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Abstract. As part of the evolving Industry 4.0 landscape, machine learning-based visual inspection plays a key role in enhancing
production efficiency. Screen printing, a versatile and cost-effective manufacturing technique, is widely applied in industries
like electronics, textiles, and automotive. However, the production of complex multilayered designs is error-prone, resulting in
a variety of defect appearances and classes. These defects can be characterized as small in relation to large sample areas and
weakly pronounced. Sufficient defect visualization and robust defect detection methods are essential to address these challenges,
especially considering the permitted design variability. In this work, we present a novel automatic visual inspection system for
surface defect detection on decorated foil plates. Customized optical modalities, integrated into a sequential inspection procedure,
enable defect visualization of production-related defect classes. The introduced patch-wise defect detection methods, designed to
leverage less labeled data, prove effective for industrial defect detection, meeting the given process requirements. In this context,
we propose an industry-applicable and scalable data preprocessing workflow that minimizes the overall labeling effort while
maintaining high detection performance, as known in supervised settings. Moreover, the presented methods, not relying on any
labeled defective training data, outperformed a state-of-the-art unsupervised anomaly detection method in terms of defect detection
performance and inference speed.
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1. Introduction1

Visual quality inspection plays a key role in achiev-2

ing quality standards of premium manufacturers. As3

even the smallest defects in high-quality components4

lead to customer complaints, zero-defect policies are5

striven, resulting in visual inspection of every produced6

part. According to the manufacturing industry and the7

underlying production processes, manual visual inspec-8

tion is still common. Therefore, huge amounts of human9

resources are required, conducting elaborate workflows10

accompanied with monotonous visual inspection tasks.11

This results in overlooked defects as well as unneces-12
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sary rejects of produced parts according to the subjec- 13

tive assessment of the operator [1]. In order to reduce 14

these quality fluctuations and thus improve competi- 15

tiveness, the automation of quality inspection processes 16

as part of the emerging Industry 4.0 is mandatory [2, 17

3,4,5]. Thus, machine learning-based visual inspection 18

systems [6,7,8] are intensively researched and build a 19

crucial part for ensuring 100% fault-free products. High 20

demand for automated visual inspection arises in the 21

electronics industries [9]. Common inspected compo- 22

nents include LEDs, semiconductor wafers and printed 23

circuit boards [10]. In addition to electronics, there is 24

high demand in the textile [11,12,13], printing [14,15, 25

16] and automotive industries [17,18]. Automatic vi- 26

sual inspection systems can be applied to almost all ma- 27

terials such as polymers, metals, ceramics, glass, etc., 28

regardless of the industry. 29
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1.1. Machine vision inspection process30

In general, machine vision inspection can be roughly31

divided into three main stages: defect visualization, pre-32

processing, and inference. Based on the optical surface33

properties of the sample under investigation, appro-34

priate optical components must be determined. These35

components include cameras (sensors incl. optics), illu-36

minations, and filters, which are used to visualize de-37

fects and reduce the prominence of unimportant fea-38

tures. Thus, the objective of defect visualization is to39

maximize the contrast of imperfections on product sur-40

faces in digital images, making them more easily iden-41

tifiable and analyzable. Determining suitable optical42

components typically requires extensive laboratory ex-43

periments and domain knowledge. General approaches44

for automatically characterizing defect visibility, appli-45

cable to various surfaces and defect textures, remain an46

active area of research [19,20,21].47

In addition to the common RGB and monochrome48

sensors in the visible range, sensors operating in the49

ultraviolet (UV) or infrared (IR) ranges can offer ad-50

vantages for specific features. For instance, UV sen-51

sors (200–400 nm) reveal fine scratches on polished52

surfaces that are barely visible to the human eye (e.g.53

Sony’s IMX487 [22]). Shortwave infrared (SWIR) sen-54

sors (900–1700 nm) are increasingly applied in the elec-55

tronics and semiconductor industries to uncover sub-56

surface defects [23]. Multi- or hyperspectral cameras,57

which combine different spectral bands (e.g. visible and58

IR), reveal spatial physical and chemical properties of59

the samples being examined [24,25]. These imaging60

techniques are particularly valuable in the food, waste61

management, packaging, agricultural, and pharmaceu-62

tical sectors [26,27]. However, exploiting additional63

spectral bands is accompanied by an increased work-64

load for data processing. Besides the selected spectrum,65

the optimal optical modality is determined by the illu-66

mination conditions, including the illumination charac-67

teristics (e.g. direct, diffuse, structured) and its position68

relative to the surface and sensor (bright field, dark field69

or transmission).70

In addition to the defect visualization capabilities,71

factors such as system integration complexity, data pro-72

cessing bandwidth and software interoperability, are73

crucial in selecting appropriate hardware for industrial74

applications.75

Image preprocessing prepares the captured data for76

inference with the selected defect detection methods.77

This stage may involve tasks such as image registra-78

tion, masking, resizing or data normalization, to name a79

few. Finally, inference is used for the decision-making,80

classifying the inspected product as normal or defective.81

1.2. Industrial defect detection methods 82

With the rise of affordable computing power, deep 83

learning-based research has gained significant momen- 84

tum in machine vision tasks. Deep convolutional neural 85

networks (DCNN) have shown superior performance 86

over traditional defect detection methods that rely on 87

manual feature engineering [28]. The performance of 88

deep learning methods typically scales with the amount 89

of available training data. However, collecting large 90

quantities of labeled data is labor-intensive and often 91

impractical for many industrial applications. In the con- 92

text of surface defect inspection using supervised neu- 93

ral networks, this is a major limitation, as an exten- 94

sive labeling process is required for each new product 95

type to meet inspection standards. Consequently, cur- 96

rent research focuses on semi- or unsupervised defect 97

detection methods [29,30], which require minimal or 98

no defective samples for training and are therefore of 99

particular interest for industrial applications. By mod- 100

eling the underlying data distribution of fault-free (nor- 101

mal) samples, unsupervised methods overcome possible 102

generalization problems of supervised methods. 103

Since the publication of industrial defect detection 104

datasets such as MVTec [31], several anomaly detec- 105

tion methods have emerged. These unsupervised meth- 106

ods can be broadly categorized into representation- 107

based [32,33,34,35], generative model-based [36,37, 108

38,39,40,41,42], and flow-based [43,44] approaches. 109

Representation-based methods compare test data fea- 110

tures with learned normal representations to measure 111

feature similarity or distance. Flow-based methods map 112

feature distributions to multivariate Gaussian distribu- 113

tions using normalizing flows, with deviations indicat- 114

ing anomalies. Both approaches use DCNN feature ex- 115

tractors pretrained on large datasets like ImageNet [45]. 116

These methods are often memory and computationally 117

intensive due to their architectures and algorithms, such 118

as k-nearest neighbor. Furthermore, the feature extrac- 119

tors are biased towards the dataset used for pre-training, 120

which leads to performance degradation in case of sig- 121

nificantly different examined data distributions. 122

Generative models are designed to reconstruct nor- 123

mal data, failing to properly reconstruct defective re- 124

gions resulting in anomaly scores. Despite progress 125

with autoencoders [36], generative adversarial networks 126

(GANs) [46,38,39] and denoising diffusion models [40, 127

41,42], challenges persist in overcoming reconstruction 128

limitations for fine-grained patterns as well as compu- 129

tational efficiency. 130

Additional approaches include synthesizing defec- 131

tive data samples for self-supervised pretraining or data 132
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augmentation [47,48,49,50,51]. However, GAN-based133

synthetization tends to generate simple defect structures134

and struggles with complex patterns. In addition, these135

methods rely on large datasets including defective sam-136

ples for the initial training process. Recent research on137

few-shot generative models, including diffusion-based138

approaches, aims to address these issues [52,53,54,55].139

Given the specific data distributions and detection140

tasks in industrial applications, specialized methods are141

crucial. The high permissible variability in complex142

design patterns of screen-printed products and their di-143

verse product portfolio demands robust and adaptable144

methods. In addition, short inference times are manda-145

tory in order to achieve the required process cycle times.146

1.3. Related work147

Ongoing research on defect detection of screen-148

printed products is being increasingly applied in the149

electronics industry. In Zhao et al. [56], the screen-print150

of batteries is inspected using a multi-level block tem-151

plate matching and k-nearest neighbor method. The pre-152

sented inspection system enables the detection of de-153

fects, such as blurred prints, local defects or scratches of154

the printed product logo, QR code and fabrication num-155

ber. Further work presents an automatic inspection sys-156

tem for surface defect detection of screen-printed mo-157

bile phone back glasses [57]. A dual brightfield imag-158

ing system is demonstrated for defect visualization. It159

consists of a coaxial bright field and a low angle bright160

field illumination, enabling the visualization of defects161

such as scratches, dents and discolorations. Defect de-162

tection was performed with a symmetric semantic seg-163

mentation network trained in a supervised manner. The164

training dataset consisted of 34 550 images (6742 de-165

fectives), achieving an average test precision and re-166

call of 91.8 and 95.3%. Another inspection solution for167

mobile phone cover glasses is presented in [58]. The168

system adopts backlight imaging in combination with169

a segmentation method trained in an adversarial man-170

ner utilizing a novel data generation process. A further171

defect detection method applied to a screen-printing172

process is based on an optimized U-Net++ [59] archi-173

tecture, which is described in [60]. To enable accurate174

detection of small defects in relation to the product size,175

only image patches were evaluated rather than the entire176

image. The visualization of the defects was done with a177

white backlight and a blue incident illumination. Using178

the patch-split method and a customized loss function,179

a dice score of 0.73 was achieved. Gafurov et al. [61]180

investigated smearing effects of screen-printed lines us-181

ing deep neural networks (DNN) and CCD cameras, 182

installed subsequent to the screen-printing process. For 183

this purpose, a screen-printing mask was designed con- 184

taining different line widths and spacings as well as 185

a variation of squeegee directions. Using an adapted 186

U-Net architecture, it was possible to detect smearing 187

defects in various printing conditions. 188

Commercially available automatic visual inspection 189

systems are known in the printing, glass and weaving 190

industries [62,63,64,65,66,67,68,69,70]. However, in- 191

spection solutions for defect detection in the field of 192

screen-printing are rather limited. The company OMSO 193

[71] offers a product for optical inspection of decora- 194

tions on cylindrically shaped objects such as bottles, 195

tubes and jars. Cugher’s glass inspection system [72] 196

enables the detection of defects on the screen-print de- 197

signs of glass panels. Keko Equipment Ltd. [73] of- 198

fers an automatic inspection system to inspect prints on 199

multilayer green ceramic productions. The inspection 200

software leverages e.g. golden template comparison ap- 201

plicable for max. inspection areas of 220 × 220 mm at 202

a resolution of 10 µm. An integrated inspection system 203

following a screen-printing process is offered by Saku- 204

rai Graphic Systems Corporation [74] by means of their 205

SI Inspection Unit. Thereby, two line scan cameras in 206

incident light illumination compare the screen-printed 207

pattern to a master reference sample. 208

1.4. Contributions 209

The aforementioned studies and commercial auto- 210

mated inspection systems mostly contain inspection so- 211

lutions for printed product designs such as logos and 212

labels, showing clearly defined geometries and image 213

features. Due to non-complex print designs, e.g. by us- 214

ing only a few print layers, the spectrum of possible de- 215

fect causes and subsequent diverse defect appearances 216

is reduced, which limits the effort of defect visualiza- 217

tion. Frequently used deep learning-based segmentation 218

models rely on pixel-wise labeled ground truth masks 219

for supervised training and are therefore dependent on 220

the amount and quality of labeled data. 221

The products studied for the given publication are 222

designed for use as decorative patterns in a variety of 223

applications, including products used in the automo- 224

tive industry. In order to meet the customer’s needs 225

and requirements, complex designs are developed and 226

manufactured under high quality standards. To achieve 227

the desired visual impression of the decorative pattern, 228

numerous manufacturing steps are necessary, result- 229

ing in a complex multilayered design. Therefore, the 230
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aim of this work was to develop an automatic visual231

inspection system that inspects decorated foil plates for232

production-related surface defects. Generally, the de-233

fects appear small in relation to the sample size being234

examined. The developed optical modalities must be235

able to display the different defect classes with suffi-236

cient contrast. Given the large product portfolio, the237

adaptability of the system to new product designs is of238

great importance. In addition, the applicability of auto-239

mated visual inspection in the production line should be240

ensured with regard to important process requirements241

such as cycle times. Due to the high labor involved in242

data acquisition and labeling, defect detection methods243

that provide sufficient detection performance with as244

little labeling effort as possible are emphasized. Fur-245

thermore, they must be capable of handling the allowed246

product to product variability.247

Currently, there is no available inspection system for248

automated full-surface defect detection of decorated249

foil plates, accounting for allowed design and prod-250

uct variability and adaptability. It has to be mentioned251

that this publication builds upon the research work pre-252

sented at the ASPAI 2022 [75]. Optical modalities were253

introduced that enable the visualization of production-254

related defects with sufficient contrast. Therefore, labo-255

ratory experiments were conducted to analyze various256

design patterns of different products. The possible inte-257

gration of investigated optical modalities into the pro-258

duction line as part of an inspection approach was out-259

lined. By assigning the detected defect classes to the in-260

dividual production steps, deviations in the production261

process will be detected at an early stage.262

Thus, the main contributions of this work can be263

summarized as follows:264

– Investigation and application of developed optical265

modalities for sufficient defect visualization in a266

sequential inspection process, given production267

related requirements. This includes adaptability268

to different product sizes with a “field of view”269

(FOV) of up to 1200 mm, as well as to product270

designs with their various defect appearances and271

resulting defect classes.272

– Introduction of scalable patch-wise defect detec-273

tion methods utilizing less labeled data, applicable274

for automatic full-surface defect detection. There-275

fore, a data preparation and preprocessing work-276

flow is presented, that minimizes the overall la-277

beling effort in supervised training settings, ap-278

plicable to various industrial manufacturing pro-279

cesses. This enables fast adaptability as allowable280

product-to-product variations and unseen defect281

types during production emerge.282

– Development and implementation of an inspection 283

system demonstrator in an industrial setting, capa- 284

ble of automatic defect detection on decorated foil 285

plates. 286

Section 2 illustrates the structure of decorated foil 287

plates and briefly describes the manufacturing process. 288

Frequently occurring defects are visualized and the for- 289

mation process of selected ones is described. In Sec- 290

tion 3 experimentally explored optical modalities are 291

specified, followed by an introduction of the inspection 292

system and its underlying procedures in Section 4. Sec- 293

tion 5 presents the investigated defect detection meth- 294

ods. Section 6 gives an evaluation of their defect detec- 295

tion performance as well as inference speed and overall 296

inspection time. Section 7 provides a summary of the 297

key findings and an outlook for future improvements. 298

2. Decorated foil plate 299

The manufacturing process underlying the products 300

studied is known as screen printing or silk screen print- 301

ing. This is a cost-effective and versatile printing pro- 302

cess that can be applied to a wide range of different 303

materials such as textiles, metals, glass, wood and poly- 304

mers [76]. The process is suitable for automation and is 305

widely used in industries such as textiles, automotive 306

and electronics [77]. Thereby, ink is deposited on the 307

sample through a screen with a defined design. The 308

screen consists of a frame with close-meshed fibers, 309

forming a grid, onto which a UV-active photo emul- 310

sion is evenly applied. Once the emulsion has dried, the 311

desired design is transferred to the screen using a film 312

exposed to a UV light source. Areas that have not been 313

exposed to UV light are then washed out and are per- 314

meable to the ink. In the subsequent printing process, 315

the ink is transferred through the created stencil to the 316

underlying sample. The sequential repetition of these 317

production steps using separate screens for each ink 318

layer enables the production of multilayer decorative 319

patterns. The correct alignment of the individual layers 320

to each other and the quality of each production step 321

have an influence on the final print result. 322

Figure 1 schematically shows a typical structure of a 323

decorated foil plate. Depending on the product design 324

the dimensions of the carrier foil vary from A4 format 325

to a width of 1200 mm. Typical materials are polymers 326

such as polycarbonate (PC), poly(methyl methacry- 327

late) (PMMA), acrylonitrile butadiene styrene (ABS), 328

polyethylene terephthalate (PET) or polyvinyl chloride 329

(PVC). The decorative pattern is formed by sequentially 330
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Fig. 1. Schematic multilayered design of a decorated foil plate showing possible defective (red) and fault-free patches (blue). Defects appear small
(few pixels in extension) in relation to the investigated sample size of up to 106 mm2.

depositing ink layers on the front- and/or backside of331

the carrier foil. The customized screens determine the332

design as well as the possible print resolution, which333

is defined by the number of meshes per inch and the334

ratio of thread diameter to mesh opening [78]. Depend-335

ing on the complexity of the decorative design, more336

than 10 different colored layers are applied. As a result,337

high-quality appealing decorative patterns are obtained,338

which in some applications can yield a visual 3D effect.339

2.1. Defect formation process and defect classes340

The complex manufacturing process results in a large341

number of possible defect causes. Basically, defects can342

occur in every manufacturing step, which cumulatively343

affect the final product. Understanding the origin of344

defects and their visual appearance is of central impor-345

tance for optimizing the quality standards in the man-346

ufacturing processes and, in the event of their occur-347

rence, for taking corrective action. In this work, pos-348

sible process-related surface defects are investigated.349

In the case of surface defect detection, a defect can be350

generally described as any sufficient deviation from the351

normal sample, considering the allowable product vari-352

ability. Typical defect classes include e.g. printing de-353

fects, inclusions, mechanical deformations, scratches,354

smears, squeegee strokes, pinholes, dust and misreg- 355

istered control markers. On the right side of Fig. 1, 356

two image patches on a structured decorative pattern 357

are illustrated. The defects appear small (approx. 0.07 358

mm2 on the upper right defective patch), i.e. only a few 359

pixels in size, relative to the product size of up to 106
360

mm2. A further characteristic is the high permissible 361

design variability of the structured patterns. This is ev- 362

ident when comparing the variance in contrasts of the 363

patches mentioned above. Depending on the location of 364

occurrence and product design, these defects can also 365

be defined as weakly contrasted. 366

Prior to each print cycle, the new print layer is pre- 367

cisely aligned to the existing layers. Any misalignment 368

of individual print layers during this registration process 369

will be visible in the printed pattern by a so-called pat- 370

tern misalignment, which is apparent across the entire 371

surface (Fig. 2, 1C/2C). Deviations during the ink appli- 372

cation process, e.g. regions with too less ink application, 373

lead to pinholes or inhomogeneities (Fig. 2, 2A/2B). 374

Inhomogeneities are print layers with too low optical 375

density and high variance in color values. Pinholes, in 376

turn, appear as dot-shaped holes in the print pattern. 377

Impermissible holes or closed meshes in the stencil of 378

the screen can lead to screen and print defects (Fig. 2, 379

1B). Typical inclusions in individual ink layers, such as 380



Galley Proof 16/08/2024; 14:48 File: ica–1-ica240742.tex; BOKCTP/yn p. 6

6 P.J. Krassnig et al. / Efficient surface defect detection in industrial screen printing with minimized labeling effort

Fig. 2. Visualized defective patches of selected production-related defect classes captured by means of the customized optical modalities. Each row
corresponds to a modality, from top to bottom: Line Scan Modality 1, Line Scan Modality 2, Area Scan Modality. Depending on their spatial
appearance, defects can be divided into point defects such as inclusions (1A), screen or print defects (1B), scratches or dots (3A/3B) and pinholes
(2A), or area defects such as pattern misalignment (1C/2C), inhomogeneities (2B) or squeegee strokes (3C).

Fig. 3. Relative positioning of the camera sensors and illumina-
tions regarding the utilized optical modalities: Line Scan Modality 1
(LSM-1), Line Scan Modality 2 (LSM-2) and Area Scan Modality
(ASM), as presented at the ASPAI 2022 [75].

dust and fibers (Fig. 2, 1A), are caused by impurities381

in the process environment and electrostatic charge on382

the foil plates. Due to an electrostatic interaction with383

charged particles in certain inks, static splashes or stains384

may also occur. Automatic or manual product handling 385

can cause scratches or dots (Fig. 2, 3A/3B), as well as 386

two-dimensional mechanical deformations, within the 387

topcoat layer. Changes in the uniformity of the squeegee 388

pressure and the dwell time of the ink on the screen 389

can lead to a variable ink application. These so-called 390

squeegee strokes (Fig. 2, 3C) are characterized as area 391

defects and are affected by the printing direction. 392

3. Defect visualization 393

Defect visualization with sufficient contrast forms 394

the basis of surface defect detection. Due to the charac- 395

teristic design of decorated foil plates, a large number 396

of defect classes emerge, which only become visible 397
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using certain optical modalities. In addition, some de-398

fect classes only occur in distinct decorative patterns.399

To find the best possible optical modalities, optical ex-400

periments were performed on a variety of decorative401

patterns and designs. According to the compliance stan-402

dards of the project partner, however, only images of a403

selected decorative pattern are illustrated in the given404

publication. The experiments included different sen-405

sor designs (area, line sensor) as well as illumination406

techniques (brightfield, darkfield, and transmission) in407

the visible range. As presented in [75] it turned out408

that three different optical modalities are necessary to409

visualize the wide range of defect classes. The optical410

modalities: Line Scan Modality 1 (LSM-1), Line Scan411

Modality 2 (LSM-2) and Area Scan Modality (ASM),412

consisting of camera and illumination as well as their413

positioning in relation to each other, are schematically414

visualized in Fig. 3.415

3.1. Line scan modality 1416

LSM-1 consists of an RGB linescan camera and a417

high intensity LED line bar (white, 6200 K). The il-418

lumination is equipped with a special lens and light419

amplifier foil to ensure the most directional and bright-420

est illumination in the focal zone. The optimum dis-421

tance, determined by the optical characteristics of the422

line bar, is approximately 50 mm above the sample’s423

surface. The relative arrangement of light source and424

camera, enable a dark field illumination. The camera425

is placed planar to the sample’s surface and the angle426

of incidence of the illumination is chosen as steep as427

possible w.r.t. the horizontal plane. This positioning428

avoids strong shadowing in complex decorative pat-429

terns showing a 3D effect. Patches 1A–1C in Fig. 2430

were recorded by means of this setup. Small punctual431

defects such as screen defects or inclusions that stand432

out only slightly from the background, are displayed433

in good contrast. Furthermore, area defects such as the434

pattern misalignment of an entire print layer, occurring435

as semitransparent white overlay in patch 1C, is clearly436

pronounced. This setup is applicable for defects affect-437

ing the decorated pattern like slurred prints. In addition,438

it addresses “sawtooth” defects, defined as continuous439

eroding at patterned edges, as well as misregistered440

control markers.441

3.2. Line scan modality 2442

LSM-2 similarly utilizes an RGB line scan camera443

and a high intensity LED line bar. The illumination is444

placed planar and opposite to the camera aligned to 445

its optical axis. As shown in Fig. 3, this setup allows 446

transmission measurements of the investigated sample. 447

As in LSM-1, the optimal distance is determined by 448

the optical characteristics of the line bar (approx. 50 449

mm behind the sample) to achieve the highest possible 450

illumination intensity. A planar alignment of sensor and 451

illumination to the sample’s surface is mandatory to 452

reliably investigate thicker layers on large-sized sam- 453

ples, mitigating geometrical influences on the optical 454

path. As in the LSM-1 setup, the camera distance is 455

determined by the demanded maximum FOV as well as 456

the required object pixel size and can be greater than 457

1000 mm dependent on the sensor design. In addition 458

to defects such as pinholes or pattern misalignment 459

(Fig. 2, 2A/2C), it is also possible to display unwanted 460

inhomogeneities in semitransparent colored print layers 461

(Fig. 2, 2B). Line scan cameras in combination with 462

high intensity line bars are generally the appropriate 463

choice for the dynamic inspection of flat surfaces, as 464

they are capable of capturing high resolution images at 465

high measurement speeds, regardless of the sample size 466

in the transport direction. However, the experiments 467

conducted with the line scan camera revealed that the 468

detection of defects on the transparent top layer was not 469

satisfactory. 470

3.3. Area scan modality 471

To overcome above mentioned limitations an optical 472

modality, consisting of an area scan camera and a light 473

bar aligned in direct reflection, was designed (ASM 474

in Fig. 3). Therefore, the LED light bar (white, 6200 475

K) is placed as far away as possible from the speci- 476

men’s surface to create a large optical lever with re- 477

spect to the monochromatic camera sensor. As shown 478

in Fig. 2 3A–3C, this illumination method produces 479

a bright area of direct reflection in the center, which 480

decreases and fades out to the margins. Defects such as 481

squeegee strokes or smears are only visible with high 482

contrast in this transition area of reflection (Fig. 2, 3C). 483

In general, bright-field images differ significantly from 484

dark-field images in the LSM-1 and reveal defects in the 485

transparent top layer, such as scratches and mechanical 486

deformations (Fig. 2, 3A/3B). The majority of defects 487

in the transparent top layer are only visible using this 488

modality. 489

Utilizing all three modalities it was feasible to visu- 490

alize the required production-related defect classes with 491

sufficient contrast within the range of a few pixels in 492

extension and minimum object pixel sizes of approx. 493
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Fig. 4. Main components of the inspection system demonstrator,
installed at the production site: Measurement chambers as LSM-1,
LSM-2 and ASM; Programmable Logic Controller as PLC; Human
Machine Interface as HMI; Graphical User Interface as GUI.

75 µm. The different object pixel sizes are clearly ap-494

parent in Fig. 2, as patches 3A–3C map a larger FOV at495

the same pixel size (256 × 256 px) as patches 1A–2C496

captured by LSM-1 and LSM-2.497

4. Inspection system498

The optical modalities enable a visualization of the499

production-specific defect classes with sufficient con-500

trast. In order to perform an automatic visual product501

inspection using these modalities, an inspection system502

demonstrator was designed and installed at the project503

partner’s production facility. The following main sys-504

tem requirements were considered: 1) Maximum prod-505

uct inspection time is determined by the conveyor speed506

and transport length and ranges between 15–30 s. 2)507

Product sizes of up to 1200 mm (FOV) should be exam-508

inable. 3) Adaptivity to different products and designs509

must be provided. 4) The defect detection methods must510

be able to detect smallest defects in relation to product511

sizes considering the allowed product to product varia-512

tions. Furthermore, little efforts in data labeling as well513

as inference speeds applicable for in-line inspection are514

demanded.515

4.1. Inspection procedure516

As shown in Fig. 4, the inspection system demon-517

strator consists of three measurement chambers, respec-518

tively one for each modality LSM-1, LSM-2 and ASM,519

which are arranged in sequence. Each measurement520

chamber is optically shielded to avoid both ambient521

light and unwanted reflections from different chambers.522

Regarding the above stated system requirements as well523

as required optical modalities, suitable hardware com- 524

ponents had to be selected. The hardware components 525

of the measurement chamber LSM-1 and LSM-2 con- 526

sist of commercial 16k RGB line scan cameras includ- 527

ing optics and commercial high-power LED line bars 528

according to Section 3. Due to the large required FOV 529

of 1200 mm, 4 side by side monochrome area scan 530

cameras (2.2 MP) incl. optics in combination with a 531

high-power bar light are mounted in ASM. During each 532

measurement cycle, the sample is manually placed on 533

a conveyor belt and sequentially transported through 534

all three measurement chambers. An installed rotary 535

encoder generates trigger signals that enable distortion- 536

free image acquisition at different conveyor speeds. Op- 537

tical sensors detect the onset of the sample’s surface and 538

thus start image acquisition. Furthermore, the sensors 539

characteristics were calibrated for a variety of decorated 540

surfaces. The system parameters such as i.e. conveyor 541

speed, illumination characteristics and sensor data are 542

centrally controlled by means of a Programmable Logic 543

Controller (PLC) and can be adjusted via an Human 544

Machine Interface (HMI) panel. The inspection soft- 545

ware operates on a distributed infrastructure. The com- 546

puting unit consists of two computers, each with an 547

NVIDIA GPU (GeForce RTX 2080 Ti resp. RTX 3090), 548

a multicore processor and frame grabbers for the cam- 549

eras. 550

4.2. Data processing 551

The images of the LSM-1 and LSM-2 measurement 552

chambers consist of 16384 × 12800 px for each color 553

channel at an FOV of 1200 mm in sensor direction. 554

The images captured by ASM even contain 8192 × 555

65536 px due to the image stitching procedure. This 556

results in a data amount of 600 MiB per LSM-1 and 557

LSM-2 chamber as well as 512 MiB in case of the ASM 558

chamber. In total, approx. 1.7 GiB of image data are 559

processed per measurement cycle. Given the required 560

cycle times ranging from 15–30 s, this represents a ma- 561

jor challenge in terms of data processing. For this pur- 562

pose, a memory-optimized and parallelized data pro- 563

cessing pipeline was developed. Thereby, the measure- 564

ment data, starting from the raw image of the camera 565

up to the final inference decision, are processed in par- 566

allel. Key processes include image acquisition, regis- 567

tration, segmentation, inferencing, post-processing and 568

saving. A key feature of the data processing pipeline 569

is that it avoids the evaluation of the entire image at 570

once. Instead, as part of the preprocessing, overlap- 571

ping image patches of size 256 × 256 px are extracted 572
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Fig. 5. Illustration of the patch extraction process in the defined ROI. Overlapping patches (blue squares) are extracted within the entire ROI-area
(green), ensuring a minimum covered sample area at the borders.

within masked image regions that are relevant for de-573

fect detection. This results in localized patch-wise de-574

fect detection. As shown in Fig. 5, overlapping patches575

(blue squares) are extracted in the so-called “region of576

interests” or ROIs (green border) of the raw image in577

the form of a grid covering the entire samples area.578

These regions, predefined by domain experts, define579

the product surfaces subject to inspection. A zoomed580

fault-free patch is visualized in the upper right corner.581

The overlapping patches with strides of 120–160 px582

ensure that a potential defect is completely covered at583

least in one patch, avoiding overlooking at borders. This584

results in 170–300 patches per ROI. Depending on the585

product size and the number of ROIs to be inspected,586

there are several thousands of patches (e.g. 3400–6000587

patches for 20 ROIs) to be evaluated per image and588

measurement chamber.589

4.3. Calibration and image acquisition590

The calibration of the measurement modalities in-591

cluded optimizations of the rotary encoder settings,592

photo responsive non-uniformity corrections, fixed pat-593

tern noise corrections as well as white balancing. De-594

pending on the modality, minimum exposure times of595

100 µs were selected to achieve the desired contrasts596

and limit motion blurring. The MTF50 – value of LSM-597

1 could be estimated with the help of an ISO Standard598

12233:2000 calibration chart and a self-implemented 599

slanted edge method as described in [79] with 5 lp/mm. 600

With the help of the line scan cameras in the measure- 601

ment chambers LSM-1 and LSM-2, it was possible to 602

capture samples with FOVs of up to 1200 mm without 603

gaps. The acquisition of the entire FOV in measure- 604

ment chamber ASM is only possible by software stitch- 605

ing of the individual image frames. The difference of 606

LSM-1 and LSM-2 compared to ASM in the form of a 607

stretched geometry of the design, is evident in Fig. 6. 608

The frame rate was chosen as high as necessary (up to 609

40 frames per second) to avoid possible overlooking of 610

small defects in the aforementioned transition area of 611

direct reflection. 612

5. Defect detection methods 613

The characteristics of the surface defects to be de- 614

tected and the processing of large amounts of data 615

within the production related cycle times pose a chal- 616

lenge for the selection of suitable defect detection meth- 617

ods. The evaluation of thousands of patches, most of 618

which are fault-free, results in an imbalanced data dis- 619

tribution. In addition to a low false positive rate, de- 620

fect detection methods are required that exhibit suffi- 621

cient inference speed. In order to minimize the adapta- 622

tion effort per product, defect detection methods with 623
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Fig. 6. Excerpts of masked sample images, acquired by means of
the three measurement chambers: LSM-1, LSM-2 and ASM within a
sequential run.

as little labeling effort as possible are preferred, while624

maintaining sufficient defect detection performance.625

The following section describes the defect detection626

methods utilized in each of the measurement cham-627

bers, as well as the data set preparation and method628

settings. As a baseline for benchmarking defect detec-629

tion performance and inference speed, a state-of-the-art630

unsupervised anomaly detection method is introduced.631

5.1. Supervised oversampling method632

A widely used approach in machine learning to com-633

pensate for imbalanced data distributions are resam-634

pling techniques such as random undersampling or635

oversampling [80,81]. In the case of an imbalanced data 636

distribution of majority and minority classes, the sam- 637

ples from the respective class are randomly eliminated 638

(undersampling) or copied (oversampling) to create a 639

revised balanced dataset. In the course of this work, 640

a scalable patch-wise oversampling method is intro- 641

duced that enables efficient use of scarce and imbal- 642

anced data available. The following steps are necessary 643

in providing fault-free (majority class) and defective 644

data (minority class): 645

1. Masking of the individual ROI’s of fault-free 646

and defective samples and setting “out-of-ROI- 647

values” to a integer value, e.g. zero. 648

2. Extraction of patches at random positions within 649

the individual ROIs of the fault-free samples in 650

the size of 512 × 512 px, ensuring a minimum 651

covered area between patch and ROI. 652

3. Augmentation of the extracted patches using ran- 653

dom affine transformations (rotation, shearing, 654

etc.) and random color transformations (bright- 655

ness, contrast, etc.). 656

4. Centre cropping of 1/2 of the original patch size 657

(height, width) to avoid image borders, caused by 658

augmentation. 659

5. The resulting fault-free and augmented patches of 660

size 256 × 256 px are stored in a large file storage 661

format, e.g. hdf5 or TSF as recently introduced in 662

[82]. 663

6. Extraction of defective patches of size 512 × 512 664

px in the defective samples, ensuring central de- 665

fect positioning within the patch. 666

7. Training of a (pretrained) DCNN in a supervised 667

manner, whereby the defective patches are in- 668

jected with a probability of 50% into the stream 669

of fault-free patches. This step utilizes the same 670

augmentation settings as described in 3, including 671

center cropping (256 × 256 px). 672

Parameters such as the minimum ROI area covered 673

per extracted patch and the maximum distance of ran- 674

dom translations during augmentation, determined by 675

defect type and patch size, must be carefully chosen. It 676

is crucial to ensure that product surfaces are sufficiently 677

represented and defects are covered after extraction and 678

augmentation, to avoid e.g. generating defective patches 679

that miss defective areas. 680

The samples used are pre-sorted by a domain expert 681

prior to image acquisition, with separate samples for 682

fault-free and defective data. This task eliminates any 683

unwanted correlation between defective and fault-free 684

patches in the subsequent data set generation. Thus, the 685

labeling effort is limited only to the defective data at 686
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known regions, since the extraction of fault-free patches687

is integrated into an automated process (step 1 to 5).688

Furthermore no elaborate pixelwise labeling of ground689

truths as in in segmentation based approaches is re-690

quired. By extracting patches at random positions, the691

original dataset can be exploited as much as possible692

(several 100 000 patches from a few acquired images693

with large FOVs). Moreover, it is theoretically possi-694

ble to collect an endless stream of fault-free patches.695

Another advantage of patch-wise evaluation is that the696

patch context focuses on image features that are rele-697

vant for defect detection, while ignoring unimportant698

ones. As with other supervised methods that use over-699

sampling techniques, attention must be given to possi-700

ble overfitting. However, this method is easily scalable701

depending on data availability and thus can be fine-702

tuned as new defects emerge throughout the production703

process.704

Above tasks can be seen as an applicable data-705

preparation as well as preprocessing workflow in indus-706

trial applications, reducing elaborate labeling only to707

known defective samples and sample regions.708

5.2. Synthetic defect method709

Another method used in this publication is based on710

the synthesis of artificial defects [48]. This algorithm711

enables the synthetization of defects with a wide range712

of appearances, imitating a large proportion of real oc-713

curring defects. Basically, the synthetization algorithm714

consists of four steps:715

1. Generation of a binary defect skeleton, that is716

based on a stochastic process resembling a ran-717

dom walk with momentum.718

2. Generation of a random defect texture, based on719

the previously generated binary defect skeleton.720

3. Modification of the fault-free image patch by721

means of the randomly generated defect texture.722

4. Assessment of defect visibility and rejection of723

synthesized defects below the visibility threshold.724

By utilizing different sets of hyperparameters of725

the random variables used in steps 1–3, it is possi-726

ble to generate a variety of different defect morpholo-727

gies (straight, jagged, curved, circular skeletons, etc.)728

and characteristics (contrast, intensity distribution). De-729

pending on the appearance of the real defects to be im-730

itated (elongated, punctual as in Fig. 2), the hyperpa-731

rameters that determine the distribution of the random732

variables must be chosen selectively.733

Due to the transition region of direct reflection as734

well as the frequent occurring ROI borders, above de-735

scribed method was adapted to generate visually ap- 736

parent defects in both bright and dark contrasted areas, 737

exclusively within the ROIs. Thus, defect synthetization 738

categories and their underlying hyperparameters were 739

adjusted based on real defects to produce bright and 740

dark contrasted punctate and filamentous morpholo- 741

gies of different sizes and characteristics as depicted 742

in Fig. 7. The preprocessing to generate the training 743

and validation dataset follows almost the same proce- 744

dure as steps 1–5 in Section 5.1. Additionally, following 745

the central cropping in step 4, defects are generated in 746

50% of the fault-free patches. As a result, the generated 747

training and validation datasets are balanced. With this 748

method, it is therefore possible to perform balanced 749

supervised training without the need for defective data. 750

However, the generalization ability is only assessable 751

using a test dataset containing real defects. Since the 752

synthetization algorithm is based on grayscale, RGB 753

images, if present, must either be converted or their 754

channels processed independently. 755

5.3. Thresholding algorithm 756

LSM-2 enables the detection of pinholes, pattern 757

misalignments or general inhomogeneities with low op- 758

tical density. Due to the characteristics of the trans- 759

mission measurement, defect features typically appear 760

as white dots or areas of certain dimensions (Fig. 2, 761

2A/2C) within the image patch. To detect these fea- 762

tures, a thresholding algorithm was developed, which 763

is briefly described in the pseudo code of Algorithm 1. 764

The connected_components() function groups con- 765

nected regions and assigns labels to the binarized im- 766

age patches. These labels are then used to calculate the 767

area of each defective region by counting the number of 768

connected pixels per label. In order to utilize GPU-level 769

parallelization the pseudo code shown in Algorithm 1 770

was implemented in a batchwise manner. With the help 771

of this algorithm it is possible to tune parameters like 772

RGB-thresholds and min. / max. defect areas, depend- 773

ing on the given quality requirements. As with other 774

traditional image processing methods, no training data 775

is demanded. 776

5.4. Baseline method 777

The representation-based method by Roth et.al [32], 778

namely PatchCore, is based on the extraction of mid- 779

level features of fault-free patches using a pre-trained 780

DCNN. During the training phase, subsamples of these 781

locally aware patch features are stored in a memory 782
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Fig. 7. Synthetic generated defects on fault-free patches of LSM-1 (top row) and ASM (bottom row). Hyperparameters were chosen to mimic
punctual and elongated “real” defects as shown in Fig. 2.

bank. During inference, these features are compared783

to the extracted features of the image using a near-784

est neighbor search, resulting in anomaly scores. This785

method achieves SOTA anomaly detection performance786

on the MVTec dataset, resulting in an image-level787

AUROC of up to 99.6%.788

5.5. Dataset and method settings789

In order to evaluate methods described in section790

5, image data were acquired by means of all three791

measurement chambers (LSM-1, LSM-2, ASM) of the792

inspection system demonstrator. Pre-sorted fault-free793

samples as well as defective samples of different defect794

classes were captured. The samples taken are in a state795

in which the printing process, including drying, has al-796

ready been completed. Therefore, defects that occurred797

during printing are treated as fixed at this stage and no798

further significant changes are expected. However, the799

samples originate from different production batches and800

therefore have a desirable permitted design variability.801

A training, validation and test dataset was created802

for each measurement modality. Each dataset consists803

of patches cropped from the respective ROIs of the ac-804

quired samples, resulting in an evaluation patch size of805

256 × 256 px. In order to avoid unwanted correlations806

between the patches, the extraction of defective and807

fault-free patches was done on separate samples. For808

the same reason, fault-free and defective patches were809

assigned to training, validation and test data from sep- 810

arate samples. This procedure allows for the creation 811

of uncorrelated datasets regarding defect classes and 812

data splits. The training data regarding the supervised 813

oversampling and supervised synthetic defect training 814

were created as described in section 5.1, by extracting 815

100 000 fault-free patches at random positions within 816

the ROIs. A total of 129 defective patches were col- 817

lected for the supervised oversampling training. The 818

extraction of overlapping fault-free patches for the cre- 819

ation of the training dataset for PatchCore, as well as 820

for the creation of the validation and test datasets, was 821

accomplished by using a sliding window with a stride 822

of 160 px. The LSM-1 dataset consists of 2014 and 823

1498 fault-free patches together with 74 and 95 de- 824

fective patches for validation and testing, respectively. 825

LSM-2 contains 406 and 393 fault-free as well as 44 826

and 110 defective patches for validation and testing. 827

The validation of the ASM was performed using a bal- 828

anced synthetic dataset as described in section 5.2, con- 829

taining 10 000 fault-free as well as 10 000 synthesized 830

defect patches. However, the test dataset contains 2060 831

fault-free and 74 “real” defective patches. In order to 832

imitate the slice wise image capture process in ASM, 833

the same defects may appear in different illumination 834

areas. In general, the datasets contain common defect 835

classes with respect to their optical modality, which 836

can be divided into point defects such as dust and fiber 837

inclusions, mechanical damages, print defects or pin- 838
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holes, as well as area defects such as pattern misalign-839

ment, punctual grid defects or squeegee strokes, etc.840

(see Fig. 2). Furthermore, all different defect classes841

are combined into one main defect class per modality.842

As shown by the distribution of fault-free and defective843

patches, imbalanced validation and test datasets were844

created to mimic typical imbalanced inspection data845

distributions.846

Algorithm 1: Thresholding Algorithm
Data:
– Image Batch (batch_size, channels, height,width)
– Threshold (r, g, b)
– Maximum pixel sum above threshold
– Minimum and maximum feature areas
– Filter kernel size (k)
– Image margin indices
Result:
– Predictions if patches are defective or fault-free
– Areas of connected components

1 for patch in batch do
2 for c in channels do
3 for i in {1, 2, . . . , height} do
4 for j in {1, 2, . . . ,width} do
5 if i AND j in margins then
6 patch[c][i][j]← 0;
7 continue;
8 if patch[c][i][j] 6 threshold[c] then
9 patch[c][i][j]← 0;

10 else
11 patch[c][i][j]← 1;

12 if patch[r] AND patch[g] AND patch[b] = 1 then
13 binary_patch← 1;
14 else
15 binary_patch← 0;

16 dilated_patch← dilation(binary_patch, k);
17 if 0 < sum(dilated_patch) 6 px_sum_lim then
18 components←

connected_components(dilated_patch);
19 for c in components do
20 areas← component_areas(c);
21 if any area_lim_lower 6 areas 6

area_lim_upper then
22 predictions← “defective”;
23 else
24 predictions← “fault-free”;

25 else
26 predictions← “fault-free”;

27 return predictions, areas;

5.5.1. Supervised oversampling/synthetic defect847

training settings848

For both methods, network training was performed849

using the stochastic gradient descent optimizer with850

parameters (learning rate as 5 × 10−5 to 10−4, weight 851

decay as 10−2, momentum as 0.9) on a residual net- 852

work [83] namely ResNet18 pre-trained on ImageNet 853

[45]. Cosine annealing was used as the learning rate 854

scheduler, as described in [84]. As an additional pre- 855

processing step, the individual patches of the LSM-1 856

dataset were brightness-adjusted. In addition, a weak 857

smoothing was applied to all the modalities by using 858

a Gaussian kernel with a kernel size of 3 and a sigma 859

of 1. Mixed precision training was performed until sig- 860

nificant overfitting during validation occurred. In addi- 861

tion, models were selected based on the best Matthews 862

correlation coefficient (MCC) on the test data. Further- 863

more, thresholds for the underlying one-class classifi- 864

cation task were set according to the optimal F1-scores 865

obtained. 866

5.5.2. Thresholding algorithm settings 867

The thresholding algorithm (Algorithm 1) basically 868

contains a set of seven values out of four parameters 869

to be adjusted depending on the quality requirements 870

e.g. defect sizes. The three threshold values of the RGB 871

color channels, the min. and max. number of connected 872

pixels above the previously set threshold, and a filter 873

kernel size. The maximum pixel sum parameter is intro- 874

duced for reasons of computational speed. Furthermore, 875

it is possible to account for ignoring image margins 876

in strided patch-wise extraction scenarios. Threshold 877

values and other parameters were selected according to 878

the best detection performance based on a predefined 879

validation dataset as described in Section 5.5. There- 880

fore, the optimal parameters were chosen as follows: 881

Threshold RGB for all channels as 90 (uint8), min. and 882

max. defect area as 1 and 3000, the maximum pixel 883

sum as 15 000, the filter kernel size as 3. Patch margins 884

with a size of 40 px were ignored during inference. 885

5.5.3. Baseline settings: PatchCore 886

For reasons of adaptability, this paper investigates 887

a self-implemented version according to [32]. As fea- 888

ture extractor, layers 2 and 3 of a ResNet50 resp. wide 889

ResNet50 [85] pretrained on ImageNet were chosen 890

with a kernel size of 3 and stride of 1 used for average 891

pooling. IndexFlatL2 of the GPU-based Faiss library 892

[86] was selected for feature embedding, while omitting 893

coreset subsampling in order to exclude any defect de- 894

tection performance loss. For all datasets, all available 895

training patches were used for feature embedding, with 896

the upper limit set to 500 and the number of nearest 897

neighbors set to 3 resp. 5. Patch margins with a size 898

of 40 px were ignored during feature embedding and 899
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evaluation of LSM-1 and LSM-2 to avoid common false900

positive detections in these areas. Furthermore, this is901

accompanied by an acceleration of inference speed.902

For LSM-1, an additional brightness adjustment was903

performed. As with the supervised methods above, the904

anomaly threshold for the binary classification task was905

chosen on the basis of the optimal F1-score. Prior to the906

experiments, the method was validated on the MVTec907

dataset and resulted in an average image level AUROC908

of 98.5% for image sizes of 256 × 256 px.909

All methods were implemented in Python (version >910

3.8.3) using the GPU version of the PyTorch framework911

(version > 1.9.1) with CUDA Toolkit version > 11.1.1.912

Experimental tests of the methods described above were913

performed on a NVIDIA GeForce RTX 3090, an AMD914

Ryzen 9 3950X 16-core processor and 64 GB DDR4915

RAM running on OS Windows 10.916

6. Method and inspection system evaluation917

Experiments by means of the defect detection meth-918

ods presented in Section 5 were conducted and eval-919

uated regarding the patch-wise defect detection per-920

formance (Tables 1, 2) and the inference speed (Ta-921

ble 3). In addition, the overall inspection time of the922

implemented inspection system demonstrator was de-923

termined. As shown in Table 1, the defect detection per-924

formance is measured based on the entries in the con-925

fusion matrix, true negatives (TN), true positives (TP),926

false negatives (FN) and false positives (FP), and met-927

rics obtained such as Matthews correlation coefficient928

(MCC) and false positive rate (FPR) as well as recall.929

Negatives correspond to fault-free patches, while posi-930

tives represent defective ones. Commonly used metrics931

such as accuracy, F1-score or ROC-AUC are biased to-932

wards the majority class in the case of imbalanced data933

distributions. The MCC, with values ranging from −1934

(inverse prediction) to 1 (perfect prediction), includes935

all entries of the confusion matrix, thus making it an936

applicable metric eliminating the risk of overoptimistic937

outcomes [87]. Table 2 compares the methods used in938

LSM-1 and ASM in terms of their underlying defect939

group performance. Defect classes as in Fig. 2 can be940

broadly grouped into point or area defects, resulting941

in the imbalanced datasets as described in section 5.5.942

The defect detection methods are categorized accord-943

ing to their utilization of labeled defects. In contrast to944

the supervised oversampling method, PatchCore, the945

synthetic defect training and the thresholding algorithm946

do not rely on any labeled defective data for feature947

embedding or training.948

6.1. Patch-wise defect detection performance 949

The following section provides a detailed analysis of 950

the method’s patch-wise defect detection performance, 951

considering typical imbalanced inspection data distri- 952

butions. The best performing method of each optical 953

modality are highlighted in bold (Table 1). As in LSM- 954

1, the supervised oversampling method achieved an 955

MCC of 0.88 at an FPR of 0.2%, closely followed by 956

synthetic defect training with an MCC of 0.85 and the 957

same FPR. PatchCore resulted in a 6 times higher FPR 958

and an MCC of 0.58. With the ASM setup, the best 959

results were achieved through synthetic defect training 960

with an MCC of 0.74 and an FPR of 0.5%. PatchCore 961

performed even less well than in LSM-1, with an MCC 962

of 0.26 and ten times higher FPR of 5.1%. In the ab- 963

sence of a sufficient number of defective samples, the 964

supervised oversampling in ASM was skipped. Due to 965

the clearly pronounced features in LSM-2, PatchCore 966

performed robustly with an MCC of up to 0.95 and a 967

comparatively low FPR of 0.8%. The thresholding al- 968

gorithm presented in Algorithm 1 resulted in an MCC 969

of 0.99 with only one overlooked defect. 970

Figure 8 shows the inference results by means of the 971

PatchCore method including anomaly overlay. Rows 972

1–3 follow the optical modalities LSM-1, LSM-2 and 973

ASM. Columns A–C are arranged according to TP, 974

FN and FP classification. The image margins ignored 975

during inference are clearly visible in 1A–2C. Large 976

area defects, such as the grid defect in 1A, produced 977

clearly pronounced areas of anomaly, whereas point 978

defects, such as the print defect in 1B, were overlooked. 979

The high allowable variance of the structured pattern, 980

as shown in 1C, led to a large amount of false posi- 981

tive patches. Large distinct defects, such as the pattern 982

misalignment in 2A and high contrasted pinholes, pro- 983

duced large deviating feature vectors with respect to 984

the learned feature embedding, leading to proper defect 985

detection. However, small and low contrasted pinholes 986

as illustrated in 2B were more likely to be missed. As 987

with LSM-1, small feature variations in the vicinity 988

of masked border regions also led to anomaly scores, 989

resulting in false positives as in 2C. The ASM dataset 990

poses a challenge regarding defect detection due to its 991

high contrast variance in the transition region of di- 992

rect reflection and its frequently appearing masked ROI 993

regions. As shown in patches 3A and 3C, many false 994

positives occurred at the border areas of the ROI as 995

well as in before mentioned transition regions. Possible 996

imperfect ROI segmentation also introduced additional 997

feature variance, leading to false positives. Frequently, 998
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Table 1
Patch-wise defect detection performance metrics of leveraged methods; supervised oversampling method (Oversampling), synthetic defect method
(Synthetic Defects), threshold algorithm and the baseline method PatchCore. The test datasets are imbalanced to mimic typical inspection data
distributions that overrepresent fault-free samples. The best performing method of each optical modality are highlighted in bold

Modality Method #Real defects TN TP FN FP MCC Recall (%) FPR (%)
LSM-1 Oversampling 42 1493 69 26 5 0.81 72.6 0.3

129 1495 77 18 3 0.88 81.1 0.2
Synthetic defects 0 1495 72 23 3 0.85 75.8 0.2
PatchCore 0 1478 49 46 20 0.58 51.6 1.3

LSM-2 Thresholding 0 393 109 1 0 0.99 99.1 0.0
PatchCore 0 390 104 6 3 0.95 94.5 0.8

ASM Synthetic defects 0 2049 50 24 11 0.74 67.6 0.5
PatchCore 0 1954 29 45 106 0.26 39.2 5.1

Fig. 8. TP, FN and FP (columns) patch inference results of LSM-1, LSM-2 and ASM (rows) using PatchCore. Large area defects, such as the grid
defect in 1A as well as the pattern misalignment in 2A produced clearly pronounced areas of anomaly. However, small and weakly contrasted point
defects, such as the print defect and the pinhole (1B/2B), were overlooked. Feature variations in the vicinity of masked border regions (2C/3C) and
transition regions of direct reflexion (3A) introduced many false positives.

TP patches were classified as defective because of these999

detected regions, whereas large area defects such as1000

squeegee strokes in 3B were partially or not detected at1001

all.1002

Table 2 illustrates the performance metrics obtained1003

by means of the oversampling and synthetic defect1004

methods in LSM-1 and ASM. For this purpose, the met- 1005

rics previously shown in Table 1 were divided into their 1006

individual defect groups, point and area. In case of the 1007

supervised oversampling method in LSM-1, no area 1008

defect was overlooked, resulting in a recall of 100%. 1009

By utilizing synthetically generated defects as visual- 1010
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Table 2
Patch-wise defect detection performance metrics comparing the methods supervised oversampling (Oversampling) and defect synthetization
(Synthetic Defects) by means of the defect groups Area and Points. The test datasets are imbalanced to mimic typical inspection data distributions
that overrepresent fault-free samples. The best performing method of each Defect Group are highlighted in bold

Modality Defect group Method TN TP FN FP MCC Recall (%)
LSM-1 Area Oversampling 1498 49 0 3 0.97 100.0

Synthetic detects 1495 42 7 3 0.89 85.7

ASM 2049 14 19 11 0.48 42.4

LSM-1 Points Oversampling 1495 28 18 3 0.74 60.9
Synthetic detects 1495 30 16 3 0.76 65.2

ASM 2051 36 5 11 0.82 87.8

ized in Fig. 7, a recall of 86% was obtained. Overall,1011

area defects have not been synthesized and their mor-1012

phology is completely different with respect to their1013

optical modality in LSM-1 and ASM. This can be ob-1014

served in Fig. 8, comparing the grid defect in 1A with1015

the squeegee stroke defect in 3B. The grid defect con-1016

tains punctate features, comparable to some synthesized1017

point defects in LSM-1, thus potentially led to a robust1018

recall of the above described 86%. The synthetic de-1019

fect method performed slightly better than the super-1020

vised oversampling method in detecting point defects,1021

resulting in a recall of 65%. In general, the detection1022

of small sized defects in this modality is challenging,1023

due to their weak appearance in surrounded structured1024

patterns (Fig. 2 1A).1025

However, in the case of ASM, the detection of point1026

defects was superior to LSM-1 with a recall of 88%.1027

Although the morphology of the synthesized defects in1028

ASM is completely different from that of area defects1029

(as shown in Fig. 2, 3C), this defect group achieved a1030

recall of 42%. This can be seen as the ability to learn the1031

underlying distribution of the fault-free data using the1032

influence of the vast amounts of augmented fault-free1033

and synthetic defect patches.1034

Furthermore, the low FPR of 0.2–0.5% observed with1035

these supervised learning procedures, with respect to1036

the remaining high recall of certain defect groups, indi-1037

cates strong generalization ability. Another indicator of1038

its robustness is that possible imperfect ROI segmen-1039

tations, such as those seen in ASM (e.g. holes within1040

darkly contrasted ROI regions), which lead to false pos-1041

itives in PatchCore, are not noticeable during inference1042

utilizing the synthetic defect method.1043

As shown in Table 1, the supervised oversampling1044

method achieved an MCC of 0.81 and an FPR of 0.3%1045

by leveraging a reduced set of 42 labeled defects. This1046

gives an indication of the scalability of this method1047

when compared to the metrics obtained using 129 la-1048

beled defects. As stated above 170–300 patches per1049

ROI are evaluated, thus to avoid any false alarms FPR1050

less than 0.59 resp. 0.33% are required to be applicable 1051

for inspection runs. Despite PatchCore, struggling with 1052

high FPR, introduced methods are capable of achieving 1053

even lower FPR. 1054

6.2. Inspection speed 1055

In addition to the evaluation of defect detection per- 1056

formance, the inference speed of the applied defect de- 1057

tection methods was determined. As shown in Table 3, 1058

the inference times and their reciprocal, the throughput 1059

of patches per second, were measured in combination 1060

with their CUDA memory footprint. According to the 1061

image processing pipeline as described in Section 4.2, 1062

image batches with batch sizes of 128 were chosen for 1063

evaluation. However, in the case of PatchCore, the batch 1064

size was reduced to one. The use of large feature em- 1065

beddings of 1.5 and 3.1 GiB resulted in a high compu- 1066

tational GPU utilization of up to 91%, preventing any 1067

noticeable speed-up by means of larger batch sizes. The 1068

test image batches consisted of either dummy data sam- 1069

pled from a uniform distribution, or selected defective 1070

and fault-free patches yielding to torch tensors (float32) 1071

allocated on the GPU. 1072

The performance measures shown in Table 3 were 1073

determined using the arithmetic mean of 5 cycles 1074

with 100 repetitions, including preprocessing of the 1075

respective methods. Prior to each measurement cy- 1076

cles, a GPU warm-up of 10 repetitions was performed. 1077

To account for asynchronous CUDA data process- 1078

ing, inference times were measured using PyTorch’s 1079

synchronized CUDA events [88]. The GPU mem- 1080

ory footprint of each method was determined us- 1081

ing torch.cuda.mem_get_info(), deducting PyTorch’s 1082

CUDA context of approximately 1.3 GiB. 1083

As expected, the ResNet18 architecture, used by 1084

means of the supervised oversampling and the synthetic 1085

defect method, achieved the lowest inference time of 1086

0.18 ms, resulting in a throughput of 5556 patches/s. 1087

Inference times larger than 1000 patches/s have already 1088
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Table 3
Patch-wise inference speed measurements of utilized methods resp. their underlying architectures;
supervised oversampling method and synthetic defect method (ResNet18), thresholding algorithm
and the baseline method PatchCore

Method Data Margin Inference time Throughput Memory-Footprint
px ms patches/s ± std GiB

Thresholding Dummy 0 1.81 552 ± 3 1.2
40 1.18 847 ± 5

Defective 40 1.13 885 ± 6
Fault-free 0 0.58 1724 ± 1

PatchCore Defective 0 118.89 8 ± <1 6.0
Defective 40 32.95 30 ± <1 4.5

ResNet18 Dummy 0 0.18 5556 ± 9 2.3

been reported for ResNet architectures in [89]. The de-1089

pendence of the threshold algorithm on the input data1090

is clearly visible in Table 3. The highest inference time1091

was measured with 1.81 ms in the case of the dummy1092

data and 0.58 ms for fault-free data, missing defective1093

pixels and thus skipping the computation of defective1094

areas. These values represent the estimated upper and1095

lower bounds. Thus, in an industrial setting with a ma-1096

jority of fault-free patches per batch, throughputs of1097

up to 1724 patches/s can be achieved. Due to the ex-1098

haustive nearest neighbor search in large feature em-1099

beddings, PatchCore led to by far the highest infer-1100

ence times of 32.95 and 118.89 ms. This means that1101

both the thresholding algorithm and the methods that1102

utilize the ResNet18 are approx. 57–183 times faster1103

compared to the PatchCore configuration, that ignores1104

image margins. Although, ignoring image margins for1105

feature embedding and subsequent feature compari-1106

son led to a approx. 3.6 times reduction in inference1107

time. For comparison, a thorough evaluation of SOTA1108

anomaly detection methods inference speeds, includ-1109

ing PatchCore, can be explored on p. 21 in [35]. The1110

proposed method, namely EfficientAD, achieved the1111

highest throughput of up to 614 patches/s, including1112

CPU to GPU transfers. Thus, in inspection settings de-1113

scribed above, embedding-based methods like Patch-1114

Core would lead to bottleneck the overall inspection1115

process, not achieving required cycle times. In terms of1116

memory footprint, the thresholding algorithm exhibits1117

the smallest value with 1.2 GiB, followed by ResNet181118

with 2.3 Gib and PatchCore with up to 6.0 GiB.1119

6.3. Inspection system demonstrator performance1120

The inference times determined above do not in-1121

clude all data processing steps during defect inspection1122

as described in Section 4.2, such as registration, ROI1123

segmentation or patch extraction, etc. To account for1124

these computationally intensive tasks and to estimate1125

the overall inspection time of the implemented inspec- 1126

tion system demonstrator, separate runs of the samples 1127

through all measurement chambers were performed. 1128

The best performing methods regarding defect detection 1129

performance (bold in Table 1) were therefore chosen 1130

for each modality. The time measurements started at the 1131

onset of image acquisition in LSM-1 and ended after 1132

finishing the post-processing of all modalities to ensure 1133

the availability of patch-wise inference results. A to- 1134

tal of 10 inspection runs with various samples resulted 1135

in an average inspection time of 20.25 ± 0.59 s, thus 1136

achieving the required cycle time range of 15–30 s. It 1137

has to be mentioned that the estimated overall inspec- 1138

tion time is generally dependent on the product size 1139

and the resulting amount of evaluated patches as well 1140

as method settings. As with other hardware-dependent 1141

measurements, speed up leveraging more performant 1142

e.g. GPUs can be expected. 1143

In terms of defect detection performance, it was qual- 1144

itatively observed that the used defect detection meth- 1145

ods are capable of detecting the wide range of different 1146

defect classes with high sensitivity at low false positive 1147

rates, confirming the metrics in Table 1. In the case of 1148

LSM-1, small defects that differ only slightly from their 1149

surroundings are more likely to be overlooked than area 1150

defects that are pronounced over the entire ROI. Despite 1151

the observation of missed defects (mostly area defects) 1152

in the test dataset of ASM resulting in a relatively low 1153

MCC of 0.74 compared to other modalities, this was 1154

not the case when performing inspection. Due to the 1155

high frame rates in ASM, the possibility of a defect oc- 1156

curring in more than one patch as well as in different il- 1157

lumination regions is increased and thus counteracts the 1158

determined dataset-specific recall. However, a thorough 1159

quantitative evaluation of the system’s defect detection 1160

performance, considering the quality standards of the 1161

project partner, should be carried out in the future. 1162
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7. Conclusions and outlook1163

This work presents a novel automatic visual inspec-1164

tion system for decorated foil plates, applicable for1165

full-surface defect detection. Developed optical modal-1166

ities embedded in a sequential inspection procedure,1167

enable defect visualization of production related defect1168

classes with sufficient contrast. Thereby, applicability1169

and adaptability to various product sizes with FOV’s of1170

up to 1200 mm as well as different product designs is1171

ensured. Introduced patch-wise defect detection meth-1172

ods namely, supervised oversampling-, synthetic defect1173

method as well as the thresholding algorithm are ap-1174

plicable for full-surface defect detection of small de-1175

fects (few px in extension) in relation to large sized1176

samples of up to 106 mm2. Therefore, defect detection1177

performance and inference speeds considering inspec-1178

tion related requirements such as e.g. FPR and cycle1179

times were determined. The synthetic defect method as1180

well as the thresholding algorithm do not rely on any1181

labeled defective training data. By means of these meth-1182

ods it was possible to achieve MCC’s of up to 0.85 resp.1183

0.99, thus outperforming SOTA unsupervised anomaly1184

detection method PatchCore. The obtained metrics of1185

the synthetic defect method underline their applicabil-1186

ity on structured patterns, although the determination1187

of suitable hyperparameters is time-consuming. Its au-1188

tomatization would be beneficial for increasing further1189

usability.1190

In terms of defect inspection, area defects that are1191

pronounced over large sample areas are statistically1192

more likely to be detected by patch-wise inference than1193

the less sampled point defects. Additionally, area de-1194

fects are more apparent than weakly pronounced point1195

defects in terms of defect visualization. Furthermore,1196

area defects, such as pattern misalignments, generate1197

numerous defective patches per sample that can be used1198

for subsequent training. Thus, point defects are more1199

relevant to defect synthesis as they are easier to over-1200

look and more sparse.1201

Furthermore, an industry-applicable data preprocess-1202

ing workflow has been introduced, minimizing the1203

labeling effort in supervised settings. This workflow1204

leverages the automatic extraction of patches from pre-1205

selected fault-free samples, eliminating the need for ex-1206

haustive screening of thousands of patches. Overlooked1207

defects, such as potential process contamination, had1208

no significant impact on the training process. This is1209

likely due to the extraction of a large number of patches1210

(100 000) and the clean sample preparation by domain1211

experts. Thus, manual labeling is limited to the extrac-1212

tion of defective patches at known positions on separate 1213

defective samples. This scalable balanced learning pro- 1214

cedure is able to achieve the demanded FPR as well as 1215

recall, due to the possible utilization of available fault- 1216

free resp. defective samples during production. The pro- 1217

posed workflow is not limited to screen-printed prod- 1218

ucts with flat surfaces. Tests on 3D-shaped products 1219

using additional viewpoints indicated its applicability 1220

to various industrial manufacturing processes (e.g. in- 1221

jection molding, forging, additive manufacturing), min- 1222

imizing the overall labeling effort. 1223

Defect detection of small and weakly pronounced de- 1224

fects in its underlying structured patterns remain chal- 1225

lenging as in case of point defects in LSM-1. Optimiza- 1226

tion in recall could be obtained by separately training 1227

of area and point defect groups, assuming sufficient 1228

defective data is available for each class. Additionally, 1229

subsequent classification of individual defect classes 1230

would be possible enabling logging of defects statistics. 1231

Exploiting fault-free data of all modalities and perform- 1232

ing a self-supervised pretext task (e.g. with synthetic 1233

defects) would generate a robust feature extractor, ap- 1234

plicable for subsequent fine-tuning with collected de- 1235

fective samples on same or similar patterns. Further- 1236

more, including available defective data samples during 1237

synthetic defect training as presented in [90] would be 1238

another viable strategy in improving detection perfor- 1239

mance. 1240

Regarding the thresholding algorithm, attention has 1241

to be given to product designs with low optical density, 1242

introducing possible false alarms. One strategy could 1243

be appropriate masking ignoring these specific regions. 1244

In case of defect visualization in ASM, one has to keep 1245

in mind that orientation dependent defect classes such 1246

as e.g. weak appearing squeegee strokes might be over- 1247

looked. Therefore, proper sample alignment must be 1248

ensured prior to inspection. In addition, attention must 1249

be given to the presence of contamination such as dust 1250

in the inspection environment to avoid potential false 1251

alarms. The possible in-line integration of the inspec- 1252

tion system into a closed manufacturing cycle is part of 1253

further research work. 1254

It can be highlighted that the evaluation of methods 1255

to be capable for industry applications is highly depen- 1256

dent on the experimental design. This includes proper 1257

dataset generation mimicking the imbalanced inspec- 1258

tion scenario as well as choosing suitable performance 1259

metrics. The choice of demanded recall and precision 1260

is dependent on the quality requirements of the appli- 1261

cation as well as on the method itself, e.g. patch-wise 1262

processing. Enabling demanded defect detection perfor- 1263
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mance among required inspection speeds is challeng-1264

ing, thus further research has to be conducted regarding1265

industry applicable defect detection methods. Due to1266

fast emerging unsupervised anomaly detection methods1267

as listed in [33,34,35,41,44], it is planned to investigate1268

their capability of defect detection on these challenging1269

structured patterns in future research.1270
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