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Abstract. The quest for transparency in black-box models has gained significant momentum in recent years. In particular,7

discovering the underlying machine learning technique type (or model family) from the performance of a black-box model is8

a real important problem both for better understanding its behaviour and for developing strategies to attack it by exploiting9

the weaknesses intrinsic to the learning technique. In this paper, we tackle the challenging task of identifying which kind of10

machine learning model is behind the predictions when we interact with a black-box model. Our innovative method involves11

systematically querying a black-box model (oracle) to label an artificially generated dataset, which is then used to train different12

surrogate models using machine learning techniques from different families (each one trying to partially approximate the oracle’s13

behaviour). We present two approaches based on similarity measures, one selecting the most similar family and the other14

using a conveniently constructed meta-model. In both cases, we use both crisp and soft classifiers and their corresponding15

similarity metrics. By experimentally comparing all these methods, we gain valuable insights into the explanatory and predictive16

capabilities of our model family concept. This provides a deeper understanding of the black-box models and increases their17

transparency and interpretability, paving the way for more effective decision making.18

Keywords: Machine learning, family identification, adversarial, black-box, surrogate models19

1. Introduction20

The increasing ubiquity of machine learning (ML) models in devices, applications, and assistants,21

which replace or complement human decision making, is prompting users and other interested parties22

to model what these ML models are able to do, where they fail, and whether they are vulnerable [1].23

However, many ML models are proprietary or black-box, with their inner workings inaccessible to users24

for confidentiality and security reasons. This is the case of FICO or credit score models, health, car, or25

life insurance application models, IoT Systems Security, medical diagnoses, facial recognition systems,26

etc. While publicly available query interfaces provide access to these models, they can also be exploited27

by attackers who can use ML techniques to learn about the behaviour of the model by querying it with28

selected inputs. This raises the issue of adversarial machine learning [2,3] where the model’s intrinsic29

flaws and vulnerabilities are exploited to evade detection or game the system. In such scenarios, the30

attacker can gain an advantage by knowing the ML family and the true data distribution used to generate31

the attacked model.32
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Fig. 1. Behaviour of different models trained over the same four-class classification dataset (shown on the top-left plot). The
pictures show the different prediction for particular class regions (known as decision boundaries) in dense and sparse areas.

One of the main reasons for not having general techniques for exploiting black-box models may be33

due to the intrinsic differences between ML techniques. Different models generated by specific machine34

learning techniques may differ not only in their decision boundaries, which are hypersurfaces that divide35

the input space into distinct classification regions, but also in their method of extrapolation in regions with36

few or no training examples. This is illustrated in Fig. 1, where the top left plot shows the original training37

data of a bivariate dataset used to train several machine learning models using different techniques. The38

observation here is that all models show similar behaviour, i.e. they produce comparable partitions of39

the input space in densely populated zones where the training examples are located. However, their40

behaviour in areas with sparse or no training examples tends to be unpredictable and highly dependent41

on the specific ML technique employed. Recognising the distinctive decision-making characteristics of42

different ML families is fundamental to the aims of this paper [4,5]. In particular, these less densely43

populated zones are more prone to error. Given the different ways in which different model families44

extrapolate within these sparse regions, specific strategies have been developed to attack, extract and45

steal machine learning models belonging to particular families, such as Support Vector Machines [6],46

(Deep) Neural Networks [7], Naive Bayes [8], and even various online prediction APIs [9]. Knowing47

the model’s family can thus help predict its vulnerabilities and promote more comprehensive defence48

strategies against adversarial attacks [10,11].49

ML family identification also holds importance across various domains that benefit from understanding50

model behaviour, especially in areas with sparse or no training data. This is particularly relevant for Open51
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Set Recognition [12] and Novelty Detection [13], where the goal is to detect unseen classes or categories52

that were not present during the model’s training phase. Similarly, in outlier and anomaly detection [14,53

15], identifying sparse classes within the training data is a major challenge. In addition, understanding the54

ML family is critical to meeting the legal and ethical requirements of AI deployment [16]. Knowledge of55

the ML family serves as a key measure of transparency, potentially satisfying regulatory requirements56

and preemptively addressing ethical concerns.57

In this paper, we address the problem of experimentally determining the machine learning technique58

family that was used for training a model that is presented as a black-box model. Unveiling the family59

of a model, if possible, could be seen as the initial step for an adversarial learning procedure. Once we60

have some knowledge of the ML family used in the model, we can apply specific adversarial techniques61

tailored to that family, such as those mentioned above. Our aim is to address this issue in a realistic context62

where our ability to make queries is not unlimited, and we assume that we lack any information about63

the model, including the learning algorithm used for training, as well as the original data distribution.64

Our goal is not to duplicate the machine learning model or to identify the full hypersurface that divides65

the feature space. Instead, we seek to identify the specific machine learning technique by using queried66

input-output pairs. This technique should exhibit behaviour that closely mirrors the behaviour manifested67

by the black box model across the data space.68

Our approach considers the black-box model as an oracle for labelling a synthetic dataset generated by69

following a specific query strategy. This approach is particularly useful when we have no information70

about the black-box model or its training data distribution, as is often the case in real-world applications.71

This artificial dataset serves as the basis for training different models, each of which uses different72

machine learning techniques from different learning families to approximate the behaviour of the oracle.73

These models are called surrogate models. We propose two methods to identify the ML family of the74

oracle based on the (dis)agreement between the decisions made by the oracle and each surrogate model.75

The first is the crisp scenario, where the oracle only provides the class label for each example. That76

is, it returns a qualitative value indicating the predicted class among the possible categories, without77

any additional information. This scenario includes all cases where the output of the oracle is strictly78

limited to these class labels. The second one is called the soft scenario, characterised by the fact that the79

oracle provides class probability estimates along with the class labels. These are essentially confidence80

scores for each class, adding a layer of quantitative judgement to the prediction. The soft scenario plays81

a key role in applications where it is essential to have predictions in the form of scores or probabilities82

rather than just class labels. Examples of such applications include weather forecasting [17,18], where83

predictions may be accompanied by a percentage chance of occurrence; betting-based forecasting [19,84

20], which relies on probability estimates to make decisions; or sentiment analysis tools [21,22], which85

quantify the sentiment expressed in text data. These scenarios require a more nuanced understanding of86

predictions, making the soft scenario particularly relevant.87

The structure of our paper is as follows. Section 2 provides a brief overview of related work. In88

Section 3, we present our approach for predicting the ML family of a black-box model. The experimental89

evaluation is discussed in Section 4. Lastly, we conclude our paper in Section 5, where we summarize our90

findings and outline directions for future research.91

2. Related work92

In this section, we review the literature related to the learning from queries labelled by an oracle (human93

or ML model) and approaches to interpretable machine learning that rely on learning a substitute model94

for explaining the decisions of any model.95
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There is extensive literature on the topic of learning from queries labelled by an oracle or an expert.96

Examples can be found in the fields of learning theory [23,24], concept learning [25,26,27], learning of97

regular sets [25], and active learning [28,29]. In all these cases, it is assumed that the information about98

the data distribution is given in order to generate the queries about the concept to be learned.99

The area of adversarial machine learning [30,31,32,33] has addressed the task of learning from queries100

labelled by a model (the oracle) but with the aim of attacking it [34]. Thus, the queries are used to capture101

information about the decision layouts of the model to be attacked trying to discover its vulnerabilities.102

To this aim, several specific query strategies exist depending on the type of model to be attacked, for103

instance, support vector machines [6], or deep neural networks [7,35,36,37,38].104

Different query-based methods have been introduced to explain and replicate the behaviour of an105

incomprehensible model. A simple way to capture the semantics of a black-box ML model consists of106

mimicking it to obtain an equivalent one. This can be done by considering the model as an oracle and107

querying it with new synthetic input examples (queries) that are then labelled by the oracle and used108

for learning a new declarative model (the mimic model) that imitates the behaviour of the original one.109

Domingos et al. [39] addressed this problem by creating a comprehensible mimetic model (decision110

trees) from an ensemble method. Blanco-Vega et al. analysed the effect of the size of the artificial111

dataset in the quality of the replica and the effect of pruning the mimetic model (a decision tree) on its112

comprehensibility [40], developing also an MML-based strategy [41] to minimise the number of queries.113

Papernot et al. [10] also applied a mimicking strategy but for adversarial purposes. The idea is to create a114

replica of the original black-box model aiming at crafting examples on the basis that the examples that115

affect one model also affect any other model trained for the same task. More recently, Yang et al. [42]116

presented a query black-box based attack method that adapts the surrogate model by constructing a117

high-gradient computation graph, in order to approximate the surrogate model to the oracle model, in118

both forward and backward pass.119

Another related area is ‘interpretable machine learning’ [4] (or the broader ‘explainable AI’, XAI [43])120

which aims at making machine learning models and their decisions more interpretable. In this field,121

black-box models are described by considering aspects like feature importance, accumulated local effects,122

or addressing the justification of individual predictions. A popular work is LIME [44], a technique123

that explains a prediction of any classifier by learning an interpretable linear model locally around the124

prediction. Similarly, LORE [45] explains specific predictions of a classifier by learning an interpretable125

model locally to the instance, providing a rule and a set of counterfactual rules. Recently, Maaroof et126

al. [46] extended the LORE method to explain the decisions of multi-class fuzzy-based classifers.127

Our proposal differs from the previous approaches in that we do not aim to replicate the black-box128

model, nor to determine the full decision boundary that partitions the feature space. Instead, our focus is129

on identifying important features of the model, such as its ML family, which can serve as a crucial first130

step before applying more specific adversarial techniques. To achieve this goal, we treat the black-box131

model as an oracle and generate a set of synthetic input examples to be labelled by the oracle. Our132

approach also differs from the traditional mimetic method in that we use the labelled artificially-generated133

input examples (by assuming no prior knowledge of the original model or training data) to train multiple134

surrogate models using different ML techniques with the aim of approximating the behaviour of the135

black-box model. By comparing the decisions made by the oracle and each surrogate model, we can136

identify the ML family of the black box model. This approach is particularly useful in scenarios where137

the original model is proprietary or confidential, and there is no access to information about the learning138

algorithm or the original data distribution. Another approach also based on the idea of using examples139

labelled by a black-box model to discover some of its proprietary properties has been explored in [47],140

but with the goal of finding out some properties of neural networks such as the type of activation, the141

optimisation process and the training data.142
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Fig. 2. A black-box model (oracle) trained on an unknown original dataset acts as a source of labels for synthetic surrogate
datasets. These synthetic datasets are generated by following specific query strategies designed to capture the decision-making
process of the black-box model. The surrogate dataset (SD) is then used to train multiple surrogate models, each using a different
machine learning technique. The goal is to approximate the behaviour of the black-box model without having access to its
original data distribution or the specific learning algorithm used to train it.

3. Model family identification143

As we discussed in Section 1, the behaviour of a model depends on, among other factors, the ML144

technique applied to learn the model. Hence, one way of determining the ML family of a black-box145

model could be to mimic it trying to approximate the nature of the decision boundaries. One way of146

doing this is to create different surrogate models using techniques from different learning families and147

input-output pairs generated by the original black-box model as an oracle. We can then compare the148

decisions made by each surrogate model with those made by the original oracle, using an appropriate149

measure of agreement/discrepancy or disagreement.150

3.1. Generating surrogate models151

A black-box model can act as an oracle, denoted O, which can be queried to obtain its predictions.152

Depending on the nature of the oracle, either only class labels or class membership probabilities can be153

obtained, resulting in a crisp or soft classifier. Using this, an artificial dataset can be created and labelled154

by O, which we call the surrogate dataset SD. In this way, SD is able to capture the decision patterns of155

O as well as the class distribution inferred by O. Figure 2 illustrates the process.156

The generation of synthetic examples to interrogate the black box model O can be achieved by various157

strategies. A viable approach is to assume feature independence, which is the only logical assumption158

in the absence of the original input data, and then generate random values for each feature. These159

values are generated within plausible attribute bounds, following the uniform distribution.1 This method160

provides good coverage of the feature space, especially in non-dense regions where the behaviour of O is161

likely to be unexpected, revealing potential vulnerabilities. It is important to recognise that differences162

between model families, particularly in the distribution of class labels within the feature space, are more163

pronounced in less dense regions. This includes regions where queries may not even be relevant, as shown164

in Fig. 1. Therefore, this query strategy seems well suited to the goal of finding the ML family of O.165

1We have also experimented with alternative querying strategies, such as the Uniform Grid [48] approach, where samples
are generated using node points at fixed intervals uniformly distributed for every dimension. However, this strategy resulted in
poorer performance due to inadequate input coverage in datasets with low sampling points and high dimensions, and also had
efficiency issues.
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Fig. 3. Synthetic example to show the κ measure for different surrogate models Ai when compared to an specific oracle
model O learned by using a decision tree technique. The bottom row includes the surrogate models inferred from the training
SD (background colors) and its performance on the test SD with the κ value. Note that surrogate models are trained from a
non-linearly separable data and, thus, models producing linear boundaries such as the logistic regression or Naïve Bayes cannot
emulate a quadratic decision boundary which is required.

The artificial inputs, paired with the class labels predicted by O, form the surrogate data set, denoted166

SD. By using SD for training, we are able to develop different surrogate models, each of which reflects the167

behaviour of O to a different degree. Specifically, given SD and a set of N families of machine learning168

techniques, a surrogate model Ai is developed for each ML family i ∈ N . Consequently, each surrogate169

model Ai can provide a unique characterisation of SD and, by extension, insight into the characteristics170

of O. The process is illustrated in Fig. 2.171

3.2. Measuring similarity between models172

To identify the family of the oracle, it is necessary to use evaluation measures that estimate the similarity173

between the surrogate models and the oracle with respect to a given dataset. In the case of the crisp174

scenario, where the classifiers predict class labels, Cohen’s kappa coefficient (κ) [49] can be used as it175

estimates the inter-rater agreement for qualitative items. The kappa coefficient takes into account not only176

the number of agreements and disagreements, but also the agreement that could occur by chance. This177

makes it a more reliable measure than a simple percentage of agreement, especially when dealing with178

unbalanced datasets where the majority class may dominate the agreement metric [50]. Furthermore,179

in our approach we use the kappa coefficient to compare how different classifiers agree or disagree on180

boundaries caused by extrapolation to sparse areas when explaining the same dataset SD, which can181

be obtained using a train-test split or cross-validation. Therefore, a κi value can be calculated for each182

surrogate model Ai. Figure 3 illustrates the process.183

At the top of the Fig. 3 we see (from left to right) the original dataset, the oracle model O, the surrogate184

training set (SD) and the test set (these two sets are labelled with O). The training set SD is used to learn185

all the surrogate models Ai shown in the bottom row. The test set is used to evaluate each of the Ai (i.e.186

to obtain each κi score). It is easy to see that the surrogate model whose decision boundaries are most187

similar to those of O is the decision tree (bottom left plot), as confirmed by its kappa value (κ1 = 0.90),188

although some other techniques also do a good job (e.g. nearest neighbours). The surrogate decision tree189
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has more in common with the oracle than with other models because they both have high expressiveness190

with boundaries that are always parallel to the axes. This similarity is due to the fact that, despite possible191

differences in the specific techniques used to develop them, they come from the same family of models.192

Regarding the nearest neighbour model, despite its high expressiveness, its boundaries are clearly not193

parallel to the axes, showing a sawtooth pattern that would be particularly difficult to replicate using194

decision trees. This discrepancy is indicated by a lower κ value. Other surrogate models, such as logistic195

regression or Naïve Bayes, which are less powerful, give significantly worse results, as can be seen either196

visually or through the κ measure.197

As mentioned above, the way different families of models extrapolate decision boundaries can vary198

significantly depending on several factors, such as overfitting, underfitting or generalisation. In addition,199

such factors depend on the characteristics of the original dataset, such as noise, sparsity, or separability.200

For example, logistic regression and Naïve Bayes models can produce similar decision bounds for a201

linearly separable dataset. However, if the dataset is not linearly separable (as shown in Fig. 3), other202

learning techniques can produce similar boundaries, such as decision trees, nearest neighbours, and even203

neural networks. However, we have no prior knowledge of the original dataset used to train the oracle. We204

do not know the sparsity, separability, or any other property that might be relevant to accurately identify205

the family of models. Hence, it is convenient to compare the behaviour of the oracle with a variety of206

surrogate models from different learning families to increase the likelihood of correctly identifying the207

original model family.208

3.3. Maximum similarity approach209

In the example in Fig. 3, we observed that the family of the oracle model O was the one that achieved210

the highest κ among the surrogate models Ai. This suggests our first approach to family identification,211

which we call the maximum similarity. Generally speaking, this approach consists of identifying the212

surrogate model Ai that has the most similar behaviour to O according to a certain similarity measure,213

and then considering the family of O to be the same as the family of Ai. In what follows, we specify this214

approach for each of the scenarios considered in this work.215

3.3.1. Crisp classifiers216

In the scenario where both the oracle and the surrogate models are crisp classifiers, identifying the217

ML family of the oracle is relatively straightforward. We first evaluate the surrogate dataset SD with the218

different surrogate models Ai, each belonging to a different ML family i ∈ N , using Cohen’s Kappa219

metric. Then we assign the oracle to the ML family of the surrogate model Ai that has the highest κ220

value, that is shown in Eq. (1).221

FMS(O) = argmaxi∈{1,...,N}κAi
(SD) (1)

3.3.2. Soft classifiers222

In the scenario where the oracle and surrogate models are soft classifiers, we cannot use Cohen’s223

kappa metric because it is only applicable to crisp classifiers. Instead, we need to measure the difference224

between the class probability vectors estimated by O and those estimated by each surrogate model Ai. To225

do this, we compute the error of the model Ai as the difference between the predicted class membership226

probabilities given by O and Ai for SD. In this paper, we use the L1 norm (also known as the absolute227

error, AE) as a metric to measure the difference between the predictions. The L1 norm also provides some228

insight into how similar O and Ai distribute the class probabilities along the feature space.229
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To quantify the similarity in behaviour between O and Ai, we use the negative value of the mean of the230

L1 norm, denoted by µ. The negative value is used to convert a discrepancy into a similarity metric so231

that we can use argmax, as in the crisp case.232

Therefore, we adopt the maximum similarity approach, which consists of calculating the negative value233

of the mean L1-norm of each surrogate model on the dataset SD, denoted as µAi
, and then assigning to234

the oracle O the family of the surrogate model with the highest µ. In other words, we identify the ML235

family of the oracle O as shown in Eq. (2).236

FMS(O) = argmaxi∈{1,...,N}µAi
(SD) (2)

It is important to note that the difference between the crisp and soft scenarios lies in the similarity237

measure: κ and µ respectively. In this sense, we refer to the similarity metric used for family identification238

as δ, considering that it represents a different similarity measure depending on the scenario. For simplicity,239

we denote δAi
(and its concretions κAi

and µAi
) as δi (κi and µi, respectively).240

3.4. Meta-similarity approach241

A more sophisticated approach is to use a meta-model to predict the family of a black-box model. In242

the meta-similarity approach, the goal is to extract internal information about the family of a black-box243

model from the surrogate models. To achieve this, a meta-model is learned to predict the ML family244

of an oracle using a set of meta-features that abstractly describe the oracle based on the δ values of the245

surrogate models. Instead of selecting the ML family of the surrogate model Ai with the best δ, we use246

the δ values of the surrogate models learned from the surrogate dataset (the meta-features) as instances247

for the meta-model.248

To train the meta-model, we consider that from an original labelled dataset D, we can learn as249

many oracles Oy as ML families y ∈ 1, . . . , N , and represent each oracle by a tuple of δ values of250

its corresponding surrogate models. This tuple becomes a meta-feature that is used as input to the251

meta-model, as follows:252

O1 ≡ 〈δ1(SD1), δ2(SD1), . . . , δN (SD1)〉
...

ON ≡ 〈δ1(SDN ), δ2(SDN ), . . . , δN (SDN )〉

where δi is the value of the evaluation metric δ for the surrogate model Ai, and SDy denotes the surrogate253

dataset SD labeled by the oracle trained with the learning technique y and training set D.254

By applying this procedure to a set of D original datasets, we can create a dataset of meta-features that255

collects the δ-based representation of the |D| ×N oracles generated (one oracle per dataset D ∈ D and256

ML family y ∈ 1, . . . , N ), along with the corresponding oracle family y for each tuple. This dataset can257

be used as a training set for developing a meta-model to predict the family y (the output) of any new258

black-box model. This prediction would be based on a set of δ values representing the input attributes for259

the meta-model learning problem. In other words, given the δ values obtained from a set of surrogate260

models, the meta-model can predict the family of black-box models. This meta-model represents a similar261

approach to the top meta-model in stacking ensembles [51], but in our case it is used specifically for ML262

family identification.263
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Table 1
List of ML families, their representative algorithm, the hyperparameters used and the R package and method used. The ML
families are: Discriminant Analysis (DA), Ensembles (EN), Decision Trees (DT), Support Vector Machines (SVM), Neural
Networks (NNET), Naïve Bayes (NB), Nearest Neighbours (NN), Generalized Linear Models (GLM), Partial Least Squares and
Regression (PLSR), Logistic and Multinomial Regression (LMR), and Multivariate Adaptive Regression Splines (MARS)

Id Algorithm Parameters R Package (method)
DA Regularised discriminant analysis gamma = NA, lambda = NA∗ caret (rda)
EN Random forest mtry = 64 caret (rf)
DT C5.0 trials = 1, winnow =

False∗
C50 (C5.0)

SVM Support vector machine Radial, C = 25 caret (svmRadial)
NNET MultiLayer perceptron layer1 = 5, layer2 = 0,

layer3 = 0∗
caret (mlpML)

NB Naive bayes (naive_bayes) laplace = 0, usekernel =
FALSE∗

naiveBayes (naiveBayes)

NN K-Nearest neighbor K = 5 caret (knn)
GLM Regularized generalized linear models alpha = 1, lambda =

NULL∗
caret (glmnet)

PLSR Partial least squares ncomp = 4 caret (simpls)
LMR Multinomial logistic regression decay = 0 caret (multinom)
MARS Multivariate adaptive regression splines degree = 3 caret (gcvEarth)

∗indicates that the default hyperparameters have been used.

4. Evaluation264

This section describes the experiments carried out to evaluate the proposed family identification265

methods.2 All the experiments have been developed primarily in R [52] and, in particular, using the266

package Caret [53], to tune and train the different ML models.267

For the experiments, we have selected a set of machine learning techniques that are commonly used268

in practice and are typically grouped into families based on their formulation and learning strategy, as269

documented in [54,55,56,57]. Specifically, we considered N = 11 machine learning families, as listed in270

Table 1, and for each family y ∈ N we selected only one of the algorithms from that family (Algorithm271

column in Table 1). To evaluate our meta-similarity approach, we needed a sufficiently large dataset of272

meta-features. For this purpose, we used a collection of 25 datasets from OpenML-CC18, a curated273

comprehensive classification benchmark from OpenML [58] (see Table 2). We applied a basic cleaning274

procedure to each dataset, which included removing missing values, constant attributes, and noise or275

duplicate examples. In addition, we performed two preprocessing steps, namely scaling and centering the276

data, to facilitate the learning of some models.277

For each dataset, we trained N models (oracles) belonging to the different families introduced in278

Table 1, thus learning |D| ×N = 25× 11 = 275 oracle models. For each of these oracles, we generated279

a surrogate dataset SD which we used to learn the surrogate models. Each instance of a SD is randomly280

generated following the uniform distribution: for each numerical feature, we randomly generated a281

number between its minimum and maximum values; for each discrete feature, we randomly selected one282

of the possible values it could take. Note that we need to generate an adequate number of examples for283

SD in order to identify the model family of O with a reasonable degree of accuracy. In this regard, we284

have studied the effect that the size of SD can have on the accuracy of family identification (the results of285

2For the sake of reproducibility and replicability, all the experiments, code, data and plots can be found at https://github.com/
rfabra/cracking_blackbox.
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Table 3
Confusion matrices (actual class in rows vs. predicted class in columns) showing the results for the Maximum
Similarity approach evaluated for two different scenarios. The matrix on the top corresponds to the crisp
scenario, where the δ metric used is Cohen’s kappa coefficient (δi = κi). The accuracy achieved in this
scenario was 30.9%. The matrix on the bottom corresponds to the soft scenario, where the δ metric is the L1
norm (δi = µi). The accuracy achieved in this scenario was 30.6%

Family DA EN DT SVM NNET NB NN GLM PLSR LMR MARS Total
DA 1 3 0 10 0 0 0 3 0 8 0 25
EN 0 12 3 5 1 0 1 0 0 0 3 25
DT 0 10 11 2 1 0 0 0 0 0 1 25
SVM 0 2 1 17 0 1 1 0 0 0 3 25
NNET 0 1 1 1 3 0 0 5 0 14 0 25
NB 1 3 0 11 0 0 0 4 0 2 4 25
NN 4 3 0 11 1 0 2 2 0 1 1 25
GLM 0 4 0 0 2 0 0 10 0 9 0 25
PLSR 0 2 1 1 1 0 0 8 0 12 0 25
LMR 0 1 0 2 3 0 0 3 0 16 0 25
MARS 0 6 3 4 0 0 0 0 0 0 12 25
Total 6 47 20 64 12 1 4 35 0 62 24 275

Family DA EN DT SVM NNET NB NN GLM PLSR LMR MARS Total
DA 9 2 0 6 0 2 0 4 0 0 2 25
EN 1 6 0 0 0 2 0 2 14 0 0 25
DT 0 8 9 2 2 1 0 0 3 0 0 25
SVM 0 6 0 3 0 0 1 0 14 0 1 25
NNET 3 4 0 0 9 0 0 1 8 0 0 25
NB 1 2 0 12 0 5 0 1 1 1 2 25
NN 3 7 0 5 0 2 1 1 4 0 2 25
GLM 5 5 0 1 0 3 0 5 6 0 0 25
PLSR 0 0 0 0 0 1 0 0 24 0 0 25
LMR 6 2 0 0 0 5 0 5 3 4 0 25
MARS 0 5 2 6 0 1 0 0 1 0 10 25
Total 28 47 11 35 11 22 2 19 78 5 17 275

this study are presented in the Appendix A) and, taking these results as a reference, we generate SD with286

a size equal to 100 multiplied by the number of features.287

To evaluate each surrogate model Ai, we generate another surrogate dataset (SD) of the same size, and288

then compare the outputs of the original oracle (O) with those obtained from Ai to obtain the different289

δi values, as described above. These δi values are then used to generate a dataset of meta-features that290

are used to train the meta-model in our meta-similarity approach. Specifically, we train and fine tune291

(see Appendix B) a Random Forest algorithm [59] on this dataset of meta-features, using the oracle’s292

ML family as class labels. To evaluate the performance of the meta-model, we use a leave-1-out cross-293

validation procedure, where in each fold, one dataset is used to test the meta-model and the remaining294

datasets are used to train it. Finally, note that given the novelty of our approach, direct comparisons with295

established methods are not feasible. Instead, we benchmark against a random selection baseline that296

randomly assigns ML families based on their distribution in our dataset.297

4.1. Results of the maximum similarity approach298

Table 3 shows the confusion matrices for the experiments using the Maximum Similarity approach. In299

the crisp scenario (as shown in the top matrix of Table 3), we observed that the SVM and LMR families300

had the highest number of positive identifications, with 17 (68%) and 16 (64%) correct identifications,301
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respectively. The MARS and EN families followed closely with 12 correct identifications each (48%302

success rate). However, there were some families for which the maximum similarity approach performed303

very poorly, such as PLSR and NB, for which none of the models predicted correctly. In addition, the DA,304

NN and NNET families had only 1, 2 and 3 correct identifications, respectively. Most of these families305

were highly confused with SVM and LMR, and sometimes with GLM (mainly PLSR, NB, and NNET).306

We also noticed that GLM was often confused with LMR, with 9 incorrect identifications, and DT was307

confused with EN 10 times. Looking at the predicted family column, we observed that the models with308

the highest positive identifications (SVM, LMR, MARS, and EN) tended to be over-predicted, i.e. many309

of the other families were strongly confused with them. Conversely, the poorest performing families310

(PLSR, NB and NN) tended to be under-predicted, i.e. almost no correct or incorrect identifications were311

made for these families. In summary, the maximum similarity approach achieved an overall accuracy of312

30.6% in the crisp scenario.313

In the soft scenario (bottom matrix in Table 3), the PLSR family achieves the best results with 24 correct314

identifications (96%), followed by MARS with 10 correct identifications (40%). Other families such as315

NNET, DT and DA achieve similar results with 9 correct identifications each. However, PLSR tends to be316

over-predicted as many other families are often confused with it. The families with the fewest correct317

identifications are NN with only 1 correct identification, followed by SVM with 3 correct identifications,318

and LMR, NB and GLM with 4, 5 and 5 correct identifications respectively. NN is most often confused319

with EN with 7 incorrect identifications, but also with SVM with 5 incorrect identifications. The EN and320

SVM families are strongly confused with PLSR with 14 incorrect identifications. Similarly, the NNET321

family is often confused with PLSR with 8 false identifications. The LMR family tends to be confused322

with DA, NB and GLM. The GLM family is mainly confused with PLSR, DA and EN. In this scenario,323

the overall accuracy of the maximum similarity approach was 30.9%, almost identical to that obtained in324

the crisp scenario.325

The results of our experiments suggest that the decision boundaries between machine learning fam-326

ilies may not be clearly defined. Despite its limitations, our maximum similarity method significantly327

outperforms the results of a random baseline, which would predict an accuracy of around 9%. This328

superior performance highlights the effectiveness of the dissimilarity measures we use, allowing us to329

effectively extract and use relevant information from the model’s responses, thus providing an informed330

approach to model family identification. Interestingly, we obtained a very similar overall accuracy for331

both the crisp and soft scenarios, with values of 30.6% and 30.9% respectively. However, the families332

that were correctly identified in both scenarios were quite different, as can be seen from Table 3 (top333

and bottom). This suggests that, depending on the type of predictions provided (class labels vs. class334

conditional probabilities), some ML families may be easier to identify than others. Overall, our results335

suggest that the problem of identifying the model family of a black-box model is not trivial, but our336

maximum similarity approach is a promising starting point.337

4.2. Results of the meta-similarity approach338

The confusion matrix for the meta-similarity approach in the crisp scenario is shown in Table 4 on the339

top. The results show an improvement over the maximum similarity approach, with an overall accuracy340

of 40.7% (compared to 30.6% obtained by the maximum similarity approach in the crisp scenario). We341

can see that SVM, DT and NN are now the easiest family to identify, with 15 correct identifications342

(60%), followed by EN and NB with 12 correct identifications (48%). On the other hand, DA and LMR343

families were the most difficult to identify, with 3 and 5 correct identifications, respectively. In terms344
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Table 4
Confusion matrices (actual class in rows vs. predicted class in columns) showing the results of the Meta-
Similarity approach for three different scenarios. The top table shows the results for the crisp scenario, where
the κi from the surrogate models were used as meta-features. The approach achieved an accuracy of 40.7%.
The middle table shows the results for the soft scenario, where only the µi from the surrogate models were
used as meta-features. The accuracy of this approach was 45.5%. The bottom table shows the results for a
combination of meta-features from both scenarios, where δi was defined as κi, µi. This approach achieved
the highest accuracy of 50.5%

Family DA EN DT SVM NNET NB NN GLM PLSR LMR MARS Total
DA 3 0 1 2 4 4 2 3 2 2 2 25
EN 0 12 4 1 0 4 1 1 0 0 2 25
DT 0 3 15 1 0 0 0 3 0 0 3 25
SVM 2 1 2 15 0 0 5 0 0 0 0 25
NNET 1 0 1 0 9 0 0 3 6 5 0 25
NB 1 2 0 1 1 12 2 3 0 1 2 25
NN 0 2 2 2 0 4 15 0 0 0 0 25
GLM 0 0 1 1 5 0 0 9 4 5 0 25
PLSR 1 0 1 0 6 0 0 8 9 0 0 25
LMR 0 0 0 0 6 2 0 5 7 5 0 25
MARS 0 2 7 2 0 3 1 1 1 0 8 25
Total 8 22 34 25 31 29 26 36 29 18 17 275

Family DA EN DT SVM NNET NB NN GLM PLSR LMR MARS Total
DA 8 1 0 1 1 2 2 3 0 3 4 25
EN 0 11 2 3 2 1 1 3 1 0 1 25
DT 2 0 12 0 4 1 0 1 0 0 5 25
SVM 1 6 1 6 2 1 6 1 0 0 1 25
NNET 1 1 1 3 11 0 1 2 2 1 2 25
NB 3 0 2 2 0 13 1 3 1 0 0 25
NN 2 1 0 2 0 1 14 0 0 0 5 25
GLM 3 1 0 1 1 2 0 9 3 5 0 25
PLSR 0 1 0 1 2 0 0 2 17 2 0 25
LMR 0 1 0 0 4 4 0 3 1 12 0 25
MARS 2 1 5 0 1 2 2 0 0 0 12 25
Total 22 24 23 19 28 27 27 27 25 23 30 275

Family DA EN DT SVM NNET NB NN GLM PLSR LMR MARS Total
DA 6 2 2 0 2 4 2 2 0 2 3 25
EN 0 14 2 2 1 3 1 1 0 0 1 25
DT 2 1 12 0 1 1 1 0 2 0 5 25
SVM 1 4 0 10 0 1 7 0 0 0 2 25
NNET 1 0 1 0 17 0 0 2 2 2 0 25
NB 3 3 0 0 0 13 1 0 1 3 1 25
NN 2 1 2 2 0 2 15 0 0 0 1 25
GLM 0 1 0 0 3 3 0 10 3 5 0 25
PLSR 0 0 0 0 2 0 0 2 20 1 0 25
LMR 2 0 0 0 5 2 0 3 2 11 0 25
MARS 1 1 6 0 0 2 3 0 0 1 11 25
Total 18 27 25 14 31 31 30 20 30 25 24 275

of confusion patterns, SVM is confused mainly with NN and sometimes with DA, DT and EN. DT is345

confused with EN, GLM and MARS. The NN family is confused with NB principally, but also with EN,346

DT and SVM. DA is frequently misclassified as NNET and NB, but also with other models. The LMR347

model is mainly confused with PLSR, NNET and GLM, while GLM is often confused with LMR, NNET348

and PLSR. PLSR is mainly confused with GLM, and NNET. In addition, MARS is confused with DT.349

Overall, we can see that some families have significantly improved results compared to the maximum350
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similarity approach, such as NN, NB, PLSR and NNET. However, the LMR and MARS families present351

worse results in the meta-similarity approach. SVM and GLM families have slightly worse results in the352

meta-similarity approach.353

The Table 4 on the middle shows the results of the meta-similarity approach for the soft scenario. Using354

the meta-features based on the µ measure, the approach achieves a global accuracy of 45.5%, slightly355

higher than the value obtained in the crisp scenario. We observe that PLSR and NN are the easiest families356

to identify, with 17 (68%) and 14 (56%) correct identifications, respectively. Those families that seem357

to be the most difficult to identify are SVM, DA and GLM, with only 6 (24%), 8 (32%), and 9 (36%)358

correct identifications, respectively . DA is mainly confused with MARS, LMR and GLM, while GLM is359

often confused with LMR and PLSR and DA (between 3–5 times). SVM is often confused with NN and360

EN. Comparing the results of the meta-similarity approach for the soft scenario with those obtained with361

the maximum similarity approach in the same scenario, we see that PLSR is the only family for which the362

results are significantly worse, going from 24 correct identifications to 17. The DA family obtains slightly363

worse results, going from 9 correct identifications to 8. NN, NB, LMR and EN are the families for which364

the results improve the most (especially NN, going from 1 to 14 correct identifications). The number of365

successful identifications remains more or less the same for the other families, with slight improvements366

for GLM, DT, SVM, NNET, MARS.367

In line with the results obtained using the maximum similarity approach, the meta-similarity approach368

shows that the effectiveness of ML family identification is largely influenced by the metric used for369

evaluation. This suggests that a hybrid approach that integrates the information from both similarity370

measures, κ and µ, could potentially outperform the individual approaches for family identification.371

Therefore, we conducted further experiments to evaluate the performance of a hybrid variant of the372

meta-similarity approach that combines κi and µi as meta-features. The results of this hybrid approach373

are presented in Table 4 (bottom).374

As expected, we observed that the overall accuracy of the hybrid approach is the best of all the proposed375

approaches, achieving an accuracy of 50.5%. This approach also shows similar or improved identification376

results for most of the families compared to the previous meta-similarity approaches. For example, the377

EN, NNET, NB, NN and GLM families show 14, 17, 13, 15 and 10 correct identifications respectively,378

which is an improvement compared to the results obtained by the previous approaches. The SVM and379

LMR families obtain better results in the crisp scenario with the maximum-similarity approach (17 and380

16, respectively). The identification of other families remains unchanged or slightly lower than the best381

result, such as DT, PLSR and MARS. However, DA emerges as the most difficult family to identify,382

with only 6 correct identifications. In addition, all the approaches provide poorer results in regard to the383

identification of this family.384

The overall results of our experiments suggest that identifying the ML families of black-box models385

is a challenging but promising approach. The use of dissimilarity measures based on predicted class386

labels or class conditional probabilities has proven to be effective in identifying ML families with a387

reasonable degree of accuracy. It is important to note that the complexity of the family identification388

problem is due to the fact that many ML families share similar characteristics and decision boundaries.389

Therefore, it is difficult to find clear differences between them that allow for straightforward identification.390

This complexity is also reflected in the fact that the best performing approach varies depending on the391

evaluation metric used (i.e. κ or µ). Despite these challenges, our results show that the meta-similarity392

approach outperforms the maximum similarity approach in terms of accuracy. However, this approach393

also presents a potential danger, as it could be used by malicious actors for adversarial attacks targeting a394

specific family.395
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5. Conclusions and future work396

This work addresses the problem of identifying the model family of a black-box learning model. For397

this purpose, we propose two approaches based on dissimilarity measures δ. The first approach, which398

we call the maximum similarity approach, uses Cohen’s kappa coefficient as δ when the models are able399

to predict class labels (i.e. the crisp scenario). In this approach, several surrogate models from different400

learning families are trained on a set of artificial examples labelled by the black-box model (which acts as401

an oracle). The predicted machine learning family for the black box model is the one with the surrogate402

model that has the best value for δ. The second approach, which we call the meta-similarity approach,403

uses the L1 norm as δ for cases where the models predict class conditional probabilities (i.e. the soft404

scenario). This approach uses the δ values as meta-features to represent the black-box model. These405

values are then used as metadata to learn a meta-model that can predict the learning family of a black-box406

model.407

The experiments conducted in this study show that the first proposed approach for identifying ML408

families, based on δ measures, performed poorly but was still able to improve the accuracy of the results409

over a random baseline. In contrast, the second approach, based on meta-models using abstract meta-410

features derived from dissimilarity measures, achieved significantly higher accuracy in identifying the411

ML families of black-box models. These results highlight the potential of using meta-models trained412

on abstract meta-features for ML family identification. This potential is further supported by the results413

obtained by combining the meta-features generated using both evaluation metrics, which yielded the414

highest overall accuracy among the proposed approaches.415

To enhance the performance of our meta-model-based approach for identifying the family of black-416

box learning models, we plan to investigate the use of additional measures of model divergence and417

diversity as meta-features. For example, measures such as Bhattacharyya distance [60], Jaccard similarity418

coefficient [61] and Tanimoto distance [62] have been proposed in the literature to compare probability419

density functions [63] and could be explored to capture different aspects of model dissimilarity. In addition420

to our focus on operational efficiency and effectiveness, we are also interested in exploring alternative421

query strategies for generating surrogate datasets. For example, Latin Hypercube [64], Centroidal Voronoi422

Tessellation [65] and Sobol [66] sampling approaches are promising alternatives that could improve the423

representativeness of surrogate datasets and increase the accuracy of the model identification process.424
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Appendix A. Study of the impact of the surrogate dataset size430

Generating the surrogate dataset SD is a crucial step in identifying the model family, and our approach431

for generating SD follows a simple strategy of employing a uniform distribution for each feature. This is432

because we treat the oracle as a black-box model, meaning that we have no knowledge of the training433
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data it used. Therefore, we cannot use any information from the training data, such as data sparsity,434

separability, or attribute correlations, to guide the generation of the surrogate dataset.435

The size of the surrogate dataset is thus a decisive aspect of our methodology, as it is the basis for436

learning and evaluating the surrogate models. In this sense, we conducted an illustrative experimental437

study to observe how the size of the dataset affects the accuracy of the family identification task. The438

method we followed is similar to that described in Section 3.1, where we generate oracles and their439

corresponding surrogate models, but we varied the size of the surrogate dataset. Specifically, we computed440

the size of the surrogate dataset as |SD| = θ × F , where F is the number of attributes in the problem and441

θ is a size factor that we manually set to 10, 100 and 1000 to consider different orders of magnitude. To442

identify the model family of an oracle, we used the maximum similarity approach in a crisp scenario for443

efficiency reasons. We compared the results of the oracles and the surrogate models using the κ metric, as444

described in Section 3.3. To obtain more significant results, we repeated the entire procedure 10 times for445

each surrogate dataset size and dataset, and averaged the results.446

Fig. A1. Family identification accuracy obtained for the listed datasets, when varying the size of the surrogate dataset SD,
following the maximum similarity approach in the crisp scenario. Average results represented by the solid black line.

To evaluate the impact of the size factor (θ) of the surrogate dataset on the family identification perfor-447

mance, we conducted an illustrative experiment on ten OpenML datasets. The results are summarised in448

Appendix Fig. A1. We can see that for three of the datasets (badges, car and scale) the highest accuracy449

is achieved with a size factor of 100. On the other hand, for four datasets (diabetes, credit-a, credit-g,450

and banknote authentication), the performance gain decreases significantly beyond a size factor of 100,451

compared to the jump between size factors of 10 and 100. It is worth noting that using a small number of452

examples (θ 6 100) does not give very accurate results for family identification. Similarly, using a large453
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number of examples (> 300) does not necessarily improve identification performance (see the average454

curve in Appendix Fig. A1). Therefore, finding an optimal size factor for the surrogate dataset is crucial455

for achieving good performance in family identification. Further research could investigate the possibility456

of determining this optimal size factor in a more automated way, based on the properties of the dataset457

and the black box model.458

It might seem that a larger SD would provide more information, leading to better accuracy in model459

family identification. However, in our simple experiment we observed that the maximum accuracy for460

family identification was achieved when using a θ between 100 and 1000. Increasing the size factor by461

an order of magnitude (up to a θ of 1000) did not improve the accuracy of model family identification.462

This phenomenon may occur because the better the surrogate models mimic the decision boundaries,463

the more detailed (and similar) the decision boundaries of the surrogate models become, and the less464

distinguishable they become. These results suggest that some appropriate values for θ would be around465

100. So for the rest of the experiments in this paper, we chose a value of θ = 100 when generating the466

surrogate datasets.467

Appendix B. Exploration of the Meta-model hyperparameters468

Our meta-model, a Random Forest algorithm [59], gives us the opportunity to tune its hyper-parameters.469

This allows us to delve deeper into the task of identifying model families and the different representations470

for each scenario. By performing a grid search and cross-validation to find the best hyperparameters, first,471

we adjusted the number of trees in the meta-model (NT), ranging from 1 to 1024. This variation helped us472

to assess the complexity inherent in the datasets of meta-features created using κ, µ or a combination473

of both. Essentially, the number of trees required reflects the complexity of the patterns in the dataset –474

more trees indicate more complex patterns. The results of this analysis are summarised in Appendix475

Table B1. We also changed the number of features (NF) to be considered in each split, which affected the476

optimisation of the model. The results, detailed in Appendix Table B2, highlight the configurations that477

achieved the highest accuracy, which we then applied in subsequent experiments detailed in Section 4.2.478

Table B1
Accuracies for meta-model (Random
Forest) training across three scenar-
ios (crisp using κi, soft using µi, and
a combination of both) with varying
number of trees (NT hyperparame-
ter). The configurations that achieved
the highest accuracy are in bold

NT Crisp Soft Hybrid
2 0.23 0.30 0.35
4 0.30 0.37 0.40
8 0.35 0.40 0.44

16 0.36 0.43 0.45
32 0.37 0.45 0.49
64 0.41 0.43 0.48

128 0.40 0.45 0.50
256 0.39 0.45 0.51
512 0.38 0.44 0.50

1024 0.39 0.44 0.48
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Table B2
Accuracies for meta-model (Random
Forest) training across three scenarios
(crisp using κi, soft using µi, and a com-
bination of both) with varying number of
features (NF hyperparameter). "–" indi-
cates that data for the respective scenario
and Number of Features (NF) was not
available or not applicable. The config-
urations that achieved the highest accu-
racy are in bold

NF Crisp Soft Hybrid
1 0.36 0.41 0.46
2 0.38 0.41 0.48
3 0.37 0.44 0.49
4 0.37 0.44 0.48
5 0.35 0.43 0.48
6 0.35 0.44 0.49
7 0.41 0.43 0.46
8 0.37 0.44 0.49
9 0.38 0.45 0.49

10 0.36 0.45 0.47
11 0.35 0.44 0.48
12 – – 0.47
13 – – 0.47
14 – – 0.49
15 – – 0.49
16 – – 0.48
17 – – 0.49
18 – – 0.51
19 – – 0.47
20 – – 0.47
21 – – 0.49
22 – – 0.49

The variations in these two parameters highlight interesting aspects of the identification of model479

families using a meta-similarity approach. In the crisp scenario, optimal performance was achieved with480

64 trees, indicating that additional trees up to 1024 do not significantly improve the accuracy of the481

meta-model. This implies that the meta-features in the crisp scenario provide a simple representation,482

achieving an accuracy of 40.7% with these features alone. For the soft scenario, at least 128 trees were483

required to achieve maximum accuracy, suggesting a more complex set of features. Combining both484

meta-features required 256 trees for maximum accuracy.485

Looking at the ’number of features’ parameter, it is clear that not all available features were used to486

achieve maximum accuracy in all scenarios; 7 out of 11 features for the crisp scenario, 10 out of 11487

for the soft scenario, and 18 out of 22 for the hybrid scenario. This suggests the presence of redundant488

meta-features, probably generated by closely related model families. This is shown in more detail in489

Appendix Fig. B1: the most relevant features used in the hybrid approach are also the most used within490

their individual methods. Interestingly, both the hybrid and crisp methods exclude the same meta-features491

related to kappa values for classifiers such as DA, MLP, NB and PLSR. The soft method, on the other492

hand, only excludes SVM. Decision trees (DT) and generalised linear models (GLM) emerge as significant493

in all three methods. While NB, PLSR and DA are considered less significant in the crisp method, it is494

noteworthy that they are in the top five in both the soft and hybrid approaches. However, neural networks495
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(NNET) and SVM consistently show low relevance, either not being selected at all or being selected last,496

indicating their limited utility in family identification tasks.497

Fig. B1. Feature importances for the meta-model (Random Forest) for each scenario: crisp, soft and hybrid. Meta-features sorted
by aggregated relevance.

Overall, the meta-features of the crisp scenario, which require fewer trees for optimal performance,498

show simpler patterns. In contrast, the meta-features of the hybrid approach, which require more trees for499

peak accuracy, offer a more complex representation. Simpler representations require fewer features for500

higher accuracy.501
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