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Abstract. Deep learning models are one of the widely used techniques for forecasting time series data in various applications.
It has already been established that the Recurrent Neural Networks (RNN) such as the Long Short-Term Memory (LSTM),
Gated Recurrent Units (GRU), etc., perform well in analyzing sequence data for accurate time-series predictions. But, these
specialized recurrent architectures suffer from certain drawbacks due to their computational complexity and also their dependency
on short term historical data. Hence, there is a scope for further improvement. This paper analyzes the effects of various optimizers
and hyper-parameter tuning, on the precision and time efficiency of different deep neural architectures. The analysis has been
conducted on COVID-19 pandemic data. Since Convolutional Neural Networks (CNN) are known for their super-human ability in
identifying patterns from images, the time-series data has been transformed into a slope-information domain for analyzing the
slope patterns over time. The domain patterns have been projected on a 2D plane for further analysis using a restricted recursive
CNN (RRCNN) algorithm. The experimental results reveal that the proposed methodology reduces the error over benchmarked
sequence models by almost 20% and further reduces the training time by nearly 50%. The prediction models considered in this
study have been evaluated using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE%).

Keywords: Artificial Intelligence (AI), Gated Recurrent Units (GRU), Convolutional Neural Network (CNN), Long Short Term
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1. Introduction

EALTH officials of China reported to the World
Health Organization (WHO) [1] about a viral pneumo-
nia outbreak in December’2019. The outbreak started
spreading from the Wuhan city in Hubei province of
China. A novel viral strain with a possible zoonotic
origin could be traced back to a Hunan seafood market
in China [2]. The centre of Evidence-based Medicines
published an article [3] stating that the very first Corona
like viral strain was first discovered in 1968. The article
was published in Nature in the same year [4].

Researchers [5] have claimed that it has been possi-
ble to phylogenetically trace back the COVID-19 vari-
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ant of the Corona like viral strain to a SARS-like bat
virus. The human-to-human viral transmission is facili-
tated through a close contact with an infected individ-
ual. They [5] have further claimed to have identified a
couple of strains (α, β) of this virus in both human be-
ings, non-human mammals and birds. Genetically [6],
a COVID-19 virion was found to have a nucleocapsid
based protective outer membranous protein shell [7]
with an estimated diameter of 125 nano-meters. The
glycosylated spike proteins [8] of the virion are com-
prised of 1160 (avian) to 1400 (feline) amino acids and
class I fusion proteins [9] to facilitate host cell invasion
mechanisms.

Transmission of similar novel viral strains such as
the COVID-19 with no potential antidotes can infect
and kill millions all over the world. In this context,
Artificial Intelligence (AI) may prove to be an useful
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tool in appropriate contingency planning and can help
in quick recovery if approximate estimations of the
ensuing disruptions can be evaluated in advance. Owing
to the urgency of the COVID-19 pandemic scenario, the
data related to the spread of the pandemic have been
considered for analysis in the current study.

Studies [10] have been conducted across the globe
on the viral characteristics, transmissions possibilities,
risk factors, clinical manifestations, radiological find-
ings, prevention strategies etc. They have explored the
potential of AI [11] to find superior and cost effective
alternatives over the traditional approaches to fight such
pandemics. Experiments have also been conducted for
efficiently screening, tracking and predicting the pan-
demic impact by using advanced technologies such as
the Internet of Things (IOT), Big Data analytics, 5G
telecommunication networks, AI, Blockchain [12] etc.

Insufficient healthcare infrastructure in handling
large scale infection have prompted the essence of AI
empowerment for effective prevention. Phone based
web-survey [13] and other applications (“Symptoma”
etc.) [14] have been developed to collect basic travel
information along with any recognized symptoms like
fever, cough, shortness of breath, diarrhea, pneumo-
nia etc. These applications were able to classify the
data into high, moderate and low-risk groups so that
the subjects may be accordingly intervened to take pre-
cautionary measures. Governments, social policies and
healthcare systems were not prepared to handle a pan-
demic (COVID-19) in such a large scale [15]. Besides,
research [16] in business development testifies that any
impact on supply chains has subsequent effect on busi-
ness operations which in turn can bring down the world
economy.

From the time of a contagious agent detection, till
the commercial availability of vaccines, “Quarantine”
and “Social distancing” remains the one and only in-
evitable solution for saving human lives. Unfortunately,
this solution apparently comes with its own set of dis-
advantages. It can potentially lead to an all round dis-
ruption across all fronts of human operations. In this
background, redemption can only be achieved through
good and timely decision making and formulation of
winning strategies. Solid understanding of the present
situations and probable future impacts can help in better
decision making at an early stage.

Working in the same direction, a group has employed
a LSTM [17] network which was already pre-trained
on the 2003 SARS data. The model was using an MSE
based loss function with an Adam optimizer. The algo-
rithm was able to predict a peak nearing 95k. Another

group of researchers [18] investigated the transmission
dynamics using CNN and few RNN variants like LSTM
and GRU to predict the trend of the pandemic upto one
day in advance. However, these models defeat the basic
idea of providing an adequate time window for contin-
gency planning as the model outcomes are unable to
predict the daily scenarios in the longer term.

A problem statement has been selected for the cur-
rent study to develop a COVID-19 pandemic prediction
model for daily forecasting over a longer term. In this
context, a notable work [19] on the transformation of
2D sensor data to the visual domain, was able to achieve
a higher classification accuracy by over 10% compared
to the conventional methods. The present work also
explores a domain transfer technique to enhance the
accuracy of the deep predictive models in pandemic
forecasting.

Better decisions taken in a timely manner coupled
with well-thought strategies, lead to higher chances of
revival in the long run. In this background, the contri-
butions of this paper are as follows:

1. To study the correlations between the rate of
spread of the COVID-19 pandemic and the native
population density and climatic parameters have
been analyzed for efficient feature selection.

2. To develop LSTM and GRU models for pandemic
forecasting. These models have been further im-
proved with hyperparameter tuning and suitable
optimizer configurations.

3. To develop a performance boosting technique
based on domain transformation for improving
the performance of deep predictive networks. This
can enable the application of CNN models on a
2D slope-information plane for more efficient data
analysis in resource constrained environments.
Further, a problem specific restricted-recursive-
CNN (RRCNN) has been applied for time series
prediction of pandemic data.

4. To develop an effective methodology for helping
in strategic decision making at the onset of future
pandemic scenarios.

The rest of the paper is organized as follows. Sec-
tion 2 presents the related work done towards the devel-
opment of AI based algorithms for analysis of COVID-
19 transmission data and other environmental time se-
ries data analysis. The proposed approach has been dis-
cussed in Section 3. The experimental investigations
and the results have been discussed in Section 4 while
the Section 5 concludes the paper.
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2. Related work

Different LSTM, GRU based algorithms have been
employed for time series analysis as a part of vari-
ous environmental research work. But, these special-
ized recurrent architectures involve heavy computation
and require higher training times. This section reviews
some of the related attempts made towards the study
of sequenced, non-stationary data. These environmen-
tal studies (COVID-19 crisis etc.) can be highly bene-
fited from the current research. The current work also
presents similar techniques which have improved the
performance of recurrent predictive networks by us-
ing CNN to analyze related 2D image patterns. The
proposed methodology is helpful for the analysis of
COVID-19 transmission analysis and for other naturally
occurring time series data.

2.1. LSTM for COVID-19 transmission analysis

LSTM [17] have been used in effectively predicting
the COVID-19 transmission dynamics. The recurrent
nets are known for their ability to store short term mem-
ory of the previous data sequences through recursive
neural connections. These LSTM variants have been
utilized to learn the interrelationships between any para-
metric variations to estimate the future transmission
dynamics. However, on the downside, the data obtained
from the natural surroundings are non-stationary in na-
ture. These are therefore unpredictable and difficult to
model. The recurrent neural architectures fail to effec-
tively learn the embedded characteristic features of such
non-stationary data. So, a more detailed analysis of the
gradually changing slope information can be extracted
from such data for more accurate estimations.

2.2. LSTM, GRU networks for stock price prediction

Stock market indexes are guided by a number of
complicated financial indicators. Researchers have ex-
plored LSTM [20] for predicting the stock prices of
Nifty 50 by analyzing the historical data of the previ-
ous five years. Based on the data collected on multiple
financial indicators, the system was able to predict the
opening and closing stock prices with reasonable accu-
racy. Similar attempts have also been made using linear
regressions and time series models [21] for predicting
rice price volatility in the Sri Lankan market. Projection
of the same market indicators on a 2D or a 3D plane and
analyzing with CNN based counterparts could possibly
reduce the error in predictions.

2.3. LSTM networks for wind speed forecasting

Wind speed have been considered as a potential re-
newable form of energy since centuries. With the wind
power gaining more popularity in many countries as a
renewable energy source, it is important to find an ef-
fective way to harness the power of wind speed for gen-
erating electricity. In this context, LSTM networks [22]
have been applied to learn from the historical climatic
data. A proposed LSTM based model was able to pre-
dict the wind speed of Wind Atlas for South Africa
(WASA) with reasonable accuracy. If the same data is
analyzed based on the changing slopes of the historical
climate, then the study might lead to further reduction
of the error in estimation.

2.4. LSTM networks for sea surface temperature
prediction

Global warming has been a serious concern of con-
temporary scientific interest over the past couple of
centuries. Sea surface temperatures (SST) is one of the
most important phenomenon having profound effects
on global climate. Deep LSTM networks [23] have
been proposed to predict daily SST. Researchers have
claimed the proposed LSTM based model to be highly
promising for short and mid term predictions.

2.5. LSTM for photo-voltaic energy prediction

Photo-voltaic (PV) systems convert sunlight into us-
able source of electricity. PV cells are embedded into
power networks all over UK. The output of PV is de-
pendent on local climatic parameters. Researchers have
employed LSTM networks [24] to study the dependen-
cies between various climatic conditions and PV energy
metrics for a seamless electric grid. LSTM networks
have been useful in forecasting the temporal variations
of PV power metrics with reasonable accuracy.

2.6. GRU for tropical cyclone prediction

Tropical cyclones have devastating effect on life and
environment. Meteorologists have analyzed the histori-
cal data trends to predict upcoming cyclones, path tra-
jectories, probable damages etc. GRU [25] based net-
works have been proposed to predict tropical cyclone
trajectories as a temporal function of varying climatic
parameters. However, the path trajectories of the cy-
clones also depend on the previous slopes of the path
curves in addition to the influence of external climatic
parameters. Hence, the use of similar methodology in-
volving CNN networks may yield more accurate re-
sults.
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2.7. Statistical approaches for time series prediction

Various Machine Learning and ARIMA based mod-
els [26] have been developed to predict from time series
data. The proposed models have proved to be useful
in finding meaningful information from large complex
datasets with reasonable accuracy.

The present study may have substantial contribution
in further enhancing the accuracy of these models by
augmenting the non-stationary data with the respective
inherent slope patterns. Though, much work have not
been done in image domain analysis of time series data,
the following subsection (H) highlights a notable work
on data transformation to visual domain.

2.8. Domain transformation of data for higher
accuracy

Transferring learnable features to another domain
have yielded better results in cases where the features
are not easily interpretable. CNN networks have been
well acclaimed [27–31] for their super-human abilities
in analyzing images. The data was transformed [19]
from a domain not suitable for learning to a different
domain on which CNN networks could be trained. An
improvement in classification accuracy was achieved
over conventional classification methods by a margin
of 10%.

2.9. Assisted learning approaches using sparse
Bayesian

Assisted learning techniques have been applied using
Sparse Bayesian Learning (SBL) [32]. It was possible
to achieve less than 6% NMAE in traffic state estima-
tion by applying appropriate kernel matrices based on
spatio-temporal correlations, and further pruned using
Kalman filters.

3. Methodology

The efficiency of an algorithm depends on the correct
selection of features and the data model. In the current
scenario, data related to the COVID-19 pandemic have
been acquired from various authentic sources and have
been further analyzed using AI algorithms.

3.1. Deep learning based prediction models for
COVID-19 transmission

Deep neural networks have been utilized for ana-

lyzing different types of data acquired from various
sources. Pearson correlation coefficient [33] have been
considered for analyzing the inter-relationship between
the different components of the data and discard irrel-
evant components. The historical data related to the
pandemic have been analyzed to predict the data trends
for the future. Such predicted results can be particu-
larly useful for decision makers in taking appropriate
decisions.

Traditional artificial neural networks are capable of
learning from labeled datasets with a fixed feature size
but these traditional feed forward networks suffer from
forgetfulness with respect to the data trends learned in
the past. RNNs are uniquely designed sequence mod-
elling algorithms with recursive feedback loops that
takes the output of the previous time-step to the input
of the current time step. RNNs are capable of taking
decisions influenced by the past data trends. Specialized
recurrent networks such as LSTM [34] and GRU have
been selected for analyzing the COVID-19 pandemic
datasets to predict the future consequences.

A spatio-temporal LSTM (ST-LSTM) architecture
comprising of two LSTM layers having 50 neurons
each, with return sequences and 20% dropout have been
considered in the present study. The first two ST-LSTM
layers with return sequences are followed by a third,
non-recurrent ST-LSTM layer consisting of 50 neurons
with 20% dropout. The third layer connects to a fully-
connected dense layer with a single output neuron. The
ST-LSTM architecture can accept the infected count
data of the last six days along with upto fifth order
derivatives i.e. slope information of the pandemic trend
over the last six days to predict the pandemic spread
for the following day. A recursive ST-LSTM architec-
ture can pick the predicted data from the previous time
steps and recursively feed back to the input of the net-
work for the upcoming prediction step and so on. Fig-
ure 1 represents the proposed recursive deep ST-LSTM
network.

GRU [35] are a type of advanced RNN with spe-
cialized gating mechanisms but has fewer parameters
compared to a traditional LSTM architecture. A spatio-
temporal GRU (ST-GRU) architecture is comprised
of two GRU layers having 50 neurons each with hy-
perbolic tangent (tanh) activation function and 20%
dropout, and return sequences with sigmoid activation
function without any dropouts. The first two ST-GRU
layers with return sequences are followed by a third,
non-recurrent ST-GRU layer consisting of 50 neurons
with a softmax activation and 20% dropout. It is con-
nected to a fully-connected dense layer with a single
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Fig. 1. Recursive LSTM architecture.

Fig. 2. Recursive GRU architecture.

Fig. 3. Recursive CNN architecture.

output neuron. The ST-GRU architecture (Fig. 2) can
accept the infected count data of the last six days along
with upto fifth order derivatives of the pandemic trend
to predict the spread for the next day. A similar recur-
sive architecture can accept the predicted data from the
previous time steps and recursively feed back to the
network for the upcoming prediction steps.

Another family of neural networks, CNN [36], have
been acclaimed for their adeptness in pattern analysis.
The temporal pandemic data can be transformed into an
image pattern by projecting on a 2D plane. A CNN ar-
chitecture comprising of four convolution layers (9-36-
36-81) with a fixed kernel size 6, followed by a fully-
connected flattened dense layer having 360 neurons at
10% dropout. The flattened dense layer fully connects
to a single output neuron. The CNN model under con-
sideration accepts the infected count of the last six days
along with upto fifth order derivatives of the pandemic

trend to recursively predict the pandemic spread on a
future timeline. Figure 3 represents the recursive deep
CNN network under consideration.

3.2. Data augmentation to a learnable domain

In the background of the COVID-19 pandemic, the
rate of spread in a geographical location depends on
the number of people infected. Additionally, the rate
of spread of pandemic also depends on other regional
parameters such as climatic factors, population density,
elderly ratio etc. Pandemic trend datasets having similar
characteristics as the COVID-19 are non-stationary in
nature due to the temporal variations of one or more of
these related characteristics.

Considering the temporal spread of pandemic, let
the data be represented by a hypothetical equation h(t)
over a temporal scale. Now, with time, variations in
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one or more related parameters can gradually influence
the rate of progression of the pandemic. The extreme
granular level of parametric changes can be captured
from slopes, rate of change of slopes, variations of the
rate of changes etc. by computing the derivatives of
h(t).

The slope information obtained from the pandemic
data along the temporal axis (t) have been augmented
for transformation from a less learnable temporal do-
main to a learning efficient derivative domain for ana-
lyzing the domain spectral patterns.

In the present scenario, since the contagious agent is
transmittable, higher the population density in a partic-
ular region, greater will be the chances of a pandemic
spread. Also, due to the genetic variations between the
male and female, their individual immunity levels vary
greatly. So, sex ratio of a region can also bring about
a big difference in the rate of spread of the pandemic.
Similar decline of the immunity levels affect both males
and females with age and therefore the elderly depen-
dency ratio can impact the spread as well. Additionally,
since the pandemic is caused due to a bio-agent, the
infectivity as well as the life span of the contagion may
vary with the change in climate across the globe. There-
fore, historical weather data have also been acquired
to investigate any patterns in the pandemic data due to
climate change.

3.3. Algorithm optimization

Training any deep neural network is data dependent
and the training efficiency relies largely on the training
time and the resources used for training. The perfor-
mance and efficiency of a trained neural network is an
optimization problem. There are several hyperparame-
ters based on the individual mathematical formulations
and the respective deep learning algorithms can be opti-
mized accordingly. In the current study, optimizers such
as the Stochastic gradient descent (SGD), AdaGrad,
AdaDelta, RMSProp and Adam have been employed
along with a suitable choice of hyperparameters such
as the learning rate (LR), decay rate, momentum, regu-
larization, hidden layer size, number of hidden layers
etc.

3.4. Error calculation

Standard Error calculation methodologies such as
Root Mean Square Error (RMSE) [37], Mean Absolute
Error (MAE) [38], and Mean Absolute Percentage Error
(MAPE) [39] have been selected for error computation.

4. Results and discussions

This section discusses the results obtained from ini-
tial data analysis and the outcome obtained by process-
ing the acquired datasets using machine learning and
deep learning algorithms.

4.1. Data collection and pre-processing

Data collected from the different sources [40–47]
comprised of inconsistencies such as missing values
and noisy spikes. Since the actual population data, in-
fected count, weather data etc., do not have random
fluctuations in reality, the data has been smoothened
using a moving average filter of length 3.

Sequence models like LSTM and GRU are generally
used for analyzing time sequence data. Following the
same idea, initially, vanilla LSTM and vanilla GRU
networks have been employed to analyze the pandemic
spreads. These specialized recurrent networks are good
at retaining information from historical data. The vanilla
networks performed well for countries where the tem-
poral rate of progression of the pandemic is uniform.
However, for countries where the underlying features
suffered from variations of the embedded character-
istics, the prediction accuracy was on the decline for
both LSTM and GRU vanilla networks. Figure 4 shows
a comparative study of the declining prediction accu-
racy for several countries using the LSTM and GRU
networks.

4.2. Domain transformation for augmented learning

Since the rate of spread of infection is related to the
multiple regional parameters, the daily infection count
and the derivatives of the data trend has been derived
upto the fifth order to capture the slope variations for
further analysis.

Figure 5 shows the domain converted time series data
in a derivative domain. The domain transformation in
Fig. 5 illustrates how the embedded characteristic fea-
tures of the pandemic data changes over time. The spec-
tral trends of the preceding six days (Fig. 5) would be
analyzed using ST-LSTM, ST-GRU and CNN networks
to predict the seventh day infection count which in turn
is fed through a recursive loop to the input for the up-
coming eighth day and so on. The most optimum per-
formance of the proposed data model can be obtained
for short term prediction (upto 2 weeks in advance).
Based on the distribution of the pandemic spread, a
combination of high, moderate and low impact coun-
tries have been selected for data analysis, prediction
and validation of the results.
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Fig. 4. Comparative time series prediction accuracy (100% – MAPE%) of LSTM and GRU.

Fig. 5. Domain converted of time series data.

4.3. Correlation study

The correlation data in Table 1 shows that in the
months from January to April, 2020, the highest tem-
perature in the epicentric regions of India varied from
19◦C to 39◦C while the average temperature varied
between 12◦C to 31◦C. During the same period, the
highest humidity varied from 53% to 100% with the

average humidity ranging between 41% to 94%. The
correlation study reveals that similarity of trends of the
pandemic spread cannot be observed with any of the
captured population or climatic parameters over time
and across locations. All the identified features that
did not add much information were discarded to lower
the prediction error. Pandemic data upto the fifth order
derivative have been considered for data modeling.
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Table 1
Correlation with weather parameters

Pearson coeff Temperature Dew point Humidity Wind speed Pressure

Max Avg Min Max Avg Min Max Avg Min Max Avg Min Max Avg Min
Spain −0.05 0.09 0.17 0.08 0.11 0.11 0.18 0.04 0.03 −0.02 −0.05 −0.07 −0.65 −0.58 −0.58
France 0.41 0.32 0.07 −0.03 −0.08 −0.15 −0.22 −0.44 −0.47 −0.25 −0.30 −0.26 0.13 0.19 0.25
India 0.79 0.76 0.66 0.34 0.32 0.23 −0.72 −0.79 −0.66 −0.09 −0.03 −0.05 0.00 0.00 0.00
Argentina −0.45 −0.43 −0.43 −0.42 −0.39 −0.38 0.00 −0.14 −0.12 −0.07 −0.03 0.06 0.35 0.32 0.37

Table 2
Optimizer comparison for CNN, ST-LSTM and ST-GRU networks (data of Spain)

Optimize CNN ST-LSTM ST-GRU

LR rho RMSE MAE
MAPE
in % LR rho RMSE MAE

MAPE
in % LR rho RMSE MAE

MAPE
in %

adam 0.1 NA 47972.3 33491.87 24.9 0.001 NA 15694.56 14431.13 10.74 0.1 NA 39867.41 36540.8 27.20
rmsProp 0.001 0.9 136594.6 69623.47 52.04 0.001 0.9 20707.29 18903.53 14.07 0.1 0.95 35501.47 331111.1 22.58
adadelta 0.001 0.9 6590.28 5287.67 3.94 2 0.97 10018.65 7285.93 5.42 2 0.97 30972.14 20648.6 21.32
adagrad 0.1 NA 144322.04 91079.05 6.11 0.1 NA 36775.98 33732.87 25.11 2 NA 48592.82 44170 32.87
adamax 0.001 NA 68669.71 42180.6 31.99 0.1 NA 8527.26 7991.33 5.95 0.1 NA 34287.55 31417.4 23.38

4.4. Algorithm optimization

The proposed CNN, ST-LSTM and ST-GRU algo-
rithms have been optimized using multiple optimizers
as presented in Table 2 (data of Spain).

Analyzing the quantitative outcomes in Table 2, it can
be observed that each algorithm performs relatively bet-
ter under some specific optimizer configurations. These
configurations have been used for further processing.

4.5. Predictions with best optimizer configurations

The algorithms with their individual best optimizer
configurations have been employed to study the pan-
demic spread. Figure 4.7 shows a qualitative analysis of
the CNN, ST-LSTM and ST-GRU prediction accuracies
(100% – MAPE%) for some of the selected countries.
Experimental evidences (Table 3) show that the pro-
posed methodologies using CNN algorithms give the
best results.

The recurrent neural architectures such as the ST-
LSTM, ST-GRU retain short term memories of the past
trends of the data and the error encountered in these
predictions depend on the past experiences. The trans-
mission dynamics of the pandemic being a real life sce-
nario are extremely complicated and changes with time
depending on different parametric variations. There-
fore studying the past trends using these algorithms,
achieved slightly higher prediction errors compared to
the more efficient RRCNN which could analyze the
latent features embedded in the spectral patterns.

CNN based architectures being comparatively more
computation efficient, analyzes the spectral patterns cor-

responding to the rate of change of these variations over
time. It is experimentally observed that the accuracy of
these algorithms increased when the first derivative of
the pandemic data was added to the data model. Higher
order derivatives (upto 5th order) were included to en-
hance the accuracy further. Additionally, the accuracy
of a CNN algorithm depends on the size of the convolu-
tion kernel. In this background, a kernel size 6 (which is
closest to the length of the spectral bandwidth) resulted
in the lowest prediction error.

4.6. Restricted recursive CNN

CNN network had been most successful in analyzing
the changes in the slopes of different characteristics
in the pandemic patterns. However, certain predicted
changes in slopes resulted in negative slopes for the
transmission dynamics. In reality, the cumulative num-
ber of infected can never decrease. Hence, a Restricted
Recursive CNN (RRCNN) architecture has been pro-
posed where the predicted values of the network is con-
trolled within an allowed limit. In the present study,
the predictions made by the RRCNN is limited to non-
negative values only. Over a couple of tests, it is ob-
served that this modified version of the CNN model can
minimize the overall error in estimation.

4.7. Critical analysis

In the current study, the selection of the most suitable
algorithm for the prediction model has also been based
on the time of training required for achieving the maxi-
mum accuracy. The LSTM and the GRU networks are
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Table 3
a: Prediction horizon with Error (MAPE%)
Prediction

horizon Data CNN LSTM GRU

2 weeks Spain 2.13 5.42 10.40
France 17.76 26.30 35.72
Argentina 3.07 3.6 3.41
USA 18.67 42.11 71.94
India 37.72 61.48 63.37

10 days Spain 1.24 3.43 12.44
France 9.51 19.05 33.44
Argentina 3.63 4.00 4.52
USA 21.07 33.29 50.65
India 32.43 49.61 50.67

5 days Spain 1.48 4.44 10.39
France 7.80 6.06 17.16
Argentina 3.83 2.52 2.80
USA 9.00 19.56 35.75
India 23.67 29.79 30.09

1 day Spain 0.32 0.12 5.28
France 3.08 2.01 6.09
Argentina 5.92 0.27 1.38
USA 1.38 8.59 18.90
India 6.72 2.91 2.91

b: Accuracy (100% – MAPE%) comparison

Country
data

LSTM
(%)

accuracy

ST-LSTM
(%)

accuracy

GRU
(%)

accuracy

ST-GRU
(%)

accuracy

CNN
(%)

accuracy
Argentina 97.42 96.40 99.97 96.59 96.93
Spain 93.52 94.58 84.84 89.60 97.87
France 78.08 73.70 62.44 64.28 82.24
USA 60.43 57.89 60.43 28.06 81.33
India 38.77 38.52 36.14 36.63 62.58

computationally expensive owing to the complexity of
the mathematical formulations of their respective cell
states.

On the contrary, CNN networks are computationally
much cheaper and are capable of analyzing complex
image patterns in lesser time. Table 3 quantitatively
compares the prediction accuracies (100% – MAPE%)
achieved by the chosen algorithms. It can be observed
from the given results that the RRCNN model has
achieved the closest estimation of the transmission dy-
namics on an average in comparison to the other mod-
els. The prediction accuracies for the chosen algorithms
have been plotted under the Fig. 7.

As per the existing literature, RNN variants such as
an LSTM or a GRU based prediction model has given
far better predictions in analyzing time sequenced data.
The same has been corroborated by various scientists
that the short term memory preserved in the LSTM and
GRU cell states help these networks in generating pre-
dictions under the influence of recently observed data
trends. On the other hand, CNN networks have been
reported to perform extremely well on image patterns
due to the presence of convolution kernels which can

particularly focus on smaller regions within the image
and relay the edge related information for a specific
spatial distribution through sampling layers.

The models have been trained on the pandemic data
and the prediction of the trained models were vali-
dated against the following 1 day’s pandemic count.
Table 3a compares the validation and predicted errors
(MAPE%). As per literature, the LSTM model per-
forms best (lowest error) compared to the other algo-
rithms on the validation data i.e. in predicting 1 day
following the training data. However, as the prediction
horizon increases, changes in the embedded character-
istics causes variations of the transmission dynamics.
The LSTM and the GRU algorithms gradually end up
with higher prediction errors over larger intervals. How-
ever, the CNN algorithms could be observed to analyze
the changes in the embedded patterns reasonably well
and achieved lower prediction error in the longer term.
Table 3b compares the experimental results of regular
vanilla LSTM and GRU with the proposed methodol-
ogy using ST-LSTM, ST-GRU and CNN algorithms.
As per experimental observations, the CNN algorithm
was able to outperform the LSTM and GRU variants.

In the present scenario, the pandemic data has been
acquired as a time sequenced data as in Fig. 8. Now, let
the original time sequenced data be represented by Ni.
Further, this time sequenced data when plotted on a 2D
plane, generates a pattern as shown by the first vertical
block (data = N). As the values of Ni varies over time
Ti, a first order derivative (Fi) of the pattern has been
computed as slope = ∆N

∆T for a very small change of
∆T on the time axis. This concept of slope has been
illustrated in a small rectangular magnified projection
within Fig. 8. Similarly, a second order derivative (Si)
has been computed from the first order derivative pat-
tern and so on up to the fifth order derivative (Hi) as in
Fig. 8. Thus, a time sequenced data can be converted
into a set of spectral patterns similar to an image dataset
and can be analyzed using CNN networks. The RRCNN
variant has performed better than the ST-LSTM and ST-
GRU by achieving lower prediction errors in analyzing
these patterns.

Depending on their individual computational capac-
ity, each algorithm has its own time requirements for an-
alyzing and training depending on the size of the train-
ing data. For the current study, each of the chosen algo-
rithms were exposed to a bootstrapped training dataset
consisting of 10k records. Figure 7 shows a compara-
tive study of the accuracy (100% – MAPE%) achieved
on the given training dataset against the training time
necessities of the respective algorithms.
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Fig. 7a. Comparative accuracy (100% – MAPE%).

Fig. 7a. Efficiency plot.

The histograms in Fig. 7b represent the highest per-
centage accuracy that could be achieved by an individ-
ual algorithm while a plotted line drawn over the his-
tograms demonstrates the respective time efficiencies.
It can also be inferred from Fig. 7b, that the CNN based
algorithms have the maximum computational capacity
and are capable of handling large training datasets in
almost 60% lesser time taken by GRU units and nearly
50% lesser time consumed by LSTM cells.

Optimizers such as Adam, Rmsprop, Adadelta, Ada-
grad and Adamax have been utilized for optimizing the
hyperparameters for maximum accuracy with minimum
effort. Structurally, the LSTM and GRU models have
been tuned for the optimum number of recurrent layers,
dense layers with fully connected units, the allowable
dropouts and activation functions at each layer. Simi-
larly, the CNN based algorithm have been fine tuned

for the most optimum number of Convolutional layers,
count of filters, size of kernels, stride size of the fil-
ters, max-pooling layers, dense layers with fully con-
nected units, the allowable dropouts and activation at
each layer.

The stochastic gradient descent (SGD) is the most
commonly used optimizer where a learning rate can be
optimized for evaluating the optimum step-size for ad-
justing the internal neural weights. A momentum hyper-
parameter accelerates or dampens the vanilla gradient
descent in the relevant directions. However, a fixed step-
size limits the overall efficiency leading to the essence
of more advanced optimizers.

A computationally efficient Adam optimizer built on
the adaptive estimation of moments have been utilized
for fine tuning the decay rates upto the first and second
order moments. A modified version of the Adam opti-
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Fig. 8. Sequence to pattern.

mizer, i.e. an Adamax, known for occasionally deliver-
ing superior outcomes over Adam have also been tested
in the current scenario. Another prominent Rmsprop
optimizer has been utilized for computing a square-
root of the moving average of the gradients and then
divide the gradient with the square root to control the
step-size of the oscillations more precisely along the
entire training process. A different adaptive gradient
descent optimizer, AdaGrad, takes an initial learning
rate and suitably adapts it based on the frequency of the
parameter updates during the training process. Each of
these optimizers achieved limited accuracy improve-
ments on the chosen algorithms. However, one of the
main reasons behind the limitations could be related
to the continual decay of the learning rates throughout
the training. To overcome the limitations, a more robust
AdaDelta optimizer have been utilized for limiting the
change of learning rates upto a small window of gradi-
ent updates immediately preceding adaptation instance.
Since the rate of change of the variations of the dif-
ferent factors influencing the pandemic spread changes
with time, the imposed restriction upto the immediately
preceding time window proved to be most effective.

5. Conclusion

The research work mainly focuses on devising a do-
main transformation aided performance boosting mech-
anism in a resource constrained environment for non-
stationary data analysis. COVID-19 transmission has
been observed to bear unique relations with temperature

and humidity within a specified limit. The daily infec-
tion count when transformed to a derivative spectrum
through higher order derivatives, substantially enhanced
the prediction accuracy of the models. The recursive
data model was accurate and generic in providing short
term future predictions upto a couple of weeks with
reasonable accuracy. Similar approach could be under-
taken for all time series predictive analytics in future
for enhancing the prediction accuracies with smaller
volume of training data. The prediction accuracy can
be further studied using different hybrid models which
forms the future scope of this work.
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