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Abstract. DNA microarrays is a technology that can be used to diagnose cancer and other diseases. To automate the analysis
of such data, pattern recognition and machine learning algorithms can be applied. However, the curse of dimensionality is
unavoidable: very few samples to train, and many attributes in each sample. As the predictive accuracy of supervised classifiers
decays with irrelevant and redundant features, the necessity of a dimensionality reduction process is essential. The main idea is
to retain only the genes that are the most influential in the classification of the disease. In this paper, a new methodology based
on Principal Component Analysis and Logistics Regression is proposed. Our method enables the selection of particular genes
that are relevant for classification. Experiments were run using eight different classifiers on two benchmark datasets: Leukemia
and Lymphoma. The results show that our method not only reduces the number of required attributes, but also increase the
classification accuracy in more than 10% in all the cases we tested.
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1. Introduction

Cancer is an important health issue worldwide. Up to date, more than 200 types of cancer have been
identified and according to the National Cancer Institute (NCI) [29], there were 8,689,771 cases of
cancer reported just in the United States from 1973 to 2014. From those, 7,813,979 are malignant. For
a patient to receive the appropriate treatment, the clinician must identify as accurately as possible the
cancer type. Although biopsy is still a standard diagnostic method, other techniques from molecular
biology are becoming more common. One of such techniques is the DNA Microarrays.

A DNA microarray is a collection of microscopic DNA spots distributed on a solid surface. There
could be several thousands of spots on one single microarray. Each spot contains multiple copies of
identical strands of DNA. Each spot has a unique DNA sequence, representing one gene. The material
on the microarray is put in contact with cells or tissue from the subject that is going to be analyzed.
Doing so may activate the expression of certain genes, which in turn will produce different fluorescent
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Fig. 1. An example of a microarray that uses two different
color dyes (Wikimedia Commons, Guillaume Paumier).

Fig. 2. A simple flowchart of the steps required for supervised
learning.

colors (this is a process called hybridization). After hybridization, fluorescence measurements are made
with a microscope that illuminates each DNA spot and measures fluorescence for each dye separately;
these measurements are used to determine the ratio, and in turn the relative abundance, of the sequence
of each specific gene in the two mRNA or DNA samples [6]. Microarray images typically contain several
thousands of small spots, each of which represents a different gene in the experiment. Figure 1 shows a
simplified representation of one such microscope slides.

One of the main advantages of using DNA microarrays over traditional diagnostic methods is that
given that each microarray contains several thousands of spots, it is equivalent to run several thousands of
experiments at the same time. This provides a huge amount of molecular information. Such information
not only allows the classification of tumor samples into known categories, but also helps to discover
new classes, as well as new diagnostic and therapeutic markers [5]. Different approaches have been
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considered for the analysis of microarray data, including some of the most well known machine learning
algorithms [10]. We will cover some of them later on in the previous work section. In most of the cases
the problem has been considered from a supervised learning perspective. This means that we are given
a training set of items, represented through a vector of features, and from there a model is obtained to
perform classification tasks [34]. Figure 2 shows a diagram of this process.

Generally speaking, the process to train a classifier to identify patterns may include the selection of
appropriate features. This is particularly important in the case of DNA Microarray data. Just to give an
example, let us consider the Leukemia cancer dataset [21], which consists of 72 samples, characterized
by 7129 genes, or features. The number of samples is two orders of magnitude smaller than the number of
features. Almost all of the datasets available up to now are like that. The Small Round Blue Cell Tumors
(SRBCT) dataset includes 88 samples each with 2308 genes [32]. The Lymphoma dataset is composed
by 62 samples, with 4026 genes [1]. This fact represents a challenge for many of the classifiers. It
implies serious limitations on the statistical significance of the results of basically any pattern recognition
method.

This has been called the curse of dimensionality. This concept is used to describe problems where
there is a huge number of attributes and just a few samples [3]. The main issue is that when the dimen-
sionality increases, the volume of the search space grows exponentially, making that the available data
becomes sparse. One of the possible approaches to deal with the curse of dimensionality is called fea-
ture selection or feature reduction. In general terms, feature selection consists in finding ways to reduce
the dimensionality n of the feature space F , to reduce the risk of over-fitting as well as to allow effi-
cient computation in the classifier. This is a main topic in general machine learning research since some
time ago [34]. The approaches try, by different means, to identify and retain those attributes that better
represent the original information contained in every sample of a dataset. In other words, the idea is to
retain a subset F ∗ of F such that ‖F ∗‖ � ‖F‖ and that the elements of F ∗ still represent F reasonably
well. Considering that, we will see that it is common that many of the different approaches to develop
classifiers for DNA Microarray data consider also a feature selection step, combined with the selection
of a particular classifier.

In this paper, a new methodology that combines some well known statistical methods to support
feature reduction is introduced. By doing so, we aim not only to decrease the number of attributes. We
want to retain information about which particular genes were chosen. To test how general our proposed
method is, we ran experiments using two DNA microarray datasets and eight different classifiers. We
then compare our results with others reported in the literature. The results show an increase in the
classification accuracy of at least 10%, with a comparable number of attributes. The main difference
of our method, compared with others is that we can individually identify which genes were selected.
Besides, among the classifiers, we report the use of a Lattice Neural Network with Dendritic Processing
(LNNDP).

We first introduced LNNDP to DNA microarray classification tasks in [48]. When using that particular
classifier, there is no constraint on the number of classes. More over, for the classification step, no human
intervention is required for the adjustment of parameters. The results show that LNNDP is competitive
in performance compared with other approaches. The remainder of the paper is organized as follows:
Section 2 describes previous work on DNA microarray analysis. Section 3 presents our methodology.
Section 4 describes experiments and results and finally, Section 5 presents the conclusions and future
work.
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2. Previous work

The interest to develop automated methods for classification of biological samples obtained from
DNA microarrays is increasing rapidly. It has been considered that in order to find a good solution to
the classification of DNA Microarray data, two related directions can be explored. One is to build or to
apply powerful classifiers. The other is to reduce the amount of features (genes) that are used to induce
a model in the classifier. Both are important and in the following paragraphs we will go through some of
the most relevant advances in both directions.

2.1. Classifiers

In general, the use of machine learning, statistics and other artificial intelligence techniques is consid-
ered as a good opportunity to solve problems in the area of DNA microarray data analysis. Researchers
have reported the use of Support Vector Machines (SVM), like in [12], as well as in [19], or in [45].
Artificial Neural Networks (ANN) have also been explored by authors such as: [28,38,39]. Methods
bases on evolution such as Genetic Algorithms (GA) are also reported in [14], and in [16], to cite a
couple. Other related methods, such as Ant Colony Optimization (ACO) are reported by [9]. Artificial
Bee Colony (ABC) has been applied by [20], as well as some hybrid approaches, like the ones described
in [8,27].

Truth is that each one of the classifiers has advantages and disadvantages. Some authors have con-
ducted comparative studies, like the ones reported in [35,43,56]. Authors such as [63] suggest that SVM
behave well in general for this problems, although it is important to consider that such method was origi-
nally developed for bi-class problems, and applying SVMs to multi-class classification implies a number
of additional steps, that might not be easy to accomplish, as described in [54].

The work in [19] reports the application of SVMs for the classification of ovarian cancer data. The
authors not only apply the SVM to the raw data, but also consider a feature selection method described
in [21]. From their experiments, they conclude that although SVMs are able to deal with such kinds of
problems, they shown a precision similar to other approaches.

In a different approach, Guyon et al. [22] also report the application of SVMs, but they use them
as a tool to perform feature ranking. The experiments were run on the Leukemia and Colon datasets.
One of the most interesting findings of their work is that the selection of features might be even more
important than the classifier used. By using a Recursive Feature Elimination, they retain the subsets of
genes that had the highest informative density. The comparison of classifiers such as Linear SVM, Linear
Discriminant and the one introduced in [21] did not show significantly different performance. But the
performance of all was affected by the genes used.

In the paper by Cho et al. [10], the authors tested 42 different combinations of feature selection meth-
ods and classifiers. The feature selection methods they considered were: Euclidean distance, Pearson’s
and Spearman’s correlation coefficients, cosine coefficient, information gain, mutual information and
signal to noise ratio. As for the classification methods, they used multi-layer perceptron (MLP), k-nearest
neighbor (KNN), support vector machine and structure adaptive self-organizing map (SOM). The exper-
iments were run on datasets for Leukemia, Colon Cancer and Lymphoma. In their experiments they
found that information gain and Pearson’s correlation coefficient were the best feature selection meth-
ods, while MLP and KNN were the best classifiers, reaching up to 97% accuracy on the classification.
In [12] the authors apply an SVM, and four feature reduction methods: principal components analysis
(PCA), class-separability measure, Fisher ratio, and t-test. The datasets used were: SRBCT, Lymphoma
and Leukemia. In this case, they determined how many genes each classifier required to reach a 100%
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precision, being the MLP the one needing the most (96 for SRBCT), and SVM with polynomial kernel
the smallest (6 for the same dataset). As for the feature selection part, they found that t-test was the best
in their experiments.

In [11] the authors compared the performance of three algorithms: artificial neural networks, decision
trees (DT) and logistic regression (LR) and two composite models of DT-ANN and DT-LR. The DT
models exhibited the lowest predictive power and the poorest extrapolation when applied to the test
samples. The ANN models displayed the best predictive power and showed the best extrapolation. SVMs
were originally developed for bi-class problems.

Some authors have worked to extend the applicability of SVMs to multi-class problems [44,47].
In [63], the authors deal with multi-class imbalance classification problems. The method divides multi-
class problems into multiple binary-class problems. After this, one of two correction techniques is used
to tackle the class imbalance problem. Finally, a novel voting rule is applied. The experimental results
demonstrated that the proposed method outperforms any traditional classification approaches because
it produces more balanced and robust classification results. A recent approach for classification, called
Extreme Learning Machine (ELM) has been also tried [50,65]. It seems that for the set of problems
considered, the ELM algorithm shows higher or similar correct classifications for most of the classes
compared with other algorithms.

One of the most common classifiers is the Naïve Bayes (NB). Although it is frequently outperformed
by other more recent methods, it is very efficient [26]. The method is based on Bayes theorem, with
strong independence assumptions. The classifier learns from training data the conditional probability of
each attribute Ai given the class label C . Then, when used for classification, the Bayes rule is applied
to compute the probability of C given a particular instance of attributes A1, . . . , An. A Naïve Bayesian
model is easy to build, and compared with other methods that requiere the iterative determination of
parameters, Naïve Bayes does not need that. That makes this model particularly useful for very large
datasets, or in problems where the time to start classifying is constrained.

A related approach is the Bayesian Networks (BN). Bayesian networks are part of what is called
probabilistic graphical models. These models use directed acyclic graphs to represent knowledge about
uncertain environments. In that way the network represents a probability distribution. Given the data on
the attributes, the model computes the probability of that pattern belonging to each one of the classes,
and then simply gets the maximum value to decide for the class. More details can be found in [18].

In the work by [30], the authors compared the efficiency of several feature selection methods. Some
of those methods are very well known in the field: Significance analysis of microarrays (SAM), analysis
of variance (ANOVA), Area under the receiver operating characteristic (ROC) curve and various others.
The tests were performed over 9 different bi-class microarray datasets. Some of the results they report
is that there was little consistency in the genes selected by the different methods. Only 8 to 21% of the
genes where in common. In general, their findings are that the classification is substantially influenced by
many variables, including the feature selection method, the number of genes, noise and other variables.

In [15] the authors propose a Minimum Redundancy-Maximum Relevance (MRMR) feature selection
framework. Under this approach the idea is to choose features that are maximally dissimilar to each other.
This is a minimum redundancy criteria that can be combined with the traditional maximum relevance,
such as the maximal mutual information. The authors test the method with 6 different datasets and
employ Naïve Bayes, linear discriminant analysis, logistic regression and SVM classifiers. The results
suggest that by applying this process, the accuracy of the classifier is better that when using all the
features. In a somewhat related approach, the authors in [41] develop an MRMR method using what
they call the normalized mutual information, to evaluate the redundancy and relevance. The method was
applied to three datasets, obtaining compact feature representations with high accuracy.
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2.2. Feature selection

As it was mentioned before, the DNA microarray data has some interesting properties: there are just a
few samples to characterize a disease, and those samples are composed by a large number of features or
attributes. Attempting to analyze directly such information is not a good idea. Thus, methods to reduce
the amount of features considered are usually applied before using the information to train a classifier.
The methods for feature selection can be classified in: filter, wrapper and hybrid approaches [59]. Filter
methods use some measure to rank the attributes based on univariate functions, and then, the best ranked
attributes are selected [40]. Wrapper methods are usually multivariate and they involve also a learning
algorithm to evaluate the sets of attributes [33,51]. Hybrid methods are combinations of the former two.

Usually, the approach to try first is the filter, since it is simple to run and requires O(n) time. However,
the main disadvantage is that it creates redundancy and evaluates attributes based only on their individual
scores [52]. Measures that have been used with DNA microarray data include: Pearson’s and Spearman’s
correlation coefficients, Euclidean distance, information gain [10], and t-test [57], among others [60,61].

Works like [60] also tested wrappers. In this case, by considering a correlation-based feature selection
(CFS) in conjunction with J48 and naïve Bayes. In this particular case, the authors mention that both
approaches arrived at similar results. In [49], the authors present an excellent comparison of classifiers
and feature selection methods. According to their findings, the choice of feature selection methods and
the number of genes substantially influence classification success. In [17], a Minimum Redundancy-
Maximum Relevance (MRMR) filter is used in combination with a Genetic Algorithm. Shah et al. [53]
introduce a formulation that includes the task of feature selection as well as classification. The problem
is formulated as to find the optimal classifier.

The work in [4] presents changes to logistic regression method and apply it in three cancer classifi-
cation problems with microarray data. In the paper by Zhou et al. [66] the authors propose a Bayesian
approach to gene selection and classification using the logistic regression model. They evaluated the
proposed method against several microarray data sets. Other authors have applied logistics regression in
DNA microarray problems, like the ones reported in [2,36,37,42,46,64].

Techniques from computational intelligence have also been analyzed. For instance, in [62] the authors
report the use of ant colony optimization (ACO) to select relevant genes. In [58] the authors develop
a hybrid genetic algorithm-neural network (GANN) model that performs feature selection over raw
microarray data.

3. Methodology

The methodology proposed in this paper is aimed at reducing the cardinality of the vectors that will
be used to feed the machine learning algorithm. In that sense, a traditional approach is to apply Princi-
pal Component Analysis (PCA). PCA compresses the information contained in a number p of original
variables into a smaller set of q factors [23]. Each factor is a linear combination of all the p original
variables. Therefore, PCA does not actually reduce the number of attributes, it only creates a different
representation of the same data. In our problem it means that if we use the n principal components find
through PCA analysis, although we would be working with only n features, at the end, all k original
genes are involved, so, no real gene reduction in the process.

Thus, our methodology uses PCA as an intermediate step, but incorporates other operations such that
the actual number of attributes (genes) are reduced. When this process is performed, the user can identify
the specific genes needed for the classification. This is an important aspect of our contribution.
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Fig. 3. The methodology proposed in this work. The intermediate computation of PCA will allow the identification of the most
significant elements to be retained.

The methodology can be summarized in the following main steps: 1) Preparation of dataset, 2) Com-
putation of PCA on the original dataset, 3) Selection of attributes (genes) using logistic regression, 4)
Creation of a new dataset containing only the attributes chosen in step 3, 4) Computation of PCA on the
new dataset and finally in 5) Train the classifier using those components. Figure 3 shows the process. In
the following subsections we provide more details on each of the steps.

3.1. Datasets

We used two publicly available, bi-class datasets in order to test our proposed methodology: The
Leukemia dataset [21] and the Lymphoma dataset [13]. Each one contains 7,129 genes, or attributes.
The Leukemia dataset consists of 72 samples: 25 samples of acute myeloid leukemia (AML) and 47
samples of acute lymphoblastic leukemia (ALL). The dataset is divided into two subsets: training set
with 38 samples, and test set with 34 samples.



S60 R. Ocampo-Vega et al. / Improving pattern classification of DNA microarray data

The Lymphoma dataset contains a total of 77 samples. We randomly divided it in a training set with
22 samples (11 of each class), and a test set with the remaining 55 samples.

3.2. Principal component analysis

Principal Component Analysis, or simply PCA is a statistical technique that allows the identification
of the principal directions in which the data varies. The basic idea behind PCA is that, unless there is
perfect correlation between two or more of the variables, p principal components are required to account
for the p-dimensional variable space. PCA replaces the p original variables by a smaller number, q, of
derived variables, the principal components, which are linear combinations of the original variables.
Often, it is possible to retain most of the variability in the original variables with q much smaller than
p. PCA projects p-dimensional data into a q-dimensional sub-space (q � p) in a way that minimizes
the sum of squared distances from the points to their projections. In computational terms, the principal
components are found by calculating the eigenvectors and eigenvalues of the data covariance matrix.
This process is equivalent to finding the axis system in which the co-variance matrix is diagonal. The
eigenvector with the largest eigenvalue is the direction of greatest variation, the one with the second
largest eigenvalue is the (orthogonal) direction with the next highest variation and so on. More details
on PCA and its computation can be found, for example, in [31].

3.3. Logistic regression

Logistic regression is a multivariate statistical technique used to model the relationship between a
binary dependent variable and one or more independent variables(continuous or discrete variables). The
difference with linear regression is that in that case, the response variable is continuous, while in logis-
tic regression it is a categorical variable (0 or 1). The Logistic Regression Model, called binary logit
regression, is described by:

ln

(
πj

1− πj

)
= β0 + β1X1 + β2X2 + . . .+ βnXn

where β0 is the intercept from the linear regression equation, Xi represents the i-th independent variable
i = 1, 2, . . . , n, βi represents its corresponding coefficient, ln( πj

1−πj
) is the logit transformation used

with the dependent variable of the j-th sample j = 1, 2, . . . ,m, and πj is the success probability.
The way in which logistic regression works is by estimating the probability of an event occurring. It

focuses on identifying the independent variables that explain the observed variation in the dependent
variable. The probability of an event occurring is described by:

πj =
expβ0+β1X1+β2X2+...+βnXn

1 + expβ0+β1X1+β2X2+...+βnXn

A more detailed explanation of logistic regression is available, for instance, in [23].

3.4. Proposed method

Let us consider that we have a training set composed of p pairs (indexed by i running from 1 up to p),
which can be represented by T = {(�xi, yi)}pi=1. The �xi are the attributes (expression levels of the genes
in our case), and the yi are the labels for the classes.
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The process is described in Algorithm 1. This algorithm describes a procedure called SELECT(), that
receives the attributes of the dataset, represented by {�xi}pi=1, and a two parameters: ν, an integer number
that represents the percentage of the total variance that we would like to retain. This value indirectly
defines the number of components to be considered. The second parameter is a threshold μ, given by a
real number.

Line 1 in Algorithm 1 applies the PCA on the original dataset. We retain only the q first components
that account for the variance given by ν. The components are stored in the structure Q. Each principal
component stored in Q has the form: �qi = α1x1 + α2x2 + . . . + αnxn, where �qi is the ith principal
component obtained using PCA, xn is the nth attribute and αn is its corresponding weight. In Line 2, a
logistic regression is applied on those components. Only the d most relevant ones are retained in a new
structure Q1. Then, in Line 3 the d selected components are analyzed to eliminate the attributes whose
weights are below μ. Line 4 creates a new dataset {�zi}pi=1. It is important to mention that this dataset
will contain the same amount of samples (rows, given by index i), however, the number of attributes
(columns) for each sample is going to be smaller, that is, ‖�z‖ < ‖�x‖. Then, in Line 4 PCA is applied
again over the new dataset, to obtain q2 principal components. Each of those components will be a linear
combination of the genes selected in Line 3.

Algorithm 1: SELECT() finds subset of genes to be used in classification.
Input: T , ν ∈ N, μ ∈ R.
Output: Q2, the set of selected components.

1 Q← PCA({�xi}pi=1, ν)
2 Q1 ← LOGIT(Q, d)
3 {�zi}pi=1 ← RemoveAttributes(Q1, μ)
4 Q2 ← PCA({�zi}pi=1, q2)
5 return Q2

3.5. Classification

In order to analyze the effectiveness and generality of the feature selection method that we propose,
we run experiments with a total of eight different classifiers. They are: Lattice Neural Network with
Dendritic Processing (LNNDP), Support Vector Machine (SVM) with two kernels: linear and radial
basis, Extreme Learning Machine (ELM), Bayes Net (BN), Naive Bayes (NB), Multi-Layer Perceptron
(MLP) and Radial Basis Function Neural Networks (RBF).

We implemented the LNNDP using the training method proposed by Sossa and Guevara in [55]. One
of the advantages of this method is that it requires no parameter configuration, nor random initialization
values.

For the case of Support Vector Machines, we used the LIBSVM Library and trained the classifier as
suggested in [7]. We used two different kernels: linear and radial basis function (RBF). In order to find
the best parameters, we divided the training set in two parts: one for training, and the other for cross
validation. The cross validation set was composed of 33% of the elements of the samples in the training
set, chosen randomly.

For the Extreme Learning Machine [25], we used the basic ELM implementation of the Nanyang
Technological University available at http://www.ntu.edu.sg/home/egbhuang/elm_codes.html. The only
parameter to configure in this implementation is the number of neurons in the hidden layer. We used a
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Table 1
Coefficients obtained after applying logistic regression to
the training set T of the Lymphoma dataset, where βi rep-
resents the coefficients and |βi| represents its magnitude

βi βi βi βi βi βi

β1 −0.0967 b6 0.4252 b11 0.2309
β2 0.0452 b7 0.2781 b12 0.1347
β3 0.4591 b8 −0.0559 b13 −0.0543
β4 −0.1747 b9 0.0275 b14 0.03943
β5 0.3073 b10 −0.4174 b15 0.1210

Table 2
Number of genes that are present in different components. The
columns with numbers 0, 1, 2, 3 and 4, show the number of
times that the genes appeared in the components

Dataset μ 0 1 2 3 4
Lymph. 0.006 236 1117 2296 2508 972
Leuk. 0.01 1846 2861 2000 422 –

similar methodology than the one used for the SVM. We divided the train set in two subsets and then
used cross validation to find the best number of neurons to use. To select the number of neurons we
searched in the range [1, 100].

As for Naïve Bayes, Bayes Networks, Multi-Layer Perceptron and Radial Basis Function Neural Net-
works (RBFNN), we used Weka [24]. In the specific case of RBFNN, we tested using different values
for the processing units in the hidden layer, from 2 to 20, in steps of 2. The configuration that showed
the best values was the one with 12 units.

4. Experiments and results

We implemented PCA on the normalized training set and selected the q first components needed to
retain at least 90% of the variance in order to create a new training set Q with the same amount of
samples, but each being represented by q attributes (the chosen principal components). In the case of the
Lymphoma dataset q = 15, while in the Leukemia dataset q = 27. Given that our interest is to identify
which of the q components discriminate between the two classes of the dataset, we applied logistic
regression over the training set {�zi}pi=1 and, retained the components whose coefficient’s magnitude were
above a certain threshold μ. Both, μ and ν, the percentage of variance retained were chosen empirically.
Table 1 shows in bold the coefficients selected in the Lymphoma dataset (components 3, 5, 6 and 10). A
similar procedure was implemented over the Leukemia dataset. In this last case we selected components
3, 11, and 26.

All our experiments were run on a HP Proliant G8 server with 2 Intel processors, 8 cores each and
256 Gb RAM.

Thus, the threshold μ was determined by analyzing the coefficients’ magnitude distribution of the
selected components based on a box-plot. We set μlymphoma = 0.006 and μleukemia = 0.01 and analyzed
how many attributes (genes) had a coefficient different from zero in each component and analyzed which
of them where present in more than one component. The results are shown in Table 2. By removing the
genes with less contribution to the class discrimination capability of the logistic regression, we were
able to reduce the dimensionality of the datasets from 7,129 attributes to only 972 for Lymphoma and
422 for Leukemia, which represent 13.63% and 5.91% of the original ones. In addition, these attributes
might have biological and medical significance, considering that they represent the actual genes. We
then created a new Lymphoma dataset, and a new Leukemia dataset, using only the genes present in all
the selected components.

Having reduced the actual number of attributes in the dataset, we run again PCA over the new datasets.
After this step, eight different classifiers were trained and evaluated using the first 3, 5, 7 and 15 compo-
nents. The number of principal components used is represented by q2. For comparison purposes, we also
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Table 3
Comparison of classification precision using PCA over the original Leukemia dataset, and using PCA over the proposed reduced
dataset. In bold the highest precision of each method

q2 LNNDP SVM RBF SVM LIN ELM
Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 79.41% 76.47% 69.73% 80.15% 70.56% 85.88% 66.73% 79.27%
5 73.53% 76.47% 71.00% 77.29% 71.15% 78.50% 69.09% 75.47%
7 70.59% 76.47% 72.09% 77.97% 71.74% 79.62% 66.68% 76.77%

15 73.53% 88.24% 77.35% 82.59% 78.21% 83.24% 72.68% 79.21%

q2 MLP Bayes Net Naive Bayes RBF 12
Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 57.91% 92.42% 63.48% 85.78% 60.21% 87.47% 60.14% 86.82%
5 59.47% 89.51% 63.17% 85.60% 59.57% 84.20% 61.51% 82.86%
7 57.54% 89.48% 62.97% 84.82% 57.30% 86.20% 60.82% 83.85%

15 55.80% 87.45% 61.25% 83.69% 55.17% 83.33% 59.60% 80.87%

Table 4
Comparison of classification precision using PCA over the original Lymphoma dataset, and using PCA over the proposed
reduced dataset. In bold the highest precision of each method

q2 LNNDP SVM RBF SVM LIN ELM
Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 74.55% 65.46% 60.49% 50.82% 63.69% 53.64% 64.36% 57.40%
5 69.09% 83.64% 64.00% 65.15% 70.76% 69.06% 62.47% 66.13%
7 60.00% 81.82% 64.91% 63.67% 72.47% 73.95% 64.26% 66.64%

15 61.82% 72.73% 49.75% 59.95% 71.31% 71.22% 67.38% 68.22%

q2 MLP Bayes Net Naive Bayes RBF 12
Orig. Prop. Orig. Prop. Orig. Prop. Orig. Prop.

3 68.76% 87.32% 74.17% 76.86% 66.29% 76.29% 66.89% 76.19%
5 64.98% 91.60% 73.91% 76.29% 63.74% 77.14% 65.55% 78.11%
7 62.62% 87.98% 73.55% 76.16% 64.22% 76.76% 69.80% 78.80%

15 57.49% 78.85% 72.64% 75.87% 67.74% 76.40% 72.92% 76.44%

trained and evaluated the eight classification algorithms using the same number of components obtained
from the original datasets. That is, with all the 7,129 attributes. Table 3 shows the results for the case of
the Leukemia dataset. From the results, it is possible to observe that the best accuracy was achieved with
the Multi-Layer Perceptron (94.42%), and the second one was the LNNDP (88.24%). Moreover, MLP
required a smaller number of components to reach that precision. It is also important to point out that
the results obtained with the method proposed in this work were consistently better than the ones using
the original dataset.

In a similar way, Table 4 shows the results for the case of the Lymphoma dataset. In this case, the best
classifier was again the MLP (91.60%), and the second one was the LNNDP (83.84%). For this dataset,
both methods required the same amount of components to reach their respective best values. As in the
Leukemia dataset, the results generated with the proposed method were always better than using the
original dataset. These results suggest that classifying the patterns directly after the implementation of
PCA yields suboptimal results. This behavior is observed regardless of the dataset and the classifier.

By reducing the number of genes considered, we not only reduce the computational cost of the anal-
ysis, but also improved the accuracy of all the tested classification methods. In some cases the improve-
ment was above 10%. Figure 4 summarizes graphically the results. The graph shows the performance
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Fig. 4. Performance of the classifiers for Leukemia and Lymphoma for eight classifiers and different values for the selected
components q2.

for the eight classifiers for each dataset and for different numbers of components q2 used, both from the
original dataset and the proposed reduced dataset. From the graphs it is interesting to observe that the
performances with the reduced dataset are always better than with the original dataset. However, it also
seems that in particular for Lymphoma, increasing the number of components leads to a decrease in the
performance. This effect is also seen in Leukemia but it is smaller.

5. Conclusions and future work

Providing computational tools for the processing, analysis and visualization of genomic information
is an important current trend. DNA microarrays are being considered as an alternative to better diagnose
diseases such as cancer. As long as more genetic information is generated, and analyzed, this technology
could be improved. For instance, by reducing the amount of probes (experiments) carried out on a mi-
croarray. That could be achieved by analyzing data using techniques like the one described in this work.
Of course all these processes need to be consistent with biological knowledge. If results like the ones
obtained for this paper have biological meaning, it could imply that microarrays to detect Lymphoma
or Leukemia could require to consider just a subset of the original amount of gene expressions. That is
cheaper microarrays that could be used in more cases.

When a reduction in the number of variables is needed, one of the first approaches is undoubtedly
to use the principal component analysis. By detecting the axis in which the variability of the original
information changes the most, it is possible to transform the problem into another one in a new space,
where those components are the main axis. However, as it was mentioned before, what happens is that the
components are actually just a linear combination of the original variables. So, in reality, no variables are
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eliminated, it is just that they are expressed in a different, more compact way. By using our methodology,
the process guarantees that the principal components are related with the classes in the problem, and then
we look at the components that have a bigger impact in the discrimination step. We show here that by
using this methodology, the number of attributes (genes in this case) diminished from 7,129 to less
than a thousand attributes in both datasets. At the same time, we even increase the performance of the
classifier. Interestingly, we discovered that the most relevant components for the classification were not
necessarily the first ones computed by PCA. That fact suggests that using the first k principal components
might not be the best option to achieve optimal classification. However, if PCA is applied following the
methodology described in this work, it is possible to increase the performance of the classifier without
a decrease in the classification rate. Some interesting aspects to consider in future work could be: 1) To
make a fair comparison with other feature selection methods, 2) To test the approach with data additional
to the public datasets, and 3) To test the performance of this approach with multi-class problems.
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