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Abstract. In this article, we propose several new approaches for post processing a large ensemble of conjunctive rules for
supervised, semi-supervised and unsupervised learning problems. We show with various examples that for high dimensional
regression problems the models constructed by post processing the rules with partial least squares regression have significantly
better prediction performance than the ones produced by the random forest or the rulefit algorithms which use equal weights
or weights estimated from lasso regression. When rule ensembles are used for semi-supervised and unsupervised learning, the
internal and external measures of cluster validity point to high quality groupings.
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1. Review of ensemble methods

Ensemble learning [22,25,28] provides solutions to complex statistical prediction problems by simul-
taneously using a number of models. By bounding false idealizations, focusing on regularities and stable
common behavior, ensemble modeling approaches provide solutions that as a whole outperform the sin-
gle models. Some influential early works in ensemble learning were by Breiman with Bagging (bootstrap
aggregating) [2], and Freund and Shapire with AdaBoost [15]. These methods involve “random” sam-
pling the “space of models” to produce an ensemble of base learners and a “post-processing” of these to
construct a final prediction model [33].

In this article, we review several approaches for ensemble post-processing and propose some new
ones. To this end, we summarize the ensemble generation procedure and post-processing procedure
of [17]. The novel approaches tried here include post-processing rules and trees with partial least squares
regression, weighing trees with their out-of-bag performances and truncation and kernel smoothing in
the case of regression; a unsupervised and a semi-supervised clustering algorithm based on rules; rule
based unsupervised and semi-supervised kernel matrix learning. Our illustrations indicate that these
new models are competitive, if not superior, to some popular approaches. However, a main theme in
this article is that the base learners and rules can be used as input variables in any learning problem
and, in essence, tree and rule ensembles can be treated as features extracted from the original data. Our
work can be considered as an extension of the methods in [17] and these are briefly summarized below.
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Some other recent literature that is parallel with the approaches taken in this paper include the ENDER
algorithm [9], ensemble classification using generalized additive models [8], ensemble selection from
libraries of models [6], weighting individual outputs in multiple classifier systems [36], subspace en-
sembles using neighborhood accuracy [37]. The ensemble clustering problem was recently introduced
by Strehl and Ghosh [34]. The problem has attracted a fair amount of attention and a number of interest-
ing techniques have been proposed [12,19,29]. Reviews of semi-supervised learning is available in [42]
and [20].

In the remainder of this section, we will review the recently proposed importance sampling learning
ensembles (ISLE) framework [17] for ensemble model-rule generation and post-processing. In Section 2,
we propose some new ensemble post processing methods for supervised learning including partial least
squares regression, multivariate kernel smoothing and use of out-of-bag observations. Rule ensemble
approach to supervised learning is adapted to the unsupervised and semi-supervised clustering problem
in Section 3. Section 4 is reserved for examples and simulations by which we compare the methods
proposed here with the existing ones. Some remarks about hyper parameter choice and directions for
future research are provided in Section 5.

1.1. ISLE approach

Given a learning task and a relevant data set, we can generate an ensemble of models from a pre-
determined model family. Bagging bootstraps the training data set [2] and produces a model for each
bootstrap sample. Random forest [5,24] creates models by randomly selecting a few aspects of the data
set while generating each model. AdaBoost [15] and ARCing [4] iteratively build models by varying
case weights and employ the weighted sum of the estimates of the sequence of models. There have been
attempts to unify these ensemble learning methods. One such framework is the ISLE due to Popescu &
Friedman [17].

We are to produce a regression model to predict the continuous outcome variable y from p vector of
input variables x and a model family F = {f(x, θ) : θ ∈ Θ} indexed by the parameter θ is given
to generate M models. The final ensemble models considered by the ISLE framework have an additive
form:

F (x) = w0 +

M∑
j=1

wjf(x, θj) (1)

where {f(x, θj)}Mj=1 are base learners selected from F . ISLE uses a two-step approach to produce
F (x). The first step involves sampling the space of possible models to obtain {θ̂j}Mj=1. The second step
proceeds with combining the base learners by choosing weights {wj}Mj=0 in Eq. (1).

The pseudo code to produce M models {f(x, θ̂j)}Mj=1 under ISLE framework is given below:

Algorithm 1: ISLE(M,ν, η)

F0(x) = 0.
for j = 1 to M

do

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ĉj , θ̂j) = argmin
(c,θ)

∑
i∈Sj(η)

L(yi, Fj−1(xi) + cf(xi, θ))

Tj(x) = f(x, θ̂j)

Fj(x) = Fj−1(x) + νĉjTj(x)

return ({Tj(x)}Mj=1 and FM (x).)
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Here, L(., .) is a loss function; Sj(η) is a subset of the indices {1, 2, . . . , n} chosen by a sampling
scheme η, and 0 � ν � 1 is a memory parameter.

The classic ensemble methods of Bagging, Random Forest, AdaBoost, and Gradient Boosting are
special cases of ISLE ensemble model generation procedure [33]. In Bagging and Random Forests the
weights in (1 are set to predetermined values, i.e. w0 = 0 and wj = 1

M for j = 1, 2, . . . ,M. Boosting
calculates these weights in a sequential fashion at each step by having positive memory ν, estimating cj
and takes FM (x) as the final prediction model.

Friedman and Popescu [17] recommend learning the weights {wj}Mj=0 using lasso [39]. Let T =

(Tj(xi))
n
i=1

M
m=1

be the n × M matrix of predictions for the n observations by the M models in an
ensemble. The weights (w0,w = {wm}Mm=0) are obtained from

ŵ = argmin
w

(y − w01n − Tw)′(y − w01n − Tw) + λ

M∑
m=1

|wm|. (2)

λ > 0 is the shrinkage operator, larger values of λ decreases the number of models included in the final
prediction model. The final ensemble model is given by

F̂ (x) = ŵ0 +

M∑
m=1

ŵmTm(x). (3)

1.2. Rule ensembles

The base learners in the preceding sections of this article can be used with any regression model,
however they are often used with regression trees. Each decision tree in the ensemble partitions the
input space using the product of indicator functions of simple regions based on several input variables.
A tree with K terminal nodes define a K partition of the input space where the membership to a specific
node, say node k, can be determined by applying the conjunctive rule

rk(x) =

p∏
l=1

I(xl ∈ slk),

where I(.) is the indicator function, x = (x1, x2, . . . , xp) are the input variables. The regions slk are
intervals for a continuous variable and a subset of the possible values for a categorical variable.

Let R = (rk(xi))
n
i=1

K
k=1 be the n × K matrix of rules for the n observations by the K rules in the

ensemble. The rulefit algorithm of Friedman and Popescu [18] uses the weights (w0,w = {wk}Kk=0)
that are estimated from

ŵ = argmin
w

(y − w01n −Rw)′(y − w01n −Rw) + λ

K∑
k=1

|wk| (4)

in the final prediction model

F̂ (x) = ŵ0 +

K∑
k=1

ŵkrk(x). (5)
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2. Post processing ensembles revisited

We can use the base learners or rules in an ensemble as input variables in any regression method.
Since the number of models in an ensemble can easily exceed the number of individuals in the training
sample (p � n), we prefer regression methods that can handle high dimensional input. A few such
ensemble post-processing methods like partial least squares regression, multivariate kernel smoothing
and weighting are proposed in this section. We will compare these approaches to the existing standards
random forests and rulefit in the Section 4.

2.1. Partial least squares regression

The models in an ensemble are all aligned with the response variable and therefore we should expect
that they are correlated with each other. When this is the case variable selection methods like lasso do
not work particularly well, especially with regard to the problem of model selection. Partial least squares
regression (PLSR) is a technique which is suitable for high dimensional regression problems where the
predictor variables exhibit multicollinearity. An additional advantage in using PLSR is that response
variables can be multivariate.

In PLSR the input matrix X is decomposed into orthogonal scores S and loadings L

X = SL

and the outcome Y is regressed on the first few columns of the scoresS using ordinary least squares. This
leads to biased but low variance estimates of the regression coefficients in model 1. PLSR incorporates
information on both input and output variables in the loadings.

PLSR behaves as shrinkage method [16] where the amount of shrinkage is controlled by the number
of loadings included. An obvious question is to find the number of loadings needed to obtain the best
generalization for the prediction of new observations. This is, in general, achieved by evaluating the
cross-validated performance of the different PLSR models. In our experience setting the discrete shrink-
age parameter in PLSR is easier than setting the continuous sparsity parameter in lasso regression. The
illustrations following section demonstrate the good performance of PLSR for post processing trees or
rules. PLSR, as opposed to lasso, achieves shrinkage without forcing sparsity on the input variables.

The coefficients of the tree ensemble model in 2 or the rule ensemble model in 4 can be used to evaluate
importances of trees, rules and individual input variables [18]. For the tree ensembles the importance of
the kth tree is evaluated as

Ik = |ŵk|std(Tk)

measures the importance of the trees or rules, here std(Tk) denotes the standard deviation for the output
of the kth tree over the individuals in the training sample. For the rule ensembles the importance of the
kth rule is calculated similarly as

Ik = |ŵk|
√

sk(1− sk)

where sk =
∑n

i=1 rk(xi)
n is the support of rule k. The individual variable importances are calculated

from sum of the importances of the trees or rules which contain that variable. The PLSR model is in
the same additive form as in Eq. (1), therefore the estimated weights ŵ1, ŵ2, . . . , ŵM in the model can
be used to calculate tree rule or variable importances the same way they were calculated for the lasso
post processing approach. A measure of importance for each variable can be obtained as the sum of the
importances of rules that involve that variable.
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2.2. Multivariate kernel smoothing

We will concentrate on kernel smoothing using the Nadaraya-Watson estimator. For a detailed presen-
tation of the kernel smoothing, we refer the reader to [38]. The Nadaraya-Watson estimator is a weighted
sum of the observed responses y. Let the value of base learners (trees or rules) at an input point x be
written in a M dimensional vector t(x). The final prediction model at input point x can be obtained as

F (x) =

∑n
i=1Kh(t(xi)− t(x))yi∑n
i=1 Kh(t(xi)− t(x))

.

The kernel function Kh(.) is a symmetric function that integrates to one, h > 0 is the smoothing
parameter. In practice, the kernel function and the smoothing parameter are usually selected using the
cross validated performances for a range of kernel functions and smoothing parameter values.

2.3. Weighting ensembles using out-of-bag observations

As mentioned earlier, most of the important ensemble methods combine the base models using
weights. Both bagging and random forest algorithms use equal weighting. Estimating ŵ by minimizing

1

2
(y − Tw)′(y − Tw)

subject to the constraint w � 0 gives the Stacking approach of Wolpert [41] and Breiman [3]. In stacking
final prediction model is given by

F (x) = T (x)ŵ.

Subspace ensembles (SENA) [37] uses the idea of local neighborhood accuracy to obtain the ensemble
model weights for the classification problem. Below we propose a similar weighting scheme based on
the generalization performance of individual models.

The ensemble generation algorithms based on bootstrapping the observations builds the base learners
from the observations in the bootstrap sample, and leaves us with the out-of-bag observations to evaluate
the generalization performance of that particular learner. The following weighting scheme will down
weight the base learners which have bad generalization performance. Let (yoobi,xoobi) denote the ith
out-of-bag observation from model l for i = 1, 2, . . . , nl,oob. We have M base learners {Tl(x)}Ml=1. We
can use

F (x) =

∑M
l=1

∑nl,oob

i=1 Kh(yoobi − Tl(xoobi))Tl(x)∑M
l=1

∑nl,oob

i=1 Kh(yoobi − Tl(xoobi))

as the prediction of the response at input value x. This involves keeping track of the out-of-bag perfor-
mance each model in the ensemble and using the weights

wl =

∑nl,oob

i=1 Kh(yoobi − Tl(xoobi))∑M
l=1

∑nl,oob

i=1 Kh(yoobi − Tl(xoobi))
,

l = 1, 2, . . . ,M.
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The value of h controls the smoothness of the model. For large values of this parameter the kernel
method will assign approximately equal weights to the learners Tl, l = 1, 2, . . . ,M and hence it is
equivalent to random forest weighting. Smaller values of the parameter assigns higher weights to the
models with small out of bag errors. We can choose h to minimize the cross-validated errors. In addition,
it is sometimes beneficial to eliminate the models with lowest weights from the final ensemble.

Note that, a modification of the above model allows us to localize the predictions by weighting models
based on their out of bag performance in the close neighborhood of an input point, say xnew, in spirit of
the model in [37]. An estimator of the response at input value xnew can be written as

F (xnew) =

∑M
l=1

∑nl,oob

i=1 Kh1
(yoobi − Tl(xoobi))Kh2

(xoobi − xnew)Tl(xnew)∑M
l=1

∑nl,oob

i=1 Kh1
(yoobi − Tl(xoobi))Kh2

(xoobi − xnew)

where Kh1 and Kh2 are two kernel functions indexed by the width parameters h1 and h2.

3. Rule ensemble clustering

The main difference between the supervised learning and unsupervised learning is the existence of
a target variable in the former. The sample partitioning approaches discussed in the previous section
partition the sample space into clusters. Each rule defines a clustering of the sample space into two com-
ponents which give a good segregation of the target variable. When we have many target variables we
can randomly map them to the real line and when we are not provided with target variables, we can con-
struct our target variables by randomly mapping the input variables in a similar fashion. Consequently,
each of these derived target variables (“concepts”) can be used to extract several interesting rules and
overall cluster rules are obtained from combining the rules for many target variables into an ensemble
distance matrix. By making an analogy to ISLE algorithm reviewed in the previous section, we can boost
the search of the space of ”concepts” by including a memory parameter. The details of this clustering
procedure are described below.

Let Y be the n × q matrix of observed target variables for which a good segregation is needed. Let
X be the n × p matrix of observed input variables to the clustering algorithm. We name the following
algorithm semi-supervised importance sampling clustering algorithm (SS-ISCA).

Algorithm 1: SS-ISCA(X,Y,M,m, ν)

R1 : A random projection of Y
for j = 1 to M

do

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Generate m rules {l�(x)}m�=1 to estimate Rj from X:

Sj(x) ⇐ {l�(x)}m�=1

T (X) ⇐ {Sj(xi)}ni=1
j
d=1

Rj+1 : A random projection of Y

Rj+1 ⇐ (I − νPT (X))Rj+1

return (T (X))
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Here PT (X) is the projection matrix on to the space spanned by the columns of T (X) calculated as
T (X)[T (X)′T (X)]−T (X). In our implementations “a random projection” was interpreted as a random
linear projection though this is not necessary. The projection step and a positive ν value allows the
algorithm to cover the target space quicker. However when a nonzero memory parameter is used the
computational burden grows quickly as the algorithm advances in its stages. One simple strategy is
to apply lasso regression to select rules at each stage j and therefore reducing m. Another strategy
is to sample the columns of T (X) to calculate PT (X) at each stage, and in this case ν is used as the
sampling proportion. We have used both of these techniques successfully for high dimensional clustering
problems. Of course, if the memory parameter ν is set to zero then we do not have to worry about
calculating PT (X). In this case the SS-ISCA algorithm is parallelizable.

An implementation of SS-ISCA can be tried at the Triticeae Toolbox (T3). T3 is the web portal for the
data generated by the Triticeae Coordinated Agricultural Project (CAP), funded by the National Institute
for Food and Agriculture (NIFA) of the United States Department of Agriculture (USDA). T3 contains
SNP, phenotypic, and pedigree data from wheat and barley germplasm in the Triticeae CAP.

From T (X)n×r, a similarity matrix can be obtained as S(X) = T (X)T (X)′/r. The ijth element of
S(X) is the percentage of times the ith and the jth observations fire the same rules. From the similarity
matrix S(X), we calculate a distance matrix D(X). The clustering of the observations is accomplished
by applying a distance based hierarchical clustering algorithm [27] to the rule based distance matrix
D(X). The method we have used to combine the clusters from many rules is referred to as the cluster
based similarity partitioning in Ghosh et. al. [34]. Note that for a set of new observations Xnew, we can
calculate T (Xnew) without the knowledge of the corresponding target variables.

In distance based hierarchical clustering, first, each object is assigned to its own cluster. At each
consecutive stage the two most similar clusters are joined until there is a single cluster. The distances
between clusters are recalculated at each stage by a linkage criterion such as single-linkage, complete
linkage or average linkage. In our illustrations in the following section, we have uniformly used the
average linkage criterion for combining clusters.

A modification of the semi supervised clustering algorithm when the target variable is univariate
takes advantage of the rule importances. To obtain M rules for the target variable y use the ISLE
algorithm to extract rules and use either PLSR or lasso post-processing to estimate the weights w.
From T (X) and the estimated weights ŵ a similarity matrix can be obtained as S(X) = T (X)
diag(|ŵ|√s(1− s))T (X)′/r where s = (s1, s2, . . . , sr) are the supports of rules 1 to r.

For generation of rules useful for ensemble clustering when there are no target variables, we modify
the semi-supervised rule generation algorithm in 1 as follows (importance sampling clustering algo-
rithm):

Algorithm 2: ISCA(X,M,m, ν)

R1 : A random projection of X
for j = 1 to M

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Generate m rules {l�(x)}m�=1 to estimate Rj from X:

Sj(x) ⇐ {l�(x)}m�=1

T (X) ⇐ {Sj(xi)}ni=1
j
d=1

Rj+1 : A random projection of X

Rj+1 ⇐ (I − νPT (X))Rj+1

return (T (X))
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Fig. 1. 10 fold cross validated accuracies measured by corre-
lation for the FHB data set. The ensemble of rules with PLSR
has slightly higher accuracy compared to its alternative rules
with lasso. The number of trees was set to 200. Maximum
depth allowed for each tree or rule was set to 5.
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Fig. 2. The boxplots in Fig. 2 compare the different ap-
proaches to ensemble post processing for the scenario in Ex-
ample 2. The number of trees generated was 200, maximum
depth parameter was set to 2.

Hierarchical clustering produces nested clusterings of the data set. In order to determine the final clus-
tering, the number of clusters has to be determined. When the clustering problem is accompanied by
external class labels or external benchmarks and the number of clusters is known, the quality of a cluster
can be measured by Rand measure (R) [30], Jaccard index (J) [10], Fowlkes Mallows index (FM) [13],
Wallace indices (W01, W10), etc... Otherwise internal clustering quality measures like Silhouette (sil-
houette) [32], Dunn index (dunn) ( [11], Connectivity (connect) [7] can be used to identify the number
of clusters. These measures can also be used to compare the quality of several clusterings. The article by
Handl et al. [21] provides an excellent overview of cluster validation measures.

Each rule gives a binary partition of the input space. Therefore, an ensemble of rules together can be
seen as a multiple clustering of the input space. Multiple clustering approach argues that multiple sets
of clusters provide more insight then only one solution. For instance, when grouping genes with similar
function we need a multiple clustering approach since some genes might have multiple functional roles.
Similarly, to gain insight about the history of species, we could use multiple clusterings of the individuals
based on the marker data from different chromosomes. In a sense, multiple clusterings represent different
views of grouping the data. ISCA and SS-ISCA algorithms can benefit from such a view and the author
believes that these algorithms are flexible enough to answer such questions.

4. Case studies and experiments

In this section we will deliver several data analysis that uses the supervised, semi-supervised and
unsupervised approaches discussed in this paper. The main properties of the data sets that are used in
this section are summarized in Table 1.

The following ensemble models are compared in the context of supervised learning:
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Table 1
Important characteristics of data sets used

Data set Individuals Input variables Target variables Used in examples
FHB data 622 2251 FHB, DON (Continuous) 4.1, 4.6, 4.9
Simulated data 150 100 Y (Continuous) 4.2
Friedman simulated data 1000 100 Y (Continuous) 4.3
Boston housing data 506 13 Median house value (Continuous) 4.4
Fisher’s iris data 150 4 Species (Categorical) 4.5
Stem rust data 374 1624 Stem rust resistance (Continuous) 4.7
Mouse microarray data 6 147 NA. 4.8

1. r(pslr): Partial Least Squares Regression with Rules,
2. t(pslr): Partial Least Squares Regression with Trees,
3. r(lasso): lasso with Rules,
4. t(lasso): lasso with Trees,
5. w(oob): Weighting Using Out-of-Bag performance,
6. wt(oob): Weighting Using Out-of-Bag performance (best 60% of the trees),
7. rf: Random Forest,
8. ksr: Kernel Smoothing with Rules,
9. kst: Kernel Smoothing with Trees.
In all these models, hyper parameters of the models are set using 10 fold cross validation in the training

sample. Aggressive use of cross-validation can be supported by the theorem in [40]. The models 3, 4,
and 7 are the existing methods and models 1, 2, 5, 6, 8, and 9 are the models introduced in this paper.

Our first example involves the Fusarium head blight (FHB) data set that is available from the author
upon request. A very detailed explanation of this data set is given in [26].
Example 1. (FHB Data, Regression) FHB is a plant disease caused by the fungus Fusarium Gramin-
earum and results in tremendous losses by reducing grain yield and quality. In addition to the decrease
in grain yield and quality, another damage due to FHB is the contamination of the crop with mycotoxins.
Therefore, breeding for improved FHB resistance is an important breeding goal. Our aim is to build a
prediction model for FHB resistance in barley based on available genetic variables. The FHB data set in-
cluded FHB measurements along with 2251 single nucleotide polymorphisms (SNP) on 622 elite North
American barley lines. The data set included the results of the experiment in 3 locations in years 2006,
2007, and 2008. We have used a semi-parametric mixed model (SPMM) to account for the location and
year effects. The total genetic effects of each line is estimated by solving the mixed model equations and
obtaining corresponding estimated best linear unbiased predictors for the random effects.

Our SPMM for the n× 1 response vector y is expressed as

y = Xβ + Zg + e (6)

where X is the n × p design matrix for the fixed effects, β is a p × 1 vector of fixed effects coefficients
(mean, location, year), Z is the n × q design matrix for the random effects (lines); the random effects
(g′,e′)′ are assumed to follow a multivariate normal distribution with mean 0 and covariance(

σ2
gK 0
0 σ2

eIn

)

where K is a q × q similarity matrix obtained as K = MM ′/
∑

diag(MM ′) and M is the 622 × 2251
dimensional markers matrix.
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Fig. 3. The boxplots in Fig. 2 compare the different ap-
proaches to ensemble post processing for the scenario in Ex-
ample 3. Number of trees was set to 200, and the maximum
depth parameter was set to 2.
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Fig. 4. 10 fold cross validated accuracies for the “Boston
Housing” data are displayed by the boxplots. The PLSR ap-
proach has the best cross validated prediction performance.
We have generated 300 trees by the ISLE approach and maxi-
mum depth parameter was set to 4. For the methods that use a
kernel function we have uniformly used the Gaussian kernel.
The sparsity parameters of the lasso or PLSR and the kernel
width parameters were obtained by minimizing 10 fold cross
validated errors in the training data.

In the second step the EBLUPS of genetic values of the 622 lines are estimated using models 1:10.
The 10 fold cross validated accuracies measured by the correlations of true responses to the predicted
values are displayed in Fig. 1.
Example 2. (Simulated Data, Regression) In our second example we repeat the following experiment
100 times. Elements of the 150 × 100 input matrix X are independently generated from a uniform(0, 1)
distribution. The elements of the coefficient matrix β were also generated independently from unif(0, 1)
and 85% of these were selected randomly and set to zero. 150 dimensional response vector y was
generated according to y = Xβ + e where e was generated from N150(0, 0.3I150) so that the signal
ratio was about 2 to 1. The data was separated as training data and test data in the ratio of 2 to 1.
The boxplots in Fig. 2 compare the different approaches to ensemble post processing in terms of the
accuracies in the test data set.
Example 3. (Friedman Simulated Data, Regression) In this example, we repeat the experiment in
Friedman and Popescu [18]. Elements of the 1000 × 100 input matrix are independently gener-
ated from unif(0, 1) distribution. 1000 dimensional response vector y was generated according to
{yi = 10

∏5
j=1 e

−2x2
ij +

∑35
j=6 xij + ei} where ei was generated from N(0, σ2 = 1). The data was

separated as training data and test data in the ratio of 2 to 1. The boxplots in Fig. 3 compare the test data
performances of the different approaches over 100 replications of the experiment.

Example 4. (Boston Housing Data, Regression) In order to compare the performance of prediction
models we use the benchmark data set “Boston Housing” [23]. This data set includes n = 506 obser-
vations and p = 14 variables. The response variable is the median house value from the rest of the 13
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Table 2
(Fisher’s Iris Data Set, Clustering) Internal and external measures of cluster validity. ISCA algorithm is uniformly the best or
second best according to these measures. ** and * are used to mark the best and the second best clusterings correspondingly

Internal External
Silhouette Dunn Connect R FM W01 W10 J

ISCA 0.55** 0.12** 7.40** 0.89* 0.83* 0.86* 0.81* 0.71*
RF 0.48 0.03 23.26 0.71 0.66 0.79 0.54 0.47
PAM 0.55** 0.10 10.09* 0.88 0.82 0.84 0.81 0.70
DIANA 0.54 0.11* 12.43 0.86 0.80 0.81 0.78 0.66
Mclust 0.50 0.07 14.18 0.96** 0.94** 0.94** 0.93** 0.88**

Table 3
(FHB Data, Clustering) SS-ISCA and ISCA clusterings outperform other clusterings

Silhouette Dunn Connect
SS-ISCA 0.108 0.419** 44.450**
ISCA 0.114* 0.344* 67.763*
RF 0.092 0.344* 111.410
PAM 0.126** 0.160 206.743
Mclust 0.114* 0.317 126.918

variables in the data set. 10 fold cross validated accuracies are displayed by the boxplots in Fig. 4. The
PLSR approach has the best cross validated prediction performance.

We illustrate the clustering approaches in four real data sets. In addition to the SS-ISCA and ISCA
approaches, we employ existing methods like model based clustering (Mclust) [14], partitioning around
medoids (PAM) [31], divisive analysis clustering (DIANA) [35] and random forest clustering (RF) [5].
The different clusterings are compared using the internal measures (Silhouette, Dunn index, Connec-
tivity) or using the external measures (Rand measure, Fowlkes-Mallows index, Wallace index, Jaccard
index). In the case where a supervisory target variable was available and there were only two clusters,
we also provided the p-values from comparing the means for the target variable in these clusters.
Example 5. (Fisher’s Iris Data Set, Clustering) The results of clustering the Fisher’s Iris data set are
displayed in Table 2. The existing data labels are used to calculate the internal validity measures. We
have also provided internal measures of cluster quality. ISCA algorithm is uniformly the best according
to the internal measures. With respect to the external validation measures ISCA algorithm ranks second
after the model based clustering.

Example 6. (FHB Data, Clustering) We would like to segregate the 622 barley lines described in Ex-
ample 1 into two groups, low resistance and high resistance lines. The results from clustering this data
using different approaches are summarized by the boxplots in Fig. 5. SS-ISCA clearly gives the best
segregation of the FHB variable among other clusterings which we measure by the p value correspond-
ing to the two sample t test for comparing group means. Some internal measures for cluster quality for
clusterings by different clustering approaches are provided in Table 3.
Example 7. (Stem Rust Data, Clustering) The stem rusts is a disease affecting cereal crops. Crop species
which are affected by the disease include wheat, barley and triticale. We had estimated breeding values
of stem rust resistance for 374 lines of wheat. In addition 1624 markers were available for these lines.
The boxplots in Fig. 6 compare the stem rust resistance for the groups from several clustering algorithms.
The p-values from the two sample t test are also provided. The best segregation is obtained again by the
ISCA approach.
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Fig. 5. (FHB Data, Clustering) The FHB data set contains in-
formation on 2251 markers, along with the FHB and DON
levels for 622 elite barley lines. p values from the t tests cor-
responding to different clustering approaches indicate that the
SS-ISCA and ISCA produce groups that are different from
each other in terms of the mean FHB.
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Fig. 6. (Stem rust data set, semi-supervised clustering) The
best segregation is obtained by ISCA approach.

Example 8. (Mouse Data, Learning the Number of Clusters) We use data from an Afyymetrix microar-
ray experiment comparing gene expression of mesenchymal cells from two distinct families, neural crest
and mesoderm derived. The dataset consists of 147 genes and expressed sequence tags (EST) which were
determined to be significantly differentially expressed between the two cell groups. For further descrip-
tion of the dataset and the experiments the reader is referred to Bhattacherjee et al. (2007). The internal
measures of cluster quality is displayed for 2 to 30 groups clustering by ISCA in Table 7. The optimal
number of clusters is determined to be two using the connectivity and silhouette width. Although the
Dunn Index increases almost uniformly after 3 clusters and attains very high levels after 10 or more
clusters, there is indication that 2 groups provides a reasonable clustering.
Example 9. (Rule Based Kernel Matrix for SPMM) The role of this example is to demonstrate the
use of ISCA or SS-ISCA algorithm for learning a gram matrix. Gram matrix is used in kernel based
learning. Some kernel learning methods include reproducing kernel Hilbert space regression, support
vector regression, Gaussian processes and SPMM. All of these methods depend on using a gram matrix
which measures the similarity of individuals in the sample. While utilizing these methods, it is customary
to use off the shelf kernels like the linear, polynomial or Gaussian kernels. However, it has been shown
that task specific kernels might improve these models. An issue off the shelf kernel functions like the
linear or the Gaussian kernels is that same relationship matrix is used no matter what response variable
is considered and that all input variables are assigned equal weights in the analysis. In this example we
will compare SPMM’s with similarity matrix S(X) obtained from SS-ISCA and ISCA algorithms with
SPMM’s with linear, polynomial and Gaussian kernels. We use the data from the results of the FHB
dataset in Example 1.

We use the SPMM model in Eq. (6) with linear, polynomial, Gaussian, ISCA, and SS-ISCA kernels for
K. The fixed effects design matrix X includes a column of ones and a dummy variable representation
of the location variable. The design matrix Z includes the dummy variable representation of the line
specific genetic effects. The parameters β, σ2

g , σ
2
e of the SPMM models are estimated by maximizing
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Table 4
Summary of the experiments

Example Learning problem Models compared Best model
4.1 Regression (Supervised) r(plsr),t(plsr), r(lasso), t(lasso), w(oob), wt(oob), rf, ksr, kst r(plsr)
4.2 Regression (Supervised) r(plsr),t(plsr), r(lasso), t(lasso), w(oob), wt(oob), rf, ksr, kst r(plsr)
4.3 Regression (Supervised) r(plsr),t(plsr), r(lasso), t(lasso), w(oob), wt(oob), rf, ksr, kst r(plsr)
4.4 Regression (Supervised) r(plsr),t(plsr), r(lasso), t(lasso), w(oob), wt(oob), rf, ksr, kst r(plsr)
4.5 Clustering (Unsupervised) ISCA, RF, PAM, DIANA, Mclust ISCA (internal), Mclust (external)
4.6 Clustering (Unsupervised, semi-supervised) SS-ISCA, ISCA, RF, PAM, Mclust SS-ISCA (internal, external)
4.7 Clustering (Unsupervised, semi-supervised) SS-ISCA, ISCA, RF, PAM, DIANA, Mclust SS-ISCA (external)
4.8 Clustering (Unsupervised) ISCA NA
4.9 Regression (Kernel learning) SS-ISCA, ISCA, Linear kernel, Gaussian kernel SS-ISCA
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Fig. 7. (Mouse Data Set, Learning the Number of Clusters)
The internal measures of cluster quality is displayed for 2 to
30 groups clustering by ISCA. Hierarchical clustering with
two clusters performs the best in general.
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Fig. 8. Cross validated model accuracies measured by corre-
lation coefficient for the FHB data set. There is a clear advan-
tage in using the semi-supervised SS-ISCA algorithm.

the likelihood functions. The hyper-parameters of each of the kernels were learned using the profile
likelihood functions over a grid of values. Final models are compared using 10-fold cross validated
accuracies measured by correlation between the estimated and true response values in Fig. 8. It is clear
from this example that using a task specific semi-supervised kernel improves the model accuracies.

The results of the experiments in this section are summarized in Table 4.

5. Conclusions

In this article, we have proposed several approaches for post processing a large ensemble of rules.
The approach taken here is to treat the rules as base learners and use them as input variables in learning
problem.

The results from our simulations and benchmark experiments show that the methods introduced in this
article are promising. In most cases, the proposed methods obtained better performances than the ones
given by some recent and popular algorithms like random forest, rulefit, model based clustering, etc. For
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supervised learning PLSR with rules uniformly produced the models with best prediction performances.
The ensembles based on rules extracted from trees, in general, had better performances.

We have also seen that rule ensembles can be used to learn a similarity matrix which, in turn, can be
utilized in clustering and similarity based learning. We have shown by many examples that high quality
clusterings are obtained based on ISCA or SS-ISCA approaches. The use of SS-ISCA for learning task
specific similarity matrix increased model accuracies.

Deep learning algorithms [1] are based on learning representations which can be shared across tasks.
Learning about a large set of interrelated concepts might provide a key to generalizations. In a multi-
task setting in which there are different outputs for different tasks, the clustering solutions for these
target variables with the SS-ISCA algorithm can be used to obtain many hierarchical representations of
the input variables. Furthermore the similarity matrices obtained for multiple tasks can be combined in
several ways to give new similarity matrices which in turn be used for learning a related but new task.

The complexity of trees or rules in the ensemble increases with the increase in number of nodes from
the root to the final node (depth). The maximum depth is an important parameter since it controls the
degree of interactions between the input variables incorporated by the ensemble model and the its value
should be set carefully. It might also be useful to use some degree of cost pruning while generating the
trees by the ISLE algorithm.

The ensemble approaches introduced in this paper can also be a remedy for analyzing big datasets.
By adjusting the sampling scheme in the ISLE, ISCA and SS-ISCA algorithms we were able to analyze
large data sets which have thousands of variables and tens of thousands of individuals without having to
load the whole data into the memory. This is a great advantage to importance sampling algorithms.

One last remark: This article argues that individual trees or rules should be treated as input variables
to the statistical learning problem. It is almost always possible to incorporate other input variables like
the original variables or their functions to our prediction model. The rulefit algorithm of Friedman &
Popescu optionally includes the input variables along with the rules in an additive model and uses lasso
regression to estimate the coefficients in the model. Integrating additional input variables into the final
ensemble is also straightforward with PLSR, kernel smoothing regression and the clustering approaches.
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