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Abstract. The novel coronavirus (COVID-19) that emerged and transmitted from China (Wuhan City) had a staggering effect on
public health and the world economy. The early diagnosis of COVID-19 has become more important for its treatment and for
controlling its spread due to its highly transmissible nature. In addition, the restricted supply of test kits calls for an alternative
system for diagnosis. Since radiological images of chest of patients with COVID-19 show abnormalities, it is possible to diagnose
COVID-19 utilizing chest X-ray images. Therefore, by applying deep convolution neural network (CNN), we have presented a
diagnosis of COVID-19 based on chest X-ray images in this paper. For the diagnosis of COVID-19, an exhaustive comparative
performance analysis of 16 state-of-the-art models is presented. Moreover, each model is trained with three approaches: transfer
learning, fine tuning and scratch learning. The experiments were conducted on the dataset that comprises of 127 images of
COVID-19, 500 images of Pneumonia and 500 images of normal cases. We have performed the experiments in two scenarios:
binary classification (COVID-19 vs. Normal) and multiclass classification (COVID-19 vs. Pneumonia vs. Normal). Further, we
have applied cost-sensitive learning technique to handle the class imbalance issue. In this study, InceptionResNetV2 model with
fine-tuning approach achieved highest classification accuracy of 99.20% in binary classification and Xception model achieved
classification accuracy of 89.33% in multiclass classification among all considered models. To validate our approach, we have
presented the performance of our model on three other datasets and achieved adequate classification accuracy. Hence, the promising
results demonstrate that the fine-tuning of deep CNN models is an effective way for diagnosis of COVID-19 and therefore, it can
be deployed in diagnostic centers to assist radiologist after its validation with more prominent datasets.

Keywords: COVID-19, coronavirus, chest X-ray, convolution neural network, transfer learning, fine tuning, scratch learning

1. Introduction

The COVID-19 is the most recently discovered pan-
demic disease caused by the coronaviruses. The out-
break of this disease began in China (Wuhan city) in
December, 2019, thereafter it transmitted in many coun-
tries globally [1]. Initially, it is presumed that COVID-
19 was infected by bat to human [2]. Coronavirus con-
stitute a large family of viruses that causes sickness
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to animals and mankind. The disease caused by this
virus transmits primarily from one person to another
through tiny droplets either through mouth or nose, that
are oozed out when a person with COVID-19 starts
coughing, sneezing or speaking. The bigger droplets
zoom through the air after the sneezing, but smaller
droplets that are exhaled, are glided. The coronavirus is
transmitted through air and quickly infect people when
inhaled, causing serious illness. Different forms of coro-
navirus are responsible for respiratory infections, and
symptoms vary from common cold to various diseases
such as Middle East Respiratory Syndrome (MERS)
and Severe Acute Respiratory Syndrome (SARS) [3].
The dry cough, fever and tiredness are the some of
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the unique occurrences in COVID-19 patients. Some
people also get infected with mild symptoms such as
headache, nasal congestions, and sore throat [4]. On the
other hand, because of serious respiratory issues, few
are associated with relatively high ICU admittance and
mortality.

In current situation, researchers have been using var-
ious clinical methods for diagnosis of COVID-19. Re-
verse Transcription Polymerase Chain Reaction (RT-
PCR) which is used for the gene sequencing of respira-
tory and blood samples [5], can also be used to detect
COVID-19. However, as a result of low sensitivity of
RT-PCR, COVID-19 cannot be detected quickly in pa-
tients, resulting lack of treatment which may result in
infecting a large number of population [5]. Therefore,
it is suggested that the computed tomography (CT) and
chest X-ray (CXR) are sensitive methods and preferred
to detect COVID-19 over RT-PCR [6]. These are most
common techniques used for diagnosis of Pneumonia,
lungs inflammation etc. In this study, CXR images are
preferred and used to diagnosis COVID-19 over CT
scan because of following reasons: (i) CXR imaging
machines are easily available in hospitals, (ii) CXR im-
ages are cheaper than CT scan and (iii) CXR has low
ionizing radiation than CT scan. However, it calls for
radiology experts and takes significant time, which is
key constraints in situation like COVID-19 pandemic.
Therefore, many testing kits have been developed. How-
ever, we need to rely on other possible angle for its
diagnosis due to limited number of testing kits. There-
fore, developing an automated and reliable system for
diagnosis of COVID-19 is necessary to save the profes-
sional’s precious time.

As per literature, several image based methods have
been presented for detection of COVID-19. Ozturk et
al. [7], proposed DarkCovidNet based on CNN using
X-ray images for binary (COVID vs. No-Findings) and
multiclass (COVID vs. Pneumonia vs. No-Findings)
classification and achieved an accuracy of 98.08% and
87.02% respectively. Hemdan et al. [8] explored seven
pre-trained deep CNN models for detection of healthy
status against COVID-19 utilizing chest X-rays and ob-
tained that performance of VGG16 and DenseNet201
is better compared to rest. Narin et al. [3] explored
three deep learning models utilizing chest X-rays and
achieved detection accuracy of 98% using ResNet50.
Apostolopoulos et al. [9] explored six deep learning
models with transfer learning approach using X-ray im-
ages and achieved classification accuracy of 96.78% for
binary classification and 94.72% for multiclass classifi-
cation. Sethy and Behera [10] used extracted features

form different CNN models to feed into Support Vec-
tor Machine (SVM) for classification. In this experi-
ment, ResNet50 model with SVM classifier achieved
95.38% accuracy. In the same line, Wang and Wong [11]
proposed a COVID-Net that obtained 92.40% accu-
racy in detecting three classes i.e. normal, pneumonia
and COVID-19 images. Das et al. [12] explored Xcep-
tion with FT and obtained a classification accuracy of
97.40% while Pathak et al. [13] proposed a deep trans-
fer learning and obtained an accuarcy of 93.02%. Nayak
et al. [14] explored Resnet-34 to classify Normal and
COVID-19 and achieved a classification accuracy of
98.33%. Gilanie et al. [15] proposed a CNN model for
the classification of Normal, Pneumonia and COVID-
19 images and reported an accuracy of 96.68%. Oh et
al. [16] achieved a classification accuracy of 91.90% for
classification of COVID-19, Pneumia and Normal using
a patch-based CNN approach with limited training data.

In this paper, we have presented exhaustive compar-
ison of performance of 16 state-of-the-art deep CNN
models for binary classification (COVID-19 vs. Nor-
mal) and multiclass classification (COVID-19 vs. Pneu-
monia vs. Normal). The models used in this paper are:
(i) VGG16, (ii) VGG19, (iii) ResNet50, (iv) ResNet101,
(v) ResNet152, (vi) ResNet50V2, (vii) ResNet101V2,
(viii) ResNet152V2, (vix) InceptionV3, (x) Inception-
ResNetV2, (xi) Xception, (xii) MobileNet, (xiii) Mo-
bileNetV2, (xiv) DenseNet121 (xv) DenseNet169, (xvi)
DenseNet201. Further, the performances of these 16
models have been compared in three different training
strategy: transfer learning (TL), fine tuning (FT) and
scratch learning (SL). Therefore, this paper’s contri-
butions are as follows: (i) diagnosis of COVID-19 us-
ing chest X-ray images; (ii) diagnosis of COVID-19
in two scenarios: binary classification (COVID-19 vs.
Normal) and multiclass classification (COVID-19 vs.
Pneumonia vs. Normal); (iii) performance comparison
of 16 state-of-the-art deep CNN models in diagnosis
of COVID-19; (iv) comparative performance analysis
of models in three training strategies: TL, FT and SL;
(v) handled class imbalance issue using cost-sensitive
learning technique; (vi) achieved classification accu-
racy of 99.20% in binary classification and 89.33% in
multiclass classification using InceptionResNetV2 and
Xception model respectively with fine-tuning approach;
(vii) validation of these models on three other datasets
obtained from different sources.

The remainder of this paper is arranged as follows.
Section 2 explains methodology and the state-of-the-art
deep CNN models used in this paper. Section 3 presents
the experimental result and performance analysis and
finally, Section 4 concludes our study.
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Fig. 1. General deep CNN architecture for diagnosis of COVID-19.

2. Methodology

A significant development of deep learning has given
a new dimension in machine learning domain during the
last decades. The convolutional neural network (CNN)
has emerged as most powerful model among various
deep learning models for visual recognition tasks [17–
19]. Figure 1 depicts the general architecture of CNN
for the diagnosis of COVID-19.

The primary components of CNN architecture are:
(a) convolution layer, (b) pooling layer, and (c) fully
connected layer. In the process of CNN, each iteration
is called as an epoch. The trained model with deep
CNN showed high discriminative power. The different
components of it is described below.

a) Convolution layer
CNN’s main component is the convolution layer. It’s

principle concept is to extract local features from the
input image and generate feature maps [20]. It consists
of learnable parameters called filters or kernels that is
convolved with input image and expressed as Eq. (4).

F (i, j) = (I ∗K)(i, j)
(1)

=
∑
m

∑
n

K(i+m)(j + n)I(m,n)

where, I denotes input image, K denotes 2D filter with
size (m×n) and F defines feature map with size (i×j)
(output) of the convolution layer. Here, I is convolved
with K to produce F . The feature map is then fed to
activation function. Rectified Linear Unit (ReLU) is
the most common activation function. The output of
convolution layers is fed to pooling layer.

b) Pooling layer
In CNN architecture, the convolution layers are ac-

companied by pooling layers. The pooling layer are
used for subsampling. These layers are often referred

to as down sampling layers because the spatial size
of the function map is reduced and thus the computa-
tional complexity is minimized. Max pooling [21] is
the most common pooling technique and it is expressed
in Eq. (2).

y =
s,t
max
i,j=1

Fi,j (2)

where, s and t is the pooling size. In general, there
are number of alternate stacking of convolution and
pooling layers in any CNN architecture. At last, output
is flattened and provided to fully connected layer.

c) Fully connected layer
After many convolution and pooling layers in CNN

architecture, there is fully connected layer. The fully
connected layer has neurons that are having connections
to all activations of previous layer. The activations in
this layer are computed in the form of affine transforma-
tions that involves matrix multiplication and bias offset.
There may be more than one fully connected layer in
any model. The most common activation function in
fully connected layer is Softmax. The Softmax function
calculates the probability distribution of output classes
and it is expressed as

σ(~Z)i =
eZi∑C
j=1 e

Zj

(3)

where ~Z is the input vector and Zi is the elements
of the input vector having any real value to Softmax.
Denominator is the normalization term that ensures
the summation of output value is equal to 1. C is the
number of classes.

All these layers are stacked to build a complete CNN
architecture. In addition to these layers, the other layers
such as batch normalization and dropout may be ap-
pended to reduce time complexity and avoid overfitting,
respectively.
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Table 1
The details of four CXR datasets considered in this paper

Dataset used No. of COVID-19 images No. of normal images No. of pneumonia images Total images
[7] 125 500 500 1125

[33] 504 81 18 603
[35] 58 127 – 185
[36] 35 03 02 40

Fig. 2. General architecture of CNN model with three training approaches: (a) scratch learning; (b) transfer learning; (c) fine tuning.

2.1. Dataset description

In this paper, we have used four CXR image datasets
obtained from different sources. The details of these
datasets has been presented in Table 1. However, we
have utilized CXR image dataset of [7] to train and
explore the performance of 16 models. Figure 2 depicts
the sample image of each class of this dataset [7]. The
best performing model among 16 models were applied
on three other datasets [22–24] for validation.

2.2. Transfer learning, fine tuning and scratch
learning

The simplest way of training any CNN model is
scratch learning. Here, the weights of all the layers are

randomly initialized and updated using backpropaga-
tion algorithm through several iterations until it attains
the minimum loss. Figure 2a shows the general archi-
tecture of a CNN model with scratch learning. How-
ever, it increases the computational cost and power-
ful GPU requirement as the number of layer increases.
Therefore, techniques such as transfer learning and fine
tuning has been proposed to solve these issues.

Availability of large dataset is not always possible
and training with small dataset may cause the problem
of overfitting. A transfer learning approach [25] has
been introduced as an solution to this issue. Transfer
learning is a method in which pre-trained model infor-
mation is applied to a large dataset to solve a similar
problem in different datasets. Here, the weights of all
the layers are frozen except the last few fully connected
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layers, i.e., only the weights of unfrozen layers take part
in training. Hence, it reduces the computational com-
plexity while producing adequate performance. Fig-
ure 2b shows the general architecture of CNN model
with transfer learning. Another technique called fine
tuning is a mid-way approach between scratch learning
and transfer learning. Here, the weights of pre-trained
model are used as initial weights and the weights of all
the layers are updated using backpropagation algorithm
while training. Figure 2c shows the general architecture
of CNN model with fine tuning.

2.3. Pre-trained deep CNN models

We have explored 16 pre-trained deep CNN models
for diagnosis of COVID-19 and they are:
(i) VGG16, (ii) VGG19, (iii) ResNet50, (iv) ResNet101,
(v) ResNet152, (vi) ResNet50V2, (vii) ResNet101V2,
(viii) ResNet152V2, (ix) InceptionV3, (x) Inception-
ResNetV2, (xi) Xception, (xii) MobileNet, (xiii) Mo-
bileNetV2, (xiv) DenseNet121, (xv) DenseNet169,
(xvi) DenseNet201. All of the aforementioned models
have been pre-trained on ImageNet dataset [26] that
consists of 1.2 million images of 1000 classes. More-
over, we have presented the exhaustive comparative
performance analysis of these models in three training
approaches: transfer learning, fine tuning and scratch
learning. A brief description of each model has been
provided below.

Simonyan et al., [27] proposed VGG16 model. It
is a sequential CNN using 3 × 3 filters with in-
creasing depth of 16 layers. Max-pooling was per-
formed on 2 × 2 pixel window with stride of 2. Af-
ter each max pool layer, the number of convolution
filters gets doubled. It has three fully connected lay-
ers. There are 4096 neurons in the first two fully con-
nected layer and 1000 neurons in the third one. Fig-
ure 3a shows the architecture of VGG16. Similar to
VGG16, VGG19 model is developed with addition lay-
ers having a depth of 19 layers. Residual Neural Net-
work (ResNet) was introduced by He et al. [28]. It em-
ploys residual learning framework which has skip con-
nections from earlier layer along with direct connec-
tion from the immediate previous layer. There are sev-
eral variants of ResNet architecture such as ResNet50,
ResNet101, ResNet152, ResNet50V2, ResNet101V2
and ResNet152V2. ResNet50 has 50 layer in depth,
ResNet101 has 101 layers and so on. Though, these
models have more in depth than VGG16/VGG19 but
has lower complexity compared to it. Figure 3b presents
the basic architecture of ResNet model. The inception

architecture was introduced by Szegedy et al. [29]. The
first version is known as GoogleNet or InceptionV1.
The InceptionV1 is refined through various ways and it
is improved by adding batch normalization layer which
is coined as InceptionV2 [30]. Further, this version is
improved by putting factorization idea which is known
as InceptionV3 [31]. Figure 3c presents the architec-
ture of InceptionV3 model. Various combination of
inception architecture and residual connections have
been proposed in literature and InceptionResNetV1
and InceptionResNetV2 [32] are popular among them.
Figure 3d presents the architecture of InceptionRes-
NetV2 model. The architecture of Xception [33] is
based on depthwise separable convolution layer. Here,
it is considered that mapping of spatial correlation and
cross-channel correlation in the feature maps would be
completely decoupled. There are 36 convolution layers
to extract features from input. These 36 layers form
14 modules. Except first and last modules, 12 mod-
ules have linear residual connections around them. Fig-
ure 3e presents the architecture of Xception model. Mo-
bileNet [34] is constructed by depth wise separable con-
volutions that are a type of factorized convolutions. The
factorize convolutions factorize standard convolutions
into depthwise convolution and a pointwise convolu-
tion with 1 × 1 convolution. This factorizing of stan-
dard convolution has the greater impact on reducing
the computation time drastically as well as model size.
Figure 3f presents the architecture of MobileNet. In ad-
dition, MobileNetV2 is proposed by Sandler et al. [35].
It’s initial convolution layer has 32 filters and these are
accompanied by 19 residual bottleneck layers. Dense
Convolutional Network (DenseNet) has been proposed
by Huang et al. [36]. It is densely connected CNN ar-
chitecture where each layer is interconnected to each
other in feedforward manner. Three DenseNet mod-
els, i.e., DenseNet121, DenseNet169 and DenseNet201
have been explored. The architecture of DenseNet169
model has been depicted in Fig. 3g.

2.4. Class balancing

It can be observed from Table 1 that all four dataset
has the class imbalance issue. For example, the num-
ber of COVID-19 images in the datasets of [7] are 125
whereas the other two classes (Pneumonia and Nor-
mal) have 500 images each. This results in bias to the
performance of the model. Hence, we have used cost-
sensitive learning [37] to handle the class imbalance
problem which computes the class weights for each
class as shown in Eq. (4) where, C represents number
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Fig. 3. Architecture of state-of-the-art deep CNN models.

of classes andNi represents number of images in the ith

class. The objective here is to assign different weights
to the different misclassifications cost while computing
total cost during training and it is achieved by assign-
ing higher weights to the minority classes and lower
weights to the majority classes.

class_weighti =

∑C
j=1Nj

Ni
(4)

3. Results and discussion

3.1. Experimental design

The experimental setup to train all 16 deep CNN
models has been described in this section. These are
pre-trained models and already trained on a large dataset
known as ImageNet. The ImageNet comprises of 1000
classes. Hence, these CNN models are having 1000
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Fig. 3. Continued.

Fig. 4. Sample image of each class: (a) COVID-19, (b) Pneumonia and (c) Normal.

neurons in the FC layer to predict 1000 classes. How-
ever, we have evaluated for binary class (COVID-19 Vs.
Normal) and multiclass (COVID-19 Vs. Pneumonia Vs.
Normal) in this paper. Therefore, FC layer was replaced
by two neurons in case of binary class and three neurons
in case of multiclass. The size of the input image was

reshaped as defined for each pre-trained CNN models.
The size of the input image for InceptionV3, Inception-
ResNetV2 and Xception is 299 × 299 × 3 while for the
rest of the models it is 224 × 224 × 3. Table 2 shows
the trainable parameters for all the models with TL,
FT and SL approach in case of binary and multiclass
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Table 2
Trainable parameters of deep CNN models

Model Binary classification Multiclass classification

TL FT SL TL FT SL
VGG16 8,194 134,268,738 134,268,738 12,291 134,272,835 134,272,835
VGG19 8,194 139,578,434 139,578,434 12,291 139,582,531 139,582,531
ResNet50 4,098 23,538,690 23,538,690 6,147 23,540,739 23,540,739
ResNet101 4,098 42,556,930 42,556,930 6,147 42,558,979 42,558,979
ResNet152 4,098 58,223,618 58,223,618 6,147 58,225,667 58,225,667
ResNet50V2 4,098 23,523,458 23,523,458 6,147 23,525,507 23,525,507
ResNet101V2 4,098 42,532,994 42,532,994 6,147 42,535,043 42,535,043
ResNet152V2 4,098 58,192,002 58,192,002 6,147 58,194,051 58,194,051
InceptionV3 4,098 21,772,450 21,772,450 6,147 21,774,499 21,774,499
InceptionResNetV2 3,074 54,279,266 54,279,266 4,611 54,280,803 54,280,803
Xception 4,098 20,811,050 20,811,050 6,147 20,813,099 20,813,099
MobileNet 2,002 4,233,978 4,233,978 3,003 4,234,979 4,234,979
MobileNetV2 2,562 2,226,434 2,226,434 3,843 2,227,715 2,227,715
DenseNet121 2,050 6,955,906 6,955,906 3,075 6,956,931 6,956,931
DenseNet169 3,330 12,487,810 12,487,810 4,995 12,489,475 12,489,475
DenseNet201 3,842 18,096,770 18,096,770 5,763 18,098,691 18,098,691

classifications. We have used Adam (Adaptive Moment
Estimation) optimizer with learning rate of 0.01, epochs
of 200 and batch size of 32. Early stopping criteria has
been used in this experiment to avoid overfitting. In
early stopping criteria, the training is stopped when it
meets pre-defined criterion. Otherwise, the model is
trained till full epoch count. Here, we have set the cri-
teria of early stopping as if validation loss does not
decrease to 0.001 till 50 epochs, training should be
stopped. The dataset [7] has been distributed into three
parts: (i) training set (70% of dataset), (ii) validation set
(10% of dataset) and (iii) test set (20% of dataset). The
experiment was run for five trials to avoid biasedness of
each trail due to different set of training, validation and
testing set in each trail. Further, overall accuracy (OA)
has been calculated by computing average of accuracies
for five trials to demonstrate the performance of the
models. Moreover, average standard deviation (SD) of
accuracies in five trials has also been calculated to show
the robustness of the model. All the experiments have
been performed in keras framework with tensorflow
backend using Python 3.6. Here, Google Colaboratory
has been utilized for implementation that provides In-
tel(R) Xeon(R) CPU @ 2.30 GHz, 13 GB RAM and
NVIDIA Tesla K80 GPU.

3.2. Experimental results

The classification accuracy obtained using 16 mod-
els on test set has been shown in Tables 3 and 4 for
binary and multiclass classification, respectively. Fol-
lowing observations have been made: (i) among three
techniques (TL, FT, SL), SL has produced lowest accu-
racy in both scenario (binary and multiclass). The ratio-

Table 3
Performance comparison of deep CNN models with TL, FT and SL
approach for binary classification (COVID-19 vs. Normal)

Deep CNN model TL FT SL
Vgg16 97.12 ± 1.87 90.56 ± 6.96 80.48 ± 1.57
Vgg19 96.64 ± 2.50 86.56 ± 8.14 79.20 ± 2.43
ResNet50 83.52 ± 2.98 94.08 ± 0.96 91.84 ± 2.55
ResNet101 85.12 ± 1.93 92.48 ± 3.77 93.44 ± 3.93
ResNet152 78.24 ± 0.87 93.12 ± 8.61 90.88 ± 5.02
ResNet50V2 96.64 ± 1.38 94.08 ± 2.41 93.28 ± 2.89
ResNet101V2 97.60 ± 1.13 96.80 ± 1.13 91.84 ± 4.33
ResNet152V2 96.96 ± 0.93 95.52 ± 2.75 92.32 ± 1.87
InceptionV3 95.68 ± 1.80 97.44 ± 1.18 95.68 ± 1.65
InceptionResNetV2 97.12 ± 1.72 99.20 ± 1.18 94.40 ± 2.63
Xception 97.60 ± 1.43 97.60 ± 1.13 98.40 ± 1.01
MobileNet 95.36 ± 1.17 97.92 ± 1.48 93.44 ± 2.92
MobileNetV2 97.12 ± 0.82 93.44 ± 3.33 78.24 ± 1.56
DenseNet121 97.12 ± 0.82 97.60 ± 0.88 93.60 ± 2.58
DenseNet169 97.60 ± 1.60 93.60 ± 4.23 94.40 ± 3.04
DenseNet201 98.40 ± 0.88 94.40 ± 1.68 94.56 ± 1.99

nale behind it is that SL technique might require more
number of epochs to effectively train the model. When
comparing TL and FT, TL has performed better for few
models and FT has produced better results for few other
models. However, the difference in OA is very less in
these two techniques; (ii) highest OA of 99.20% has
been obtained using InceptionResNetV2 model with FT
for binary classification (Table 3) and the highest OA of
89.33% has been obtained using Xception model with
FT approach for multiclass classification (Table 4).

For a more detailed analysis, we have shown few
other performance parameters using best performing
models only, i.e., InceptionResNetV2 model for binary
classification and Xception model for multiclass classi-
fication. Figure 5 depicts the confusion matrix for bi-
nary and multiclass classification where diagonal el-
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Fig. 5. Confusion matrix: (a) Binary classification, (b) multiclass classification.

Fig. 6. ROC curve: (a) Binary classification, (b) multiclass classification.

Table 4
Performance comparison of deep CNN models with TL, FT and SL
approach for multiclass classification (COVID-19 vs. Pneumonia vs.
Normal)

Deep CNN model TL FT SL
Vgg16 78.49 ± 2.11 73.33 ± 2.67 42.13 ± 4.50
Vgg19 78.76 ± 1.44 57.42 ± 13.17 45.24 ± 2.41
ResNet50 61.96 ± 1.88 77.33 ± 7.02 71.20 ± 5.11
ResNet101 60.36 ± 1.10 82.40 ± 2.46 68.80 ± 8.74
ResNet152 59.20 ± 2.05 69.25 ± 15.09 74.76 ± 2.77
ResNet50V2 80.18 ± 2.79 83.11 ± 3.12 73.16 ± 2.22
ResNet101V2 77.06 ± 2.36 80.80 ± 5.02 73.24 ± 5.39
ResNet152V2 80.89 ± 1.46 81.78 ± 3.66 69.24 ± 5.82
InceptionV3 78.49 ± 1.45 86.22 ± 1.59 77.16 ± 3.79
InceptionResNetV2 79.73 ± 3.91 85.16 ± 3.00 70.40 ± 3.06
Xception 77.87 ± 1.67 89.33 ± 1.16 77.51 ± 4.19
MobileNet 79.29 ± 2.22 85.96 ± 2.87 65.78 ± 13.53
MobileNetV2 81.42 ± 2.26 67.47 ± 3.78 44.53 ± 3.11
DenseNet121 80.89 ± 1.54 82.84 ± 3.09 74.31 ± 4.63
DenseNet169 81.07 ± 2.56 84.18 ± 1.88 68.09 ± 12.14
DenseNet201 80.89 ± 2.16 84.27 ± 1.55 77.87 ± 2.60

Table 5
Other performance parameters for binary and multiclass classification
without class balancing

Classes Class accuracy (%) Precision Recall F1-score
Binary classification
COVID-19 96.00 1.00 0.96 0.98
Normal 100 0.99 1.00 1.00
Multiclass classification
COVID-19 95.83 0.79 0.96 0.87
Pneumonia 86.54 0.94 0.87 0.90
Normal 90.72 0.88 0.91 0.89

Table 6
Other performance parameters for binary and multiclass classification
with class balancing

Classes Class accuracy (%) Precision Recall F1-score
Binary classification
COVID-19 97.00 0.97 0.97 0.97
Normal 99.00 0.99 0.99 0.99
Multiclass classification
COVID-19 100 0.96 1.00 0.98
Pneumonia 89.81 0.90 0.90 0.90
Normal 87.23 0.88 0.87 0.88

ements illustrate correct classification. Further, class
accuracy, precision, recall and F1 score have been pre-
sented in Table 5 which shows our model is able to
classify COVID-19 class with very high accuracy (96%
in case of binary class and 95.83% in case of multi-
class). Moreover, the receiving operating characteristic
(ROC) curve has been shown in Fig. 6 where class 0,
1 and 2 represents COVID-19, Pneumonia and Normal
class respectively. As all curves are closer to top-left
corner, it demonstrates encouraging performance of the
model. Further, we have applied cost-sensitive learning
technique to handle the class imbalance issue and the
results were shown in Table 6. It can be observed from
Tables 5 and 6 that there is an improvement in COVID-
19 classification accuracy after class balancing in case
of binary classification (1.04% improvement) and mul-
ticlass (4.35% improvement) as well. Further, we have
validated our approach on three other datasets obtained
from different sources and the performance has been
depicted in Table 7. From Table 7, it is evident that
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Table 7
Validation of our approach on other three CXR datasets with class balancing

Data set used
No. of

COVID-19
images

No. of
normal
images

No. of
pneumonia

images

Classification
type Model Accuracy (%)

[22] 504 81 – Binary InceptionResNetV2 96.19
504 81 18 Multiclass Xception 82.37

[23] 58 127 – Binary InceptionResNetV2 91.89
[24] 35 3 – Binary InceptionResNetV2 91.67

35 3 2 Multiclass Xception 91.68

Table 8
Benchmarking of our approach with existing approaches on COVID-19 diagnosis

Authors Modality # classes with data size Methodology
Classification
accuracy (%)

Ozturk et al. [7] CXR 500 Normal
125 COVID-19
500 Pneumonia
500 Normal
125 COVID-19

DarkCovidNet 98.08 (Binary Class)
87.02 (Multiclass)

Narin et al. [3] CXR 50 COVID-19
50 Normal

ResNet50 with TL 98.00 (Binary Class)

Apostolopoulos et al. [9] CXR 224 COVID-19
714 Bacterial and Viral Pneumonia
504 Normal

MobileNetV2 with TL 96.78 (Binary Class)
94.72% (Multiclass)

Sethy et al. [10] CXR 133 COVID-19
133 Normal

ResNet50 with TL and SVM 95.38 (Binary Class)

Hemdan et al. [8] CXR 25 COVID-19
25 Normal

COVIDX-Net 90.00 (Binary Class)

Wang et al. [11] CXR 16,756 Images of Normal,
Pneumonia and COVID-19

COVID-Net 92.40 (Multiclass)

Elasnaoui et al. [38] CXR 2780 Bacteria Pneumonia
1493 Coronavirus, 231 COVID-19
1583 Normal

InceptionResNetV2 with TL 92.18 (Multiclass)

Das et al. [12] CXR 500 Pneumonia
500 Normal
125 COVID-19

Extreme version of Inception 97.40 (Multiclass)

Pathak et al. [13] CXR 419 COVID-19
439 Normal or Pneumonia infected

Deep Transfer Learning 93.02 (Binary class)

Nayak et al. [14] CXR 203 Normal
203 COVID-19

Resnet-34 98.33 (Binary Class)

Gilanie et al. [15] CXR and CT 7021 Normal and Pneumonia
1066 COVID-19

CNN model 96.68 (Binary class)

Oh et al. [16] CXR 5000 images (Normal, Pneumonia
and COVID-19)

Patch-based CNN 91.9 (Multiclass)

Our Approach CXR 500 Normal
125 COVID-19
500 Pneumonia
500 Normal
125 COVID-19

InceptionResNetV2 with FT
for Binary Class
Xception with FT for
multiclass

99.20 (Binary Class)
89.33 (Multiclass)

our approach is able to achieve adequate classification
accuracy on other three datasets as well.

Lastly, to highlight the performance of our approach,
a benchmarking of our approach with the existing ap-
proaches has been presented in Table 8. DarkCovid-
Net proposed by Ozturk et al., [7] for classification
of COVID-19 obtained an accuracy of 98.08% and
87.02% for binary and multiclass respectively. Narin
et al. [3] explored ResNet50 with TL and reported an

accuracy of 98% while Sethy and Behera [10] explored
ResNet50 with TL and SVM and achieved an accuracy
of 94.72%. Apostolopoulos and Mpesiana [9] demon-
stared MobileNetV2 with TL and reported 96.78% ac-
curacy for binary class and 94.72% accuracy for mul-
ticlass. COVIDX-Net proposed by Hemdan et al. [8],
achieved an accuracy of 90% and COVID-Net pro-
posed by Wang and Wond [11] obtained an accuracy
of 92.40%. Elasnaoui and Chawki [38] explored In-
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ceptionResNetV2 with TL and reported 92.18% accu-
racy. Das et al. [12] explored Xception with FT and
reported a classification accuracy of 97.40%. Pathak et
al. [13] proposed a deep transfer learning (DTL) and
reported an accuarcy of 93.02%. Nayak et al. [14] ex-
plored Resnet-34 and achieved a classification accuracy
of 98.33%. Gilanie et al. [15] proposed a CNN model
and reported an accuracy of 96.68%. Oh et al. [16] pro-
posed a patch-based CNN and achieved a classification
accuracy of 91.90% for classification of COVID-19,
Pneumia and Normal class.

4. Conclusion

Due to the rapid growth in COVID-19 patients glob-
ally, automatic detection of COVID-19 patients is the
need of the hour. A comprehensive comparative analy-
sis of 16 deep CNN models to diagnose COVID-19 uti-
lizing chest X-ray images has been presented in this pa-
per. Further, the performances of these 16 models have
been evaluated with three approaches namely TL, FT
and SL in two scenarios: binary classification (COVID-
19 vs. Normal) and multiclass classification (COVID-
19 vs. Pneumonia vs. Normal). Our analysis concludes
that the performance of deep CNN model is better with
FT approach as compared to TL and SL for consid-
ered dataset. Among 16 models, InceptionResNetV2
has achieved highest classification accuracy of 99.20%
in case of binary class and Xception model has ob-
tained highest classification accuracy of 89.33% in case
of multiclass. In addition, the class imbalance issue
has been taken care using cost-sensitive learning tech-
nique and found improvement in COVID-19 classifica-
tion accuracy. To substantiate the performance of our
approach, experiments have been performed on other
three datasets as well and observed that it achieved an
adequate classification accuracy for all three datasets.
In future, we intend to work on large datasets to validate
our model. Subsequently, it may help radiologists to
have a second opinion and prioritize their patients.
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