC
curves that AUC is near unity for all three classes which
shows a good generalization performance of COV-
ELM.

To evaluate the performance of the proposed clas-
sifier, we carried out 10-fold cross-validation. Fig-
ure 7 depicts the confusion matrix and the heatmap
for 10-fold cross-validation. The results of the 10-fold
cross-validation are summarized in a confusion matrix
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Fig. 6. AUC is near unity for each of the three classes namely COVID-19, normal, and pneumonia in one vs all setting.

Fig. 7. The classification error in classifying COVID-19, normal, and pneumonia is 4.62%, 5%, and 6.16% respectively and the macro average of
f1-score is 0.95.
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Table 1
Sensitivity (recall) values for COVID-19, normal, and pneumonia at
95% confidence interval

Sensitivity at 95% CI
COVID-19 Normal Pneumonia
0.95 ± 0.04 0.95 ± 0.01 0.94 ± 0.03

Table 2
Comparison of COV-ELM with other state-of-the-art classifiers in
terms of sensitivity and accuracy values at 95% confidence interval

Classifier Sensitivity Accuracy
ELM (L = 350, rbf-l2) 0.94± 0.02 0.94± 0.03
GBC (learning rate = 1.0) 0.91± 0.05 0.91± 0.04
SVC (C = 1.0, kernel = ‘rbf’) 0.86± 0.06 0.86± 0.05
SVC (C = 1.0, kernel = ‘linear’) 0.90± 0.05 0.90± 0.06
RBE (min_samples_split = 2) 0.89± 0.05 0.89± 0.04
ANN (23,747 Parameters) 0.85± 0.08 0.85± 0.07
DTC (min_samples_leaf = 1) 0.82± 0.07 0.82± 0.06
VC (LR, SVC, GBC) 0.89± 0.05 0.89± 0.06

(Fig. 7a). It shows that out of 520 COVID-19 patients,
496 were correctly identified, eleven were misclassi-
fied as normal and thirteen were labeled as pneumonia.
Similarly, pneumonia and normal subjects were also
labeled by the system quite accurately. Thus, we ob-
tained an overall accuracy of 94.74% and a high re-
call rate of 95.38%, 95.00%, and 93.84% for COVID-
19, Normal, and Pneumonia classes respectively. The
macro average of the f1-score is 0.95 as depicted in the
heatmap (Fig. 7b). As shown in Table 1, COV-ELM
identified COVID-19, Normal, and Pneumonia classes
with sensitivity 0.95 ± 0.04, 0.95 ± 0.01, and 0.94 ±
0.03 respectively at 95% confidence interval.

To establish the effectiveness of our approach, the
COV-ELM is compared with the state-of-the-art ma-
chine learning algorithms, namely support vector classi-
fier (SVC) using rbf and linear kernels, gradient boost-
ing classifier (GBC), random forest ensemble (RBE),
artificial neural networks (ANN), decision tree classifier
(DTC), and voting classifier (VC) ensemble of (logistic
regression (LR), SVC, and GBC) in terms of sensitivity
at 95% confidence interval (CI) (please see Table 2). It
is clear that COV-ELM has higher sensitivity as com-
pared to its competitors. It is evident from the table that
the proposed approach achieves a sensitivity of 0.94 ±
0.02 and accuracy of 0.94 ± 0.03 which scores over
other state-of-the-art classifiers.

Recently, Saygılı Ahmet [54] proposed the use of
machine learning techniques such as bag of tree, ker-
nel ELM (K-ELM), k-nearest neighbor (k-NN), and
SVC to detect COVID-19 cases using CXR images. Ta-
ble 3 shows a comparison between the aforementioned
work [54] and the proposed approach (COV-ELM).

Table 3
Comparison of COV-ELM with the recently proposed approach by
Saygılı Ahmet [54] for the detection of COVID-19 using CXR images

Dataset used Technique
COVID-19
sensitivity

(%)
Proposed (COV-ELM)
COVID-19: 520
Normal: 520
Pneumonia: 520

ELM (L = 350, rbf-l2) 94.74

Bag of tree
(# of trees = 100) 71.20

Saygılı Ahmet [54]
COVID-19: 125
Normal: 500
Pneumonia: 500

K-ELM
(L = 4096, rbf,
C = 1e− 1)

88.00

k-NN (k = 1,
Minkowski distance)

94.40

SVC (Default) 88.80

4. Visualization using LIME

In order to corroborate the COV-ELM results with
clinical findings, we have used a recently proposed AI
tool – Local Interpretable Model-agnostic Explanations
(LIME) [55]. LIME perturbs an input image and helps
in analyzing the effect of these perturbations on the
predictions of a given machine learning model.

Figure 8a–c shows images relating to COVID-19,
Pneumonia, normal cases, respectively. Each subfigure
in a row comprises three images of the same patient
relating to a medical condition. In each row, the clinical
condition has been marked by a radiologist in the first
image. In the second image in the same row, the top
10 superpixels obtained using LIME have been marked
using green and red colors. Superpixels contributing
toward and against the predicted class appear in green
and red colors, respectively. Finally, the third image
in the same row depicts the LIME-generated heatmap
corresponding to the second image. The intensity of
the blue color of a particular region in the heatmap
corresponds to its relative significance in predicting
its class. A radiologist confirmed that in the case of
Anteroposterior (AP) chest radiograph (Fig. 8a), the
ill-defined area of ground glass haze in the right lung
parenchyma at mid-zone likely represents COVID-19.
Similarly, in the Anteroposterior (AP) chest radiograph
(Fig. 8b), the wedge-shaped area of consolidation in the
right lung parenchyma at the upper zone likely repre-
sents pneumonia. The radiologist confirmed that the re-
gions (though not all) highlighted by LIME correspond
to the affected regions in case of both COVID-19 and
Pneumonia. This points to the applicability of COV-
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Fig. 8. (a)–(c) corresponding to COVID-19, Pneumonia, normal cases, respectively. In each row – the first CXR image depicts the clinically
evaluated and manually marked regions, second CXR image highlights the top 10 superpixels obtained using LIME, and the third image is the
LIME generated heatmap corresponding to the second image.

ELM in the identification of medical conditions such as
pneumonia and COVID-19.

5. Conclusions

The current research is focused on the accurate di-

agnosis of COVID-19 with high sensitivity. This paper
evaluates the suitability of ELM for COVID-19 classi-
fication due to its faster convergence, better generaliza-
tion capability, and shorter training time. A combina-
tion of texture (Spatial, GLDM, HOG, AND GLDM)
and frequency features (FFT and DWT) extracted from
publicly available CXR image repositories are provided
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as an input to COV-ELM. The proposed COV-ELM
model achieved a macro average f1-score of 0.95 and
an overall accuracy of 94.74% in the present three-
class classification scenario. The COV-ELM outper-
forms other competitive machine learning algorithms
with a sensitivity of 0.94% ± 0.02 at a 95% confidence
interval. For visualization of the results, LIME has been
used to highlight the superpixels that contributed to
the prediction of a given class. In the LIME generated
heatmaps, the higher intensity regions correspond to the
clinically evaluated regions. This establishes the clini-
cal relevance of the features generated by the proposed
model. Further, the training time of COV-ELM being
quite low, it can be efficiently retrained on newer bigger
and diverse datasets. As part of future work, we would
like to investigate how segmentation of the relevant lung
regions influences the performance of a classification
model.
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