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Abstract. Proper data items distribution may seriously improve the performance of data processing in distributed environment.
However, typical datastorage systems as well as distributed computational frameworks do not pay special attention to that aspect.
In this paper author introduces two custom data items addressing methods for distributed datastorage on the example of Scalable
Distributed Two-Layer Datastore. The basic idea of those methods is to preserve that data items stored on the same cluster node
are similar to each other following concepts of data clustering. Still, most of the data clustering mechanisms have serious problem
with data scalability which is a severe limitation in Big Data applications. The proposed methods allow to efficiently distribute
data set over a set of buckets. As it was shown by the experimental results, all proposed methods generate good results efficiently
in comparison to traditional clustering techniques like k-means, agglomerative and birch clustering. Distributed environment
experiments shown that proper data distribution can seriously improve the effectiveness of Big Data processing.

Keywords: SD2DS, data clustering, Big Data

1. Introduction

Key-based data distribution is today a standard of data distribution in Big Data systems. It provides
the uniform data distribution over a set of cluster nodes. However, this approach does not particularly
take into consideration the actual content of the data. Consequently, similar data items may be randomly
distributed. On the other hand, content aware data distribution can be used to improve the effectiveness of
distributed processing.

Organizing data items based on their similarity is a well known classification problem typically solved
using data clustering. Despite the years of research in the area of data clustering, it is still a popular
and non-trivial problem especially for contemporary enormous data sets. Nowadays, many Big Data
processing techniques can not be efficiently performed without using the parallel and distributed systems.
However, most of the traditional algorithms require availability of the whole data set in a centralized unit
which seriously complicates the matter [3]. High volume of data, data variety, different data structure or
high-dimensional data contribute to the high complexity of the problem. It was already proved that there
is no best clustering method [21].

Scalable Distributed 2-Layer Datastore (SD2DS) is a fully scalable system for storing and processing
Big Data. The aim of this work is to develop a new addressing method for SD2DS that will automatically
perform basic data clustering without the loss of performance and scalability. Previously used addressing
methods focused on proper data distribution without paying particular attention to clustering, thereby
omitting data items similarity or their meaning in general. The proposed addressing methods that group
similar data items on the same distributed system node are defined as static data clustering. The term
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static in this context means that the method is performed during the process of inserting a data item into
the datastore and never changes. It seems to be a serious limitation because the clustering method is
strictly defined and it can not be changed during the use of datastore. Moreover, the data can not be treated
in any other way. On the other hand, it can be considered as an entry point for other data exploration
techniques, what is a valuable advantage.

This paper is organized as follows. Section 2 describes related works. In Section 3 author briefly intro-
duces SD2DS and its data processing model. Section 4 presents the new approaches to distributing data
items in Big Data environments based on SD2DS. Experimental evaluation of the proposed approaches is
presented in Section 5. The paper ends with conclusions.

2. Related works

Data clustering is a powerful tool commonly used in many expert systems. Not only the basic clustering
methods [18] but also the complicated ones [14,47] have been well known for many years. Most of them
were developed for relatively small representative data sets and do not scale well or even are inefficient
with Big Data sets [18]. There are many works on both developing new methods and adapting the existing
ones for parallel and distributed environments. Most of the traditional clustering methods (like K-means)
present a great challenge while using them in distributed environment. Mostly they require access to the
whole data set to perform their tasks. A very interesting idea to perform clustering for Big Data is to
use some variation of space partition clustering [5]. In that case each data node may be responsible for
managing a set of data items that occupies a specific area of the whole space. Additionally, merging data
items from a group of nodes (or dividing data items into some nodes) allows to aggregate the data items
similarly as using hierarchical clustering [6]. Newly created algorithms often utilize the deep learning
approach to data clustering. The most well known examples are based on Self Organizing Maps [42] or
Expectation-Maximization [17].

The increasing growth of gathered data sets forces development of novel techniques of data mining. A
lot of them was utilized to deal with data sets that are beyond the possibilities of a single machine. Data
streaming and parallelization are two the most popular approaches of dealing with really huge data sets.

Apart from great advantages, like reducing memory consumption and ease of development, clustering
using streaming frameworks has also serious drawbacks: often allows to process each data item only
once (one-pass approach) and can be sensitive to the order of the data items. To overcome this problem
an evolving approach is often utilized which provides the concept of time windows allowing to create
a micro-clusters from a continuous set of data items. Sliding window is the most common approach of
utilizing those time windows [7,49]. It can be suitable for time evolving data [34] as it can properly
handle the drifting problem [9]. CluStream [1] is one of the well known stream based clustering method.
It divides the clustering process into two phases: online process, for statistical summary of the portion
of the data, and offline process, for final clustering with user defined time period. DenStream presents a
serious improvement in terms of detection of arbitrary shape clusters, detection of the number of clusters
and noise insensitivity by detecting the density of the clusters [7]. HPStream allows to build proper
cluster thanks to taking into consideration most recent data items and eliminating outdated ones [49].
This approach can not only improve the quality of the cluster but also allows to formulate the queries
considering specified time periods [49].

There are many parallel clustering algorithms both versions of original algorithms and algorithms
built from scratch [39]. Popular techniques, known from traditional clustering algorithms, like sample
clustering, dimension reduction [11] or hierarchical approach, which allow to divide and/or merge
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data subsets, present the natural way to perform parallel computation. The parallelization of the most
recognizable K-means method was widely discussed (e.g. [48]). Additionally, parallel version of DBSCAN
can be found in [44], while parallel version of BIRCH was proposed in [12]. There are also many methods
specially developed for custom needs in the areas like bio-informatics [30] or for cosmological data [2].
Many of them were created based on distributed PCA method [26] or by merging the intermediate
outcomes [28]. A good overview of parallel clustering methods can be found in [20].

While the data distribution becomes the most popular today for dealing with high volume of data, it still
has a lot of disadvantages. Most of the approaches on clustering Big Data today is usually built on top of
the MapReduce framework [10] or similar systems like Apache Spark [16]. While MapReduce has some
serious limitations itself [19], it also often requires to discard the referenced well known algorithms in
favour of introducing specific ones. This might be the serious issue for many applications which require
proven and well described algorithms. Additionally, methods based on MapReduce [10] suffer from
large network transfer [45]. Moreover, data distribution may also cause the problem of local optimum
convergence [35]. Additionally, most of the distributed systems need some form of central node, which
may become bottle-neck or even a single point of failure. Alternatively, they will need a very complex
distributed consensus algorithm [3].

The typical approach to distribute data items over a set of distributed system nodes uses one of the
following strategies:

– Key or keys based – each data item is identified by a unique key (systems such as: Dynamo [37] or
Hazelcast),

– name based – typically used by distributed files systems (like in Google File System [13], Hadoop
File System [36] or internal storage of Apache Spark [46]),

– topic based – identified by a name of the topic which data was published to (like in Apache
Kafka [40]).

Well known classification of NoSQL datastorages divides those systems into four categories: key-
value [38], column-based [8], graph-based [4] and document-based [33]. Despite the differences in
internal data structure, data items are still most commonly identified by a unique key. For example
MongoDB usually identifies documents by keys [32], Neo4J typically identifies the nodes by ids [29],
similarly HBase assigns rowids to the rows stored in tables [43].

All in all, most of those solutions do not even consider the content of the data during data distribution
process. However, distributing data items based on their content can seriously improve processing
methods. For example, processing tasks may be specially prepared for each data partition and do not
need to assume that data items are mixed. As a striking example, data partition can be treated as noise
and omitted during processing when the number of data items is less than some predefined value.
This approach is expected to significantly improve distributed calculations in comparison to the typical
approaches known from MapReduce, Apache Spark or Apache Kafka.

3. Scalable Distributed Two Layer Datastore

Scalable Distributed Two Layer Datastore (SD2DS) [22] proved to be a very efficient solution for storing
massive data sets. The basic idea of the SD2DS is the division of the data item (called component) into
two separate parts: the component header (identified by a unique key k) and the component body. While
the component body stores the actual data of any form, the component header stores the metadata. The
most important part of the header is the component locator which allows to address the component body.
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Fig. 1. The architecture of SD2DS consisting of M buckets.

On the other hand, the component header is accessed without any central directory with the utilization of
the Distributed Linear Hashing mechanism. The overall architecture of the Scalable Distributed Two-
Layer Datastore is presented in Fig. 1. The header itself is a perfect place to store a piece of additional
information which can increase performance, fault tolerance or even provide a mechanism for an advanced
data indexing.

3.1. Distributed Linear Hashing

The distributed addressing for an appropriate header is performed by Distributed Linear Hashing (LH∗)
mechanism [27]. An essential parameter of LH∗ is the bucket level (i). It determines the actual number of
used buckets and is applied to perform addressing. The data items in LH∗ are addressed by two hashing
functions: hi(k) and hi+1(k). Both are described as:

hi(k) = k mod N ∗ 2i (1)

and

hi+1(k) = k mod N ∗ 2i+1 (2)

where:
– k – a unique component key,
– N – an initial number of buckets,
– i – an actual level.
This approach can alternatively be presented as determining the data item address based on the least

significant bits of its key.
An additional parameter (n) determines which one of the two hashing functions needs to be used. The

two parameters i and n represent the actual state of the buckets and are essential to perform addressing in
SD2DS. Both clients and buckets do not need to know their exact values. The overall number of buckets
(M ) is strictly correlated with the values of i and n in such a way that:

M = 2i + n (3)

Even when the values of the state (i and n) are outdated on the client side, the client’s request will be
forwarded to the appropriate bucket. Additionally, the special message (IAM) will be sent to the client
to update its parameters in such a way to prevent the same addressing errors in the future. The header
addressing in LH∗ is presented in the Algorithm 1.
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Algorithm 1 The addressing function for LH∗ schema (addrLH∗(k)) [27]
Data: i, n, k
Result: Address of a component
a← hi(k)
if a < n then

a← hi+1(k)
end
return a

3.2. SD2SD processing model

The processing model for SD2DS [23] was developed for high dimensional Big Data sets. Such a form
of data items is still a big challenge in many data exploration techniques [15]. Each data item, that is
stored in the second layer of SD2DS, is represented as a feature vector:

−→xj = (x1j , x
2
j , . . . , x

d
j ) (4)

where:
– −→xj – jth data item,
– d – number of data dimensions,
– x1j , x

2
j , . . . , x

d
j – values of appropriate dimensions (features).

This simple data representation is suitable for most of the data exploration needs. However, addressing
those data items may be really challenging. As stated above, LH∗ needs a unique component key that is
used to perform addressing process. This work aims to overcome this problem by introducing a content
based addressing method which also may be considered as data clustering.

SD2DS allows executing distributed processing jobs using mechanism similar to MapReduce
paradigm [23]. It divides the jobs into block function, which is executed on each data items parti-
tion and aggregate function which gathers the intermediate and final results. Those tasks are considered
as equivalents to map and reduce functions respectively.

3.3. Simple static clustering in SD2DS (SD2DS_S)

The paper [24] firstly stated the above mentioned problem and introduced a basic solution for it which
is now described as simple static clustering (SD2DS_S). The basic idea in the proposed approach is to
treat each bucket as a part of the multi–dimensional space:

Bm = (−−−→maxm,−−−→mınm) (5)

where −−−→mınm and −−−→maxm are vectors described as:
−−−→mınm = (min1

m,min2
m, . . . ,mind

m) (6)
−−−→maxm = (max 1

m,max 2
m, . . . ,max d

m) (7)

Each data item is managed by the bucket that is responsible for a disjoint part of the space which creates
a partitional, hard clustering solution. The similarity of the data items is measured by the simple euclidean
distance. However, picking an appropriate distance measure can seriously improve the clustering result,
the euclidean distance is chosen as the most typically used. This measure is used in all the proposed
methods in the paper. Additionally, by utilizing different LH∗ level value (i) the clustering method may
also be considered as hierarchical clustering. The graphical representation of a single bucket described by
this simple static clustering method is presented in Fig. 2.
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Fig. 2. The graphical representation of a bucket (d = 3) for a SD2DS_S method.

Fig. 3. The graphical representation of a bucket (d = 3) for SD2DS_A method.

Although the simple static clustering proved to be an efficient and effective method it still has problems
with arbitrary shape clusters. This paper is focused on developing a solution that can overcome this
limitation preserving both effectiveness and scalability.

4. Data distribution in SD2DS

4.1. Advanced static clustering (SD2DS_A)

SD2DS_S method presented in the previous section can only introduce clusters of rectangular shapes
(or hyper-rectangular shapes in general) which is a very serious restriction. To overcome this issue other
approaches should be investigated.

The proposed solution of this problem is to treat each first layer bucket description as a sequence of
vectors:

Vm = (−→vm1,−→vm2, . . . ,−→vmd) (8)

In such a way all points that lie in the area designated by this sequence of vectors (Vm) are managed
by the first layer bucket (m). The graphical representation of a single bucket in this scenario is illustrated
in the Fig. 3. The exact determination of the −→vm1, . . . , −→vmd is presented in the following section in the
Algorithms 3 and 4.



A. Krechowicz / Content-aware data distribution over cluster nodes 913

4.1.1. Component addressing
In order to perform the component addressing it is needed to determine if an examined data item lies

between two vectors:

∀−→va,
−→vb ,
−→xj

bet(−→va,−→vb ,−→xj) = true ⇐⇒ ∠(−→va,−→xj) < ∠(−→va,−→vb) ∧ ∠(−→vb ,−→xj) < ∠(−→va,−→vb) (9)

where
– bet(−→va,−→vb ,−→xj) – is −→xj between vectors −→va and −→vb
– ∠ – the angle between two vectors.
The above equation can be resolved as:

bet(−→va,−→vb ,−→xj) = arccos

( −→va ∗ −→xj
|−→va| ∗ | −→xj |

)
< arccos

( −→va ∗ −→vb
|−→va| ∗ |−→vb |

)
∧

arccos

( −→va ∗ −→xj
|−→vb | ∗ | −→xj |

)
< arccos

( −→va ∗ −→vb
|−→va| ∗ |−→vb |

)
The whole process of determining the data item membership to the designated bucket can be described

as:

∀−→xj∈X
addrASC(

−→xj) = m⇒ ∀
{−→va,
−→vb}:−→va,

−→vb∈Vm

bet(−→va,−→vb ,−→xj) (10)

This approach can be also defined as operations in the polar coordinate system. In that case a bucket
is represented as a radius and an appropriate angle which cover part of the whole space. In order to
stay consistent with other proposed methods and to avoid conversion between coordinate systems the
Cartesian interpretation is preferable.

The data item addressing process is conducted hierarchically, similarly as in the SD2DS_S described
in the previous section. The SD2DS_A method is suitable for the cases where i > d. In other cases
appropriate buckets are determined by unit vectors (versors) of the appropriate orthants. The Algorithm 2
represents the method of finding the appropriate orthant that contains selected data item while Algorithm 3
returns the set of versors for that selected orthant.

Algorithm 2 Function for determining the orthant for vector (orthant(−→xj))

Data: −→xj = (x1
j , x

2
j , . . . , x

d
j )

Result: Orthant number
orthant ← i2

for idx ← i− 1 downto 0 do
if xidx

j > 0 then
orthant ← orthant − 2idx

end
end
return orthant

The overall procedure of addressing data item in SD2DS_A is presented in Algorithm 4.

4.1.2. Bucket split
Similarly, as in the SD2DS_S the split of a bucket may be considered as a division of space that

is managed by the bucket. The graphical representation of a bucket split in two–dimensional space is
presented in Fig. 4.
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Algorithm 3 Function for creating initial set of versors (versors(−→xj))

Data: −→xj = (x1
j , x

2
j , . . . , x

d
j )

Result: Initial set of bucket versors
versors ← (−→v1 ,−→v2 , . . . ,−→vd)
for idx ← 1 to d do
−−→vidx ← ~0
vidxidx = sgn(x j

j )

end
return versors

Algorithm 4 The component addressing (addrASC(
−→xj)) for advanced static clustering

Data: −→xj = (x1
j , x

2
j , . . . , x

n
j ), i > d

Result: Bucket number
bucket ← orthant(−→xj)− 1
vrs ← versors(−→xj)
for idx ← 0 to i− d do

a← idx mod d
a′ ← (a+ 1) mod d

−→n ←
−−→
vrsa +

−−−→
vrsa

′

nvrs ← vrs−−−→
nvrsa ←

−→n
‖−→n ‖

if bet(nvrs,−→xj) = true then
bucket← bucket+ 2idx+d

vrs ← nvrs
else
−−−→
vrsa

′
←

−→n
‖−→n ‖

end
end
return bucket

Fig. 4. Graphical representation of a split of a bucket for advanced static clustering.

The creation of a new vector that represents the border between the old and newly created bucket is
simply a normalized vector obtained by adding two vectors:

−→n =
−→vm1 +−→vm2

|−→vm1 +−→vm2|
(11)

In two-dimensional space the original bucket is described as:

Vm = (−→vm1,−→n ) (12)
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Fig. 5. An example of SD2DS_A clustering structure (d = 2).

while the newly created bucket is described as:

Vm+2i = (−→n ,−→vm2) (13)

The overall procedure of splitting bucket in d-dimensional space is presented in Algorithm 5.

Algorithm 5 Split of bucket for advanced static clustering (splitASC(Vm))

Data: Vm = (−→vm1,−→vm2, . . . ,−→vmd),i > d
a← i mod d
a′ ← (a+ 1) mod d
new ← m+ 2i−→n ← −→vma +−→vma′

Vnew ← Vm−→vma ←
−→n
‖−→n ‖

−−→vnew
a′ ←

−→n
‖−→n ‖

forall ~x on Bucket k do
if bet(Vnew ,

−→xj) then
Move x to Bucket new

end
end
return Vnew

4.2. Combined static clustering (SD2DS_C)

More complicated shapes of cluster can still pose a challenge to both SD2DS_S and SD2DS_A
methods. The SD2DS_A method will still generate not accurate results when the cluster will occupy
the centre of the coordinate system. This problem may be resolved by combining those two techniques
in such a way that the SD2DS_S is used to translate the local coordinate system to properly handle
that situation. In order to achieve that, a threshold (T ) value was introduced, which determines which
algorithm to use in order to perform addressing and splitting operations in such a way that:

– i < T – SD2DS_S algorithm is performed,
– i > T – SD2DS_A algoritm is performed.
The threshold value needs to fulfil the requirement:

T = d ∗ n, n ∈ N (14)

where:
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Fig. 6. SD2DS_C clusters structure (d = 2, i = 7, T = 6).

Fig. 7. An example of SD2DS_C structure (d = 2).

– N – a set of natural numbers.
The graphical representation of a SD2DS_C is presented in Fig. 6. As it can be seen, the SD2DS_C

introduces a centre of a local coordinate system for each bucket similarly as in SD2DS_S. The centre
of a local coordinate system is defined by bucket on the level T − d. The Fig. 7 presents an example of
buckets division in two-dimensional space.

5. Experimental results

The evaluation was conducted both using simulations and Big Data distributed environment. By using
simulations it was possible to evaluate the data distribution, quality of distribution and efficiency in
comparison with the traditional clustering methods that are not suitable for distributed environments.
On the other hand, utilizing distributed implementation allows to evaluate methods on a Big Data set in
environment with many clients running simultaneously on SD2DS.

The proposed advanced (SD2DS_A) and combined static clustering (SD2DS_C) were evaluated by
comparing them with simple static clustering (SD2DS_S) as well as with traditional clustering techniques
like k-means (depicted as Kmeans in figures), agglomerative hierarchical clustering (Agglomerative in
figures) and birch clustering (Birch in figures). The implementation from a scikit-learn package [31]
was used for all the traditional methods. In the next sub-sections of this paper the quality evaluation was
presented. Moreover, the speed and scalability evaluation were shown. To perform evaluation different
data sets were randomly generated with a variety of noise ratios, different data-dimensionality and
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Table 1
Parameters of synthecic datasets

Shape Samples Features Noise Centres Center box
Blob, moons 500÷ 10000 2 0.1÷ 0.9 3 (−1; 1)

different sizes. The parameters of random datasets are presented in Table 1. Those synthetic data sets
allow to deeply analyse both the performance and quality of the proposed solutions.

As previously presented in the [22,25], SD2DS system already proved its value for processing Big
Data sets. In those works the extensive evaluation of SD2DS with comparison to other Big Data storages
(MongoDB, MemCached) was presented. That is way in this paper author could focus more on another
aspect of SD2DS processing engine namely on developing an efficient addressing methods with built-in
clustering. Additionally, because of the static nature of this clustering it is reasonable to compare its
results and performance with classical, referenced and still widely used implementations [18].

5.1. Quality evaluation

Clustering quality evaluation was carried out by comparing the results of all methods performed on
the same data set. The data set was generated using scikit-learn package which gives the opportunity to
evaluate methods on different shapes of clusters as well as on different noise ratios. It was vital to use
randomly generated datasets in order to perform this evaluation because of the presence of data clustering
answers. Those answers indicate to which cluster the data item belongs. Since we want similar data items
to be located in the same bucket, it is reasonable to treat the most numerous collection of data items
that belongs to single cluster a proper distribution. Other, less numerous data items, that belong to other
clusters are considered as errors. In that case the rate of errors was calculated as follows:

errors[%] =

(M−1∑
m=0

(
|Xm| −max c∈C |Xm

c |
))
∗ 100/|X| (15)

where:
– X – a set of all data items,
– Xm – a set of data items managed by mth bucket,
– Xm

c – a set of data items managed by mth bucket that belongs to c cluster,
– C – the set of all clusters.
The Figs 8 and 9 present the classification errors with relation to the data noise in generated test data

set with the shape of blob and moons respectively. Both figures used two-dimensional data items with
LH* level set to 6 and the threshold for combined static clustering set to 4.

Those two figures prove the good cluster quality results of all the proposed methods. The number of
classification errors is strictly similar with both k–means and agglomerative clustering. The slight deteri-
oration introduced by SD2DS_A technique was compensated by using SD2DS_C method. Definitively
the worst results were acquired for the birch method which does not perform very well with fixed number
of clusters.

Figure 10 presents the results of clustering errors with the relation to the LH* level. All the compared
methods present similar results and indicate an improvement of a clustering results with the LH* level
growth. Figure 10 also shows that the low value of a threshold in SD2DS_C can give better results.

Figure 11 presents the results of clustering errors with the relation to the number of data items. In this
figure SD2DS_C_2T, SD2DS_C_4T, SD2DS_C_6T means combined static clustering with threshold set
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Fig. 8. The classification errors with relation to the data noise for blob clusters.

Fig. 9. The classification errors with relation to the data noise for moons clusters.

Fig. 10. The classification errors with relation to the LH* level.

to 2, 4, and 6 respectively. In this case the SD2DS_A generates quite similar results to the k-means and
agglomerative clustering which seem to be the most accurate. However, all proposed static clustering
techniques seem to be better than birch clustering. The similar conclusions may be drawn from the Fig. 12
in which the clustering errors were evaluated in the relation to the number of clusters.

The evaluation of clustering errors in relation to the number of data features was presented in Figs 13
and 14 with a different data cluster noises (0.5 and 0.9 respectively). As it can be seen for high-dimensional
data, the SD2DS_S appears to be the most accurate.
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Fig. 11. The classification errors with relation to the number of data items.

Fig. 12. The classification errors with relation to the number of the clusters.

Fig. 13. The classification errors with relation to the number of features (noise = 0.5).

5.2. Performance evaluation

Performance evaluation was carried out by comparing the speed of clustering of a scikit-learn test data
set. The speed of clustering with relation to the number of features was presented in Fig. 15. As it can be
seen, all proposed algorithms perform faster than traditional k-means technique, however, slower than
birch and agglomerative clustering. The evaluation of a clustering speed with relation to the number of
data items was presented in Fig. 16. In that case, as the data set grows, the efficiency of a traditional
hierarchical, agglomerative method significantly decreases. All the proposed algorithms have much better
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Fig. 14. The classification errors with relation to the number of features (noise = 0.9).

Fig. 15. The speed of clustering with relation to the number of features.

Fig. 16. The speed of clustering with relation to the number of data items.

efficiency than the traditional methods. Similar results were obtained during the evaluation of a speed of
clustering with relation to the LH* level. The corresponding result was presented in Fig. 17. In that case
the LH* level was correlated with the number of clusters in a form of:

|C| = 2i (16)

The next experiment was conducted to evaluate the scalability of all proposed methods. The results
were presented in Fig. 18. In the case of inserting additional data item, all the evaluated traditional
methods need to process the whole data set to perform clustering. To the contrary, all proposed static
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Fig. 17. The speed of clustering with relation to the LH* level.

Fig. 18. The scalability of clustering speed with relation to the data items.

clustering techniques allow incremental clustering which can produce almost constant processing time
during insertion of additional data items. This is a very important issue for applications with high velocity
and volume of the data.

5.3. Data distribution evaluation

Typical addressing methods in Big Data systems offer a very good data distribution in such a way that
all nodes manage a very similar number of data items. This is not the case when the data are distributed
based on their content. To measure the quality of data items distribution popular clustering data sets were
used from the Fundamental Clustering Problems Suite [41] called LSUN and ATOM.

Figure 19 presents the number of data items that is managed by buckets with different LH∗ levels (2, 3,
4). As it can be seen with the low value of LH∗ level the data distribution is far from acceptance. But as
the level grows the data distribution becomes more and more uniform. Figures 20 and 21 present how
fast the distribution becomes flat as the LH∗ level grows. Those figures present the standard deviation of
all buckets loads. All proposed methods produce very similar results and as it can be seen, the standard
deviation reaches near zero value for 8–12 LH∗ level. In the case of ATOM data set, the SD2DS_C
method produces the best quality even for the lowest level value.

5.4. Big Data evaluation

The most important evaluation was performed on distributed SD2DS implementation on a set of 16
cluster nodes. Additionally, 10 more nodes were used to run clients applications which execute search
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Fig. 19. Distribution of data items on buckets using LSUN dataset.

Fig. 20. Standard deviation of bucket load using LSUN dataset.

Fig. 21. Standard deviation of bucket load using ATOM dataset.

queries on datastore. The conducted experiments allow to asses how appropriate distribution can help
in speeding up the distributed computation. An ATOM [41] data set was used in those experiments.
However, this data set is relatively small for big data applications (only 800 samples). That is why it
was decided to duplicate data items in such a way that each node consists of even 300.000 data items.
In this way by using 16 nodes, the greatest data set consisting of 4.800.000 samples was generated.
Duplication was performed simply by inserting each data sample multiple times. No additional noise or
other data transformations were introduced. Since all search jobs find all occurrences of searched sample,
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Fig. 22. Search time on 960.000 data items with relation to the number of clients.

Fig. 23. Search time on 4.800.000 data items with relation to the number of clients.

this simplification does not pose a serious problem. The experiment consisted of performing tasks of
searching of data items. Executed jobs, described as MapReduce tasks, are illustrated in Algorithms 6 and
7. The Algorithm 6 presents a very simple implementation of data items searching that does not consider
the data distribution and assumes that each data item may be located on every node (depicted as Naive in
the figures). On the other hand, Algorithm 7 is aware of the data distribution in such a way that the Map
job searches for the data items only on those nodes that can actually contain them.

Algorithm 6 MapReduce job for naive searching

Data: −→xj – Searched data item
Function map(key,value):

foreach data item ∈ value do
if data item = −→xj then

Emit(key,data item)
end

end
Function reduce(key,values):

Emit(key,values)

Figures 22 and 23 present comparison of time of searching data items using the proposed distributions
with naive approach in a distributed environment with up to 90 clients simultaneously operating on
datastorage. Figure 22 presents the result with 960.000 data items stored in the SD2DS while Fig. 23
presents the result with 4.800.000 samples. As it can be seen, the algorithms that are aware of the data
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items distribution allow to seriously speed up the searching process. All SD2DS specific methods present
very similar results while the slowest of them is SD2DS_A method as it is the most computationally
expensive.

Algorithm 7 MapReduce job for distribution aware searching

Data: −→xj – Searched data item, B – bucket number
Function map(key,value):

if addr(−→xj) = B then
foreach data item ∈ value do

if data item = −→xj then
Emit(key,data item)

end
end

end
Function reduce(key,values):

Emit(key,values)

5.5. Discussion

In-depth analysis of all the results allows to draw a conclusion about the comparison of all the proposed
methods. In the case of the clustering quality, the proposed SD2DS_A and SD2DS_C methods present the
best results, especially with the clusters of complicated shapes. This is especially visible by comparing
Figs 8 and 9. Advantages of the quality of the results for the SD2DS_A method are visible when the
shapes of the clusters become more and more complicated (i.e. by changing from simple blobs to more
complicated moons shapes). However, in the case of the performance the SD2DS_A method appears to
be the most time consuming. Previously developed SD2DS_S method is still the fastest one. Since, the
scalability of all those methods is very high this performance issue do not pose significant problem.

The ability to deal with arbitrary shape clusters by proposed methods is also visible in the case of
the data distribution evaluation. In that case SD2DS_A method is also responsible for generating the
best results. In the case of the Big Data evaluation, the difference in performance between SD2DS_S
and SD2DS_A method is still visible. As it can be expected, the SD2DS_A is the slowest of all three
compared methods.

SD2DS_C method is considered as trade off between the SD2DS_A, time consuming but accurate
method, and the fastest SD2DS_S. It allows to increase the quality of the simple method as well as
speed up the advanced method. Additionally, a carefully chosen threshold parameter helps to improve the
quality result for some problematic clusters (e.g. clusters in the center of the coordinate system).

The most important fact is that all methods present the best quality in terms of the number of errors and
data distribution for big values of LH* level. Since the LH* level increases with the overall size of the
data set, the quality of the distribution is also strictly correlated with the size of the data.

All proposed methods try to avoid storing dissimilar data items in the same bucket. However, it is
possible that similar data items are located on different buckets, especially when the overall number
of data items is very high. This should not present a significant problem because a final cluster can be
composed from data items from several adjacent buckets. Such buckets, that store similar data items are
located very near each other which can be seen for example in Fig. 7.

6. Conclusions

In this paper two new approaches for content aware data items distribution in SD2DS were introduced.
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The main idea for these methods is to organize the data in the distributed environment and to create an
entry point for other data exploration techniques. As it was presented in the paper, the proposed methods
are really useful mostly with high-dimensional data. The designed methods allow for creating clusters
incrementally which is a great advantage because it does not affect scalability of the datastorage.

It was shown by the experimental results that the two proposed methods (SD2DS_A and SD2DS_C) give
better results in terms of clustering quality than previously developed SD2DS_S method. Additionally,
those new methods may be considered faster than k-means and agglomerative clustering depending on
the nature of the data set (data dimensionality, data item number). All in all, the proposed methods have a
very good performance and scalability as well as very similar accuracy to the referenced methods. The
combined static clustering (SD2DS_C) appears to be the best methods both in terms of the efficiency and
quality compared to the simple static clustering (SD2DS_S) and advanced static clustering (SD2DS_A).
Additionally, as it was shown by experiments in real application environment it is possible to create
distribution aware algorithms that may seriously speed up the Big Data algorithms. The most important
fact is that the accuracy of the proposed methods can be seriously improved with the growth of the whole
data set.

As a future work advanced deep learning techniques, like Self Organizing Maps, can be further
applied to improve the quality of the static algorithms. It is also possible to verify and improve proposed
methods by dynamic clustering methods that run as standard Map Reduce jobs. Dynamic methods will be
performed on initially statically partitioned data items, without any additional data transfers, in similar
way than using MapReduce, Apache Spark or Apache Kafka. Additionally, the proposed data distribution
will be used to develop next efficient Big Data algorithms.
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