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Abstract. A remarkable number of scientific initiatives are in practice to encounter the new coronavirus epidemic (COVID-19).
One of the biggest challenges faced by the COVID-19 researchers in the therapeutic field is the knowledge about the biological
functions in disease-human interacting proteins. The detection of COVID-19 protein complexes, a group of proteins that possess
the same biological functions, helps in better understanding of the biological processes in our body. The main contribution
of this work is to cluster proteins that perform the same biological functions to increase the knowledge about the COVID-19
disease-human interacting proteins. The authors investigated proteins linked with COVID-19 disease by creating a disease-human
protein-protein interaction graph. Topological means of graph analysis and graph clustering have been employed to group proteins
that possess the same biological functions. These clusters will be the protein complexes that work together to carry out a specific
biological function in a human cell. Moreover, through the cluster analysis, we can uncover previously unknown COVID-19
disease-human protein links that are beneficial for promising knowledge discovery. Also, the authors evaluated how the Markov
Cluster algorithm, a graph-based algorithm finds interesting patterns of similar features from COVID-19 disease-human protein-
protein interaction graph. The Markov Cluster algorithm results in six statistically significant protein clusters, including cluster
(A): keratinization (3.50E-71), (B): regulation of cellular process (6.62E-05), (C): regulation of cell cycle (1.31E-27), (D): mitotic
cell cycle (1.66E-06), (E): regulation of phosphoprotein phosphatase activity (1.15E-09), and (G): G2/M transition of mitotic cell
cycle (3.03E-07).
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1. Introduction

The current pandemic of COVID-19, a respiratory
disease emerged in late 2019 has led to 1,051,635 con-
firmed cases and 56,985 fatalities in 208 countries with
cases as of 4th April, 2020 [1]. The COVID-19 is in-
duced by a new virus which causes severe acute respira-
tory syndrome – 2 (SARS-2) of the Coronaviridae fam-
ily [2]. The history of coronavirus unfolds the episode
of SARS-CoV in 2002 with 8000 confirmed cases
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and 10% fatality. Similarly, another event in Middle
East respiratory syndrome coronavirus (MERS-CoV)
in 2012 had 2500 confirmed cases and 36% fatality
rate [3]. COVID-19 spreads with a higher fatality, and
makes it hard to contain the disease and also escalates its
pandemic potentiality [3]. From Latin, “corona” means
crown. This remarkable pathogenic virus attack returns
common flu to acute respiratory infections that can start
long-term reduction in lung function, and proceed to
death [4–7]. Common flu spreads more quickly, and the
fatality rate is low [8]. It is crucial to develop an under-
standing of how coronavirus proteins attack human pro-
teins during infection, to devise therapeutic strategies
to counteract COVID-19. This knowledge will be use-
ful and can be applied to develop drugs and repurpose
currently used ones. So far, no antiviral medications
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Fig. 1. The Virion structure.

have been developed for COVID-19. The COVID-19
genome encodes with 16 non-structural proteins NSP1
to NSP16, four structural proteins E, M, N, and S,
and eleven accessory factors, ORF3A, ORF3B, ORF6,
ORF7A, ORF8, ORF9B, ORF9C, ORF10, ORF1AB,
ORF1A, and ORF7B [9]. Table 1 shows the known
COVID-19 protein names and description. Researchers
are examining the presumed coronavirus proteins to de-
velop drugs and vaccines in this pandemic. The Virion
structure shows spikes projecting from the envelope
that looks like a crown (Fig. 1) [10].

Protein-Protein Interactions (PPIs) present many
challenges for the identification of drug-like
molecules [11]. Both traditional as well as some in-
novative strategies like graph-based methods provided
valuable tools for the discovery of PPI modulators
and its potential of targeting PPIs for therapeutic in-
tervention. We cannot understand the biological pro-
cesses happening inside our body without extensive
analysis of COVID-19 disease-human protein interac-
tions [12]. The main objective of this work is to find
protein clusters linked with COVID-19 disease-human
interactions. Clustering proteins with the same biolog-
ical functions help biomedical researchers to explore
knowledge about the natural process happens in our
body due to this disease. We propose the analysis of
the structural and non-structural proteins as the seeds to
construct a protein-protein interaction (PPI) network as-
sociated with COVID-19 [9]. In a PPI network, vertices
or nodes represent proteins, and edges represent interac-
tions. Graph cluster analysis with a blend of topological
properties of the PPI network provides an appropriate

biological knowledge for a promising tool to understand
the biological function of the protein groups.

Further sections of this paper are in the following
order: in Section 2, the authors did a literature study
on the creation and investigation of PPI networks, Sec-
tion 3 discusses how a PPI data can be modelled as
a graph and the modelling algorithm which we have
used to create the COVID-19 – human PPI data, Sec-
tion 4 explains the graph clustering algorithm, Markov
Cluster (MCL), Section 5 discloses the cluster validity
measures, Section 6 describes the methodology of our
analysis, Section 7 canvas the results and discussion,
Section 8 covers possibilities, limitations, and future
study, and finally, we conclude our study in Section 9.

2. Literature study

The literature study helps to accomplish a theoreti-
cal base for the research problem by seeking the past
events of the particular subject. In this literature section,
we cut across the knowledge about graph clustering
and topological analysis of PPI networks. Topological
means of PPI network analysis provide a platform for
exploring complex diseases [13–15]. Network-based
computational models to analyse COVID-19 disease –
human protein interaction network – has already been
applied by researchers in drug and therapeutics [16].
Studies used significant gene bio-signatures as the seeds
to build the PPI network and analyse disease dynamics
through topological analysis of the PPI network [17].
Several models for protein complex detection from PPI
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Table 1
Summary of graph clustering methods

Reference Objective Clustering method Clustering algorithm Application
[18] Protein complex detection Stochastic search method HGCA Biological networks
[20] Community detection Stochastic search method Louvain cluster Biological networks
[19] Protein complex detection Local neighbourhood density search MCODE Biological networks

Protein complex detection Flow-based simulation MCL Biological networks
[21] Protein clusters Flow-based simulation FOA-MCL Biological networks
[22] Operon prediction Flow-based simulation MCL Biological networks
[23] Find essential proteins Flow-based simulation RWEP Biological networks

network has been applied in graph-based clustering
techniques [18,19].

Graph clustering using community detection algo-
rithms follows a stochastic search method based on the
seed vertex or edges [18,20]. A heuristic graph clus-
tering algorithm (HGCA) based on different topologi-
cal properties has been proposed for protein complex
detection [18]. The algorithm used a weighted degree
for edges and vertices. A cluster description model is
then constructed based on the candidate vertex and the
cluster. Based on this description model, the HGCA
starts with the seed vertex and produces communities
in a greedy manner. A study with six community de-
tection algorithms was used to analyse two biological
networks and evaluated the resultant communities [20].
Among the six algorithms, Louvain cluster algorithm
is found to be the fastest with an agglomerative ap-
proach to maximise the modularity. Density-based lo-
cal neighbourhood search method and flow simulation
method are widely used in protein complex detection
and analysing PPI networks [19,21–24]. A demonstra-
tion of how MCL and Molecular Complex Detection
algorithm (MCODE) has been done to identify patterns
from PPI data related to Alzheimer’s disease [19]. A
combination of MCL algorithm with Fruit Fly Opti-
mization Algorithm (FOA), FOA-MCL has been used
to find clusters formed by PPI network data of human
immunodeficiency virus (HIV) [21]. An operon pre-
diction model based on Markov clustering algorithm
used some generic attribute information of genomes for
graph [22]. The results show that the operon model has
a better capability of operon prediction than classical
operon prediction methods. The Random Walk Essen-
tial Proteins (RWEP) is a method that endorses random
walks with restart that incorporate the topological and
biological properties [23]. It has been applied to rule
out protein essentiality in PPI networks.

Stochastic search clustering method is extensively
used in PPI networks where the objects are consid-
ered as vertices. This method is time-consuming and,
therefore, suitable for small networks. The flow-based
method works on the principle of random walks and has

a tendency to stay within clusters rather than between
clusters. This method will not produce overlapping clus-
ters. However, the process is time-consuming. Local
neighbourhood density search method performs graph
clustering by recognising seed proteins as individual
clusters and then proceed greedily to add vertices.

Table 1 shows a summary of the reviewed graph
clustering methods. Graph clustering and analysis us-
ing the clustering co-efficient as the validity measure
provides a valuable tool for the partitioning of the
PPI network [19,25,26]. However, the MCL algorithm
is mainly designed for graphs and can be applied to
biological applications [19,27]. Novel algorithms for
analysing PPI networks by combining MCL and opti-
misation techniques have also been developed [21].

3. Protein-protein interaction graph

A PPI network is a collection of protein interac-
tions, often deposited in online databases [28–30]. Since
proteins interact with each other and also carries in-
formation signals from one protein to another, under-
standing critical biological processes in the human
body will be difficult without an extensive analysis of
PPI [30]. Analysing PPI networks helps to mine data
that assure one to create biological systems with new
properties, and protein complexes for therapeutic pur-
poses [16,18,31–34].

Concerning topology, the PPI networks follow a
small-world property and are scale-free networks [35,
36]. In small-world networks, it is possible to reach
from a protein to any other protein in only a small
number of steps. In scale-free networks, most proteins
have a reduced number of interactions. Among the bi-
ological graph drawing algorithms, the force-directed
layout model is very much flexible [37]. The algo-
rithm can be used to calculate undirected graphs by
using the information contained within the structure of
the graph. There are several force-driven algorithms.
Since the fundamental and aesthetic goal of optimi-
sation of PPI graph drawing algorithms is the min-
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imisation of crossings between edges, reducing the
distance between edges and incorporating the prop-
erties such as small-world effect, scale-free network,
the force-directed model is suitable for drawing a PPI
graph [38,39].

Generally, a PPI network can be created as an undi-
rected, unweighted graph G = (V,E) where V is a
group of proteins and E is a group of interactions be-
tween the proteins. The main data structure [40] used
to store network representation is the adjacency matrix.

Let G be a graph such that V (G) = {v1, v2, . . . ,
vn}, the adjacency matrix representation ofG is a n×n
matrix. If ar,c is the value in the matrix A, at row r
and column c, then ar,c = 1; if vr is adjacent to vc;
otherwise, ar,c = 0. Adjacency matrices require space
of Θ

(
|n|2

)
.

The Kamada-Kawai [41] suggested that the number
of edge crossings for a PPI graph is not a benchmark for
a layout algorithm. This layout algorithm measures the
total balance of the PPI graph as the square summation
of the differences between the ideal distance and the
actual distance for the entire vertices. The calculation
is delineated in Eq. (1).

Stress (x) =
∑
i<j

wij (||xi − xj || − dij)2 (1)

For some pair of vertices, i and j, where dij is the
standard distance amidst vertices, x is the set of coor-
dinates and wij = d−αij . The Kamada-Kawai approach
preserves the total balance of the PPI graph, and deliver
layouts with minimum edge crossings by approximation
and minimisation of stress.

3.1. Pseudocode for the Kamada-Kawai algorithm

Compute dij for 1 6 i 6= j 6 n;
Compute lij for 1 6 i 6= j 6 n;
Compute kij for 1 6 i 6= j 6 n;
Initialize p1, p2, . . . , pn;
While maxi ∆i > ε{
Let pm be the particle satisfying ∆m = maxi ∆i;
While (∆m >) {
Compute δx and δy by solving Eqs (1) and (2);
xm = xm + δx;
ym = ym + δy; }}
Let p1, p2, . . . , pn be the particles in a plane that

matches the vertices v1, v2, . . . , vn ∈ V . dij is the dis-
tance amidst two vertices vi and vj . lij is the length
of the shortest path between vi and vj . lij is defined
as lij = L × dij where L is the seductive length of a
single edge in the display plane. kij is the strength of

the spring amidst pi and pj and is driven as kij = K
d2ij

,
where K is a constant.

The location of a particle in a plane is disclosed by
x and y coordinate values. Let (x1, y1) , (x2, y2) , . . . ,
(xn, yn) be the coordinate variables of particles p1, p2,
. . . , pn respectively. The energy E is delineated as in
Eq. (2).

E =

n−I∑
i=I

∑
j=i+1

1

2
kij{(xi − xj)2 + (yi − yj)2

(2)
+ l2ij − 2lij

√
(xi − xj)2 + (yi − yj)2}

∆m is the local minimum and is calculated using
Newton-Raphson method.
δx and δy can be calculated by solving the following

Eqs (3) and (4).

∂2E

∂x2m

(
x(t)m , y(t)m

)
δx +

∂2E

∂xm∂ym

(
x(t)m , y(t)m

)
δy
(3)

= − ∂E

∂xm

(
x(t)m , y(t)m

)
∂2E

∂xm∂ym

(
x(t)m , y(t)m

)
δx +

∂2E

∂y2m

(
x(t)m , y(t)m

)
δy
(4)

= − ∂E

∂ym

(
x(t)m , y(t)m

)
In a graph, the least level of organisation is vertices

and degree of vertices. Vertices are connected by edges
to form motifs, sub-graphs of three or more vertices.
Motifs are linked to form communities or complexes.
A sub-graph is a graph formed from the disjoint union
of complete graphs. Graph topology statistics include
scale-free properties to fit power-law feature: average
degree, degree distribution, small world properties that
can be measured by clustering coefficient, average path
length.

4. Graph clustering

Graph clustering is an augmenting area with a per-
spective to discover contemporary facts from com-
plex data that can be pictured as a graph. The field
of clustering has grown, and the number of clustering
algorithms reported in biological applications is also
high [19,21,42–44]. Graph clustering has two perspec-
tives: intra-graph clustering and inter-graph clustering.
Intra-graph clustering is the process of grouping ob-
jects within a single graph and inter-graph clustering
method clusters between graphs. The intra-graph clus-
tering method focus on both vector-based and graph-
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Fig. 2. Perspective of graph clustering.

based. Vector-based clustering is of purely distance-
based and graph-based clustering is established on the
topological characteristics of the graph.

Graph-based clustering techniques for biological ap-
plication explicitly uses theoretical graph terms to clus-
ter the data that is represented as a graph. Local neigh-
bourhood density search, flow-based simulation, and
stochastic search are some of the graph-based clustering
methods.

Figure 2 shows the perspective of graph clustering.
Flow simulation method based on a random walk [45],
or biological knowledge can be applied to PPI networks
to uncover protein clusters. The MCL [27] is a flow
simulation method based on a random walk. Moreover,
the MCL is one of the most successful approach to
cluster proteins in PPI networks [22,46].

5. Measures for cluster validation

Clustering is an unsupervised learning technique and
gives distinct clustering results on the same data with
distinct parameters. Clustering coefficient is one of the
metrics available for some indication of the quality of
the clusters [19,25,26,47–49]. The clustering coefficient
lies between 0.0 and 1.0. If the clustering coefficient
tends to 1, the neighbourhood is fully connected, and
graph possesses a maximal structure [50].

The dimension that represents the trend of a graph to
be segregated into clusters is known as the clustering
coefficient. A cluster is a subspace of vertices connected
by edges.

Let v, be a vertex and let ev be the number of edges
joining the jn neighbours of n. The clustering coeffi-
cient Cn of the vertex n, is delineated in the Eq. (5).

Cn =
2vn
jn

(jn − 1) (5)

Fig. 3. The working process of the proposed model.

The clustering coefficient of CDi of a cluster Di is
the average clustering coefficients of the entire proteins
contained in Di. The clustering coefficient CD of the
clusters D = {D1, . . . , Dk} is defined in the Eq. (6).

CD =

∑k
i=1 CDi

k
(6)

For a biological network, clusters need to be vali-
dated using the domain knowledge to ensure the natu-
ral function of the objects. The most efficient way of
biological validation is to test the gene ontology for
the enrichment of classified clusters, and to check if
proteins are functionally homogeneous.

Gene Ontology [51] is a database that consists of
three categories of associations, namely, molecular
function, cellular component, and biological process.
The functions of proteins are labelled with a GO-term.
A p-value to calibrate the biological annotation is com-
puted with the hyper-geometric principle that is delin-
eated in Eq. (7).

p-value =

[
|Psu|
|Ssu|

] [
|P | − |Psu|
|S| − |Ssu|

]
[
|P |
|S|

] (7)

The proteins in the whole network and its linked GO-
term are captured as the population (P ) for the hyper-
geometric test. The proteins in the cluster with their
matching GO-term is captured as the sample (S). This
is to examine whether a specific GO-term enhances the
cluster. The proteins in the population that are eluci-
dated with a specific GO-term are the successes in the
population (Psu). The proteins in the sample cluster
that are elucidated with that specific GO-term are the
successes in the sample (Ssu). The threshold of p-value
is set as 0.05.

6. Methods

The proposed model for finding proteins with related
biological processes from a PPI network linked with
COVID-19 disease consists of four phases. Figure 3
shows the working process for the proposed model.
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Fig. 4. COVID-19 disease – human PPI graph.

6.1. Data collection and preparation

The STRING is a database of predicted biomolecule
interactions [52]. We used the database STRING to
collect the PPI data. Also, the authors employed ‘Cy-
toscape’ automation to query the STRING database to
retrieve network of proteins associated with COVID-19
disease [53].

The implicated COVID-19 disease proteins (“Nsp1”,
“Nsp2”, “Nsp3”, “Nsp4”, “Nsp5”, “Nsp6”, “Nsp7”,
“Nsp8”, “Nsp9”, “Nsp10”, “Nsp11”, “Nsp12”, “Nsp13”,
“Nsp14”, “Nsp15”, “Nsp16”, “S”, “Orf3a”, “Orf3b”,
“E”, “M”, “Orf6”, “Orf7a”, “Orf7b”, “Orf8”, “N”,
“Orf9b”, “Orf9c”, “Orf10”) are given from ‘R’ tool us-
ing the package ‘RCy3’ [9,54]. The RCy3 is an R pack-
age to link R language with Cytoscape. We restricted
the query with the confidence score between 0.9 and 1.0

to get enough positive protein-protein interactions. The
restricted disease protein query returned 57 proteins
and 786 predicted interactions. The obtained COVID-
19 disease network was then expanded with human
host proteins. The authors kept the limit of host human
protein interactors as 50. Here, we kept the confidence
score as same as the disease protein-protein interac-
tion network. The resultant final network contained 107
proteins and 1446 interactions.

Network visualisation of extensive protein-protein
interaction data in a single frame is challenging. First,
these networks tend to be large, typically consisting
of hundreds of proteins with thousands of interactions
between them. Cytoscape presents different layout al-
gorithms. The authors created a force-directed spring
embedded layout which uses the Kamada-Kawai algo-
rithm to visualise the graph. The Cytoscape user inter-
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Fig. 5. The adjacency matrix for created PPI graph.

face allows us to drag nodes to override the automatic
layout interactively. Figure 4 shows the constructed PPI
graph.

6.2. Data pre-processing

In order to obtain fine clusters, the algorithm spec-
ifies some pre-processing steps. We analysed whether
there are multiple edges and also removed three iso-
lated proteins. Consequently, it was found that the re-
sultant network to be clustered consists of 104 proteins
and 1446 edges. The graph data needs to be hoarded
in the framework of the adjacency matrix to create an
association or transition probability matrix for the MCL
algorithm. This matrix will be the current probability
matrix for the calculation of the Markov matrix. Fig-
ure 5 shows the part of adjacency matrix representation
for the created PPI graph.

6.3. Clustering proteins

The MCL algorithm is established with random
walks using Markov chain [19,27]. The Markov chain
is explained as, for a graph G, the data hoarded as a
matrix M . Let r > 0 be a number, the matrix derived
after scaling each column of M with power coefficient
r is called ΓrM , and Γr is called the inflation parameter
with power coefficient r.

Write
∑
rq
M for the summation of all the entries in

column q of M raised to the power r. Formally, (ΓrM)
is defined by the Eq. (8).

Γr (Mpq) = Mr
pq

/∑
rq (M) (8)

Every column q of a stochastic matrix M matches
with the vertex q of the stochastic graph connected
with M . The row entry p in column q matches with the
probability of bustling from vertex q to vertex p. The
clusters are formed when the matrix reaches a steady-
state or all the values in a row become the same. The
procedure for the algorithm is as follows:

Fig. 6. The workflow of clustering proteins.

Step1: Input: Adjacency matrix of the graph
Step 2: add self-loops
Step3: normalise the matrix to create Markov ma-
trix
Step 4: repeat steps 5 and 6 continuously to attain
a convergence state
Step 5: expansion by the eth power of the Markov
matrix
Step 6: inflation of resulting matrix with parameter
r > 0
Step7: interpret the steady-state matrix to discover
clusters

Markov Cluster algorithm has been applied to the
created COVID-19 disease – human PPI network. The
workflow of clustering proteins is shown in the Fig. 6.
During the clustering process, the expansion and infla-
tion operations are performed repeatedly until a con-
vergence state occurs. The expansion has been done by
powering the matrix. The inflation has been done to pre-
pare each element in the matrix. The overlapped cluster
occurs when both clusters are graphically symmetric. It
is not happening in this case.
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Fig. 7. Subgraphs of COVID-19 disease – human PPI graph.

The MCL returned eight clusters with an inflation
parameter 1.8. Figure 7 shows the obtained subgraphs
for the clustered proteins.

6.4. Cluster validation

Topological validation of the clusters has been done
by scrutinising clustering coefficient. It is also termed
as transitivity of the clusters. The value of the clustering
coefficient deceit in intervals is 0 and1. A graph or sub-
graph possesses a superlative structure if its clustering
coefficient is closest to 1. The connectivity of the graph
is less when its clustering coefficient is 0. The clustering
coefficient or transitivity of MCL is 0.82560015, which
is close to 1. The clustering coefficients of resulting
eight clusters are 1,0.8083624, 0.7964387, 1, 1, 0, 1,
1. This means that the proteins within the clusters are
densely connected and have a functional relationship.
The clusters with clustering coefficient > 0, are vali-
dated biologically by doing the functional enrichment
analysis using gene ontology enrichment analysis [51].

7. Results and discussion

The COVID-19 disease – host human protein-protein
interaction network with confidence level > 0.9 was
downloaded from STRING database. The analysis has
been done in RStudio environment on Intel Core-i5
5200U CPU, 64-bit 2.20 GHz processor and 8 GB of
RAM. The R tool has over 6000 packages. The authors

Table 2
Topology of COVID-19 – human PPI and protein clusters

Topology Number of proteins
Number of proteins 107
Number of interactions 1446
Connected components 5
Isolated proteins 3
Average path length 2.591233
Network diameter 5
Density 0.2549815
Cluster coefficient/transitivity 0.8683563
Average node degree 27.02804
Avg. betweenness 70.90654

used igraph, mcl, and RCy3 packages for clustering
and visualisation. The topological analysis of the PPI
network has been done using igraph and tidyverse pack-
ages. The Table 2 shows the simple topological statistics
of the created COVID-19 – human PPI network.

The structure and magnitude of the created PPI net-
work are turning out to be 107 vertices and 1446 edges.
The built PPI network should be further analysed to
ensure that the network possesses scale-free property
and small-world property. We analysed scale-free prop-
erty of the constructed COVID-19 disease – human PPI
network by power-law fit.

The degree distribution of biological networks ap-
proximates a power law: DD (d) ∼ p−d. This means
that the probability or frequency of occurrence of a
given degree in any vertex of the constructed PPI graph
will be given as “p−d”, where p is the parameter char-
acteristic of the PPI network and d is the numeric value
of the degree. Figure 8 shows the frequency of degree
distribution in the graph.
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Fig. 8. Degree distribution of the PPI graph.

Fig. 9. Power law fit of the PPI graph.

The proportion of variability in the degree distribu-
tion is computed on logarithmic value to fit the curve
linearly and computed the R-square value. A negative
exponential plot for the degree distribution of a network
implies that the network follows power-law fit to predict
the network’s scale-free property. Accordingly, Fig. 9
shows that the constructed PPI network’s degree distri-
bution graphically fitted perfectly to a negative expo-
nential plot. Besides, the R-squared value or coefficient
of determination is reported as 0.906.

In addition to graphical evaluation, we can adapt
statistical evaluation also. The Kolmogorov-Smirnov
test is carried mainly to evaluate scale-free networks
that can be endorsed. According to this test, the power-
law fit, p-value for the degree distribution of the PPI
network is 0.9700409. The test result reveals that our
constructed PPI network follows the scale-free property
of biological networks. This strongly agrees that most
vertices have a less degree and a few vertices have a
higher degree.

Small-world properties of a network can be analysed
with two topological properties: the average clustering
coefficient or transitivity and the average path length,
and its associated p-values. On the one hand, the transi-
tivity of a vertex will be the fragment of probable edges
between connected vertices that are literally represented

Fig. 10. Transitivity and average path length of the PPI network.

in the network. On the other hand, the transitivity of all
vertices can be averaged to get the clustering coefficient
of the network. It will finally become the specific topo-
logical characteristic for the small world property of the
network. High clustering coefficients exhibit the prop-
erty of a small-world network, whereas small clustering
coefficient indents the opposite. Here, the clustering co-
efficient or transitivity of the PPI network is 0.8683563.
Another characteristic of a small-world network is the
minimum average path length. Starting from a vertex,
the minimum number of jumps or the minimum num-
ber of edges passes required to reach another vertex
is known as the average path length. It is also known
as the shortest path between the vertices. The average
path length of our PPI network is 2.591233. Figure 10
shows the transitivity and average path length of our
PPI network.

The clustering coefficient and average path length of
the network alone does not imply that the constructed
PPI network possesses small-world property. We need
to calculate the p-values of the parameters, clustering
coefficients and average path length. The p-value repre-
sents the probability of clustering coefficient and aver-
age path length score associated with a random network
which is higher than our PPI network. The estimation
of p-values can be done by calculating the clustering
coefficient and average path length of the random net-
works and comparing them with our constructed PPI
network. Therefore, the p-value can be estimated as the
frequency with which the random networks overcome
our constructed PPI network’s score. The accuracy of
p-value depends on how large be the chosen random
networks. In this example, the estimation of the p-value
can be carried out with Barabasi game function in R,
Sum (clustering coefficients > 0.8683563)/1000 = 0.
The p-value associated with our PPI network’s aver-
age path can be drawn out from the same number of
random networks. The sum (average path lengths >
2.591233)/1000 = 0.

Figure 11 shows that p-values associated with both
parameters, transitivity and average path length have
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Table 3
Results of MCL algorithm over PPI network

Cluster
Number of

proteins
Clustering
coefficient Protein name

A 39 1 “LCE1E” “PPL” “LCE1B” “LCE4A” “IVL” “LCE2D” “LCE1F” “LCE2B” “SPRR1A” “LCE2C”
“LCE3B” “LCE1A” “SPRR2A” “SPRR2D” “LOR” “LCE3E” “LCE3D” “LCE6A” “LCE1C”
“LCE2A” “TCHH” “SPRR2B” “SPRR2E” “SPRR2F” “SPRR3” “CASP14” “CDSN” “LCE3A”
“CSTA” “SPRR2G” “LCE3C” “SPRR1B” “LELP1” “RPTN” “EVPL” “LCE5A” “PI3” “LCE1D”
“TGM1”

B 26 0.8083624 “PPP2R5E” “PPP2R2A” “PPP2CA” “PPP2R3B” “BUB1” “CDCA8” “CCNB2” “PPP2R5C”
“NUF2” “PPP2R4” “PPP2R1A” “CENPE” “INCENP” “AKT1” “PPP2R1B” “BIRC5” “PPP2R5D”
“PPME1” “IGBP1” “NDC80” “LCMT1” “PPP2R5A” “PPP2CB” “AKT3” “AKT2” “PPP2R5B”

C 22 0.7964387 “CDK2” “FZR1” “CDK1” “CKS2” “CDC20” “ANAPC10” “CKS1B” “ANAPC4” “AURKB”
“ESPL1” “CCNA2” “MAD2L1” “BUB1B” “PLK1” “CDC27” “UBE2C” “CCNB1” “PKMYT1”
“FOXM1” “CCNB3” “CDKN1B” “AURKA”

D 4 1 “TPX2” “PBK” “KIF11” “NCAPG”
E 4 1 “MASTL” “PPP2R2D” “ARPP19” “ENSA”
F 3 0 “BCAR1” “SH2D3C” “PXN”
G 3 1 “CDC25C” “CDC25A” “WEE1”
H 3 1 “PRSS57” “SPECC1” “SH2D3A”

Fig. 11. Graphical representation of a random small-world network.

attained a score of 0 for thousands of random networks.
The results of this evaluation strongly implicate that our
constructed scale-free PPI network is also a small-world
network.

A graph-based clustering technique using the MCL
algorithm has been applied to the constructed COVID-
19 disease – human PPI network. The MCL algo-
rithm returned eight clusters without overlap. Among
them, only seven clusters satisfied graph cluster validity
through clustering coefficient between 0 and 1. Table 3
shows the results of MCL clusters.

Biological validation of the resultant clusters has
been done using hypergeometric p-value test of GO-
term. The gene ontology terms that are most common
among the proteins that compose our eight clusters are
found out. The test revealed that six clusters are in-
volved in specific biological processes and satisfies the
validity of p-value less than 0.05. The GO term finder
returned the best feasible biological process associated
with cluster (A): keratinization and annotated 38 pro-
teins with p-value 3.50E-71. One protein has multiple

Fig. 12. The graphical representation of protein cluster (A).

mappings. The protein “LOR” has mappings to human
protein identifiers “Q9UDR5” and “P23490”. Figure 12
shows the graphical representation of biologically in-
vestigated protein cluster (A).

In cluster (B), 23 proteins are annotated to the regu-
lation of cellular process with p-value 6.62E-05. There
is one unmapped protein “PPP2R4”. Figure 13 shows
the graphical representation of biologically investigated
protein cluster (B).

In cluster (C), the 22 proteins are annotated to the
regulation of cell cycle with p-value 1.31E-27. Fig-
ure 14 shows the graphical representation of biologi-
cally investigated protein cluster (C).

The whole proteins of cluster (D), cluster (E), and
cluster (G) are annotated to mitotic cell cycle with p-
value 1.66E-06, regulation of phosphoprotein phos-
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Fig. 13. The graphical representation of protein cluster (B).

Fig. 14. The graphical representation of protein cluster (C).

phatase activity with p-value 1.15E-09, and G2/M tran-
sition of the mitotic cell cycle with p-value 3.03E-07,
respectively.

The graphical representation of biologically inves-
tigated protein cluster (D), cluster (E), and cluster (G)
is shown in Fig. 15. Meanwhile, cluster (F) and cluster
(H) has no statistically significant results.

The authors created a COVID-19 disease – human
PPI network and analysed the topological characteris-
tics applying the MCL clustering to find protein clus-
ters. Then the resultant clusters were analysed topo-
logically and biologically. We relied on the evaluation
measure and the clustering coefficient to validate the
clusters topologically.

Fig. 15. The graphical representation of protein clusters (D), (E), and
(G).

The clustering coefficient of the identified six pro-
tein clusters was either 1 or closest to 1. Hence, the
sub-graphs possesses a maximal structure. The gene
ontology term of proteins in each cluster is associated
with a list of genes and results in a fine p-value < 0.05.
The majority of proteins in the same cluster possess
the same biological process. This implicates that each
cluster is a protein complex with some biological sig-
nificance. Consequently, the generated COVID-19 dis-
ease – human PPI network results in six statistically
significant protein clusters with high clustering coeffi-
cient score. Figure 16 shows the statistics of proteins
annotated to the gene ontology term from each cluster
verses topologically significant clustered proteins. The
number of proteins annotated to the gene ontology term
for the biological process in each cluster, and the value
of its clustering coefficient is pictured.

The topological analysis of the constructed COVID-
19 disease – human PPI network provides evidence of
the small world and scale-free properties of biological
networks. Flow simulation-based graph clustering al-
gorithm, MCL has been applied to the PPI network for
further investigation and returned eight clusters. The
clustering coefficient of MCL is equivalent to 0.8256,
which implies that the clusters possess a maximal struc-
ture. The best feasible biological process associated
with cluster (A) is keratinisation involving 38 proteins
with p-value 3.50E-71. In total, 23 proteins of a cluster
(B) are involved in the regulation of cellular process
with p-value 6.62E-05, while the whole 22 proteins in
a cluster (C) are involved in the regulation of cell cycle
with p-value 1.31E-27. Meanwhile, the whole four pro-
teins in the cluster (D), and cluster (E) are involved in
mitotic cell cycle with p-value 1.66E-06, and regulation
of phosphoprotein phosphatase activity with p-value
1.15E-09, respectively. The three proteins in the cluster
(G) are reported to G2/M transition of the mitotic cell
cycle with p-value 3.03E-07. However, cluster (F), and
cluster (H) has no known significant biological terms.
All the clusters were biologically validated using hyper-
geometric p-value test. Thus, six probable statistically
significant protein clusters were identified.
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Fig. 16. Statistics of proteins annotated to the gene ontology term.

8. Possibilities, limitations, and future study

The identified protein complexes spectacle knowl-
edge about the biological functions in the disease – hu-
man interacting proteins. This gives an advantage to the
COVID-19 researchers for therapeutic purposes. Also,
the computational method using topological analysis
would be a piece of valuable information for the re-
searchers in other fields too. The authors have generated
a medium-size PPI network. In this method, the clusters
generated depend on two input parameters: expansion
and inflation. These varying parameter values generate
clusters with different size and structure. For an exten-
sive PPI network, fine-tuning to generate clusters with
good structure is a time-consuming process. This model
can be enhanced by applying an automatic fine-tuning
of the input parameter values according to the data set.

9. Conclusion

PPI network is a core aspect of the knowledge of
biological organisms. Moreover, distinct physiologi-
cal movements inside the human body are responsi-
ble for these interactions. The computational method
using topological characters of the network helps in
analysing the interactions between COVID-19 disease
proteins and human proteins. In this paper, a computa-
tional analysis of the topological characteristics of the
PPI network and graph clustering has been done. The
clustering coefficient of the resultant clusters provides
us with the information that the protein clusters possess
a maximal structure. The presented model revealed that
COVID-19 disease – human PPI contains groups of
densely connected proteins involved in the same bio-

logical processes. Furthermore, these dense sub-graphs
have a maximal structure with high clustering coeffi-
cients. The model finds valuable information about the
biological process of the protein groups, which would
be helpful for therapeutic researchers to understand the
dynamics of COVID-19 disease. Consequently, it is
expected that this study will provide a relevant contri-
bution to the researchers in the field of biomedicine.
In this model, the size and structure of resultant clus-
ters depend on the varying tuning parameters, expan-
sion, and inflation. For larger network, this is a time-
consuming process. Our future work focuses on design-
ing a more effective model by applying an optimisation
algorithm to tune the parameters automatically in order
to get the clusters from a large PPI network. Moreover,
we will focus on incorporating additional biological
information and different algorithms to discover protein
complexes.
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