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Abstract. As part of the evolving Industry 4.0 landscape, machine learning-based visual inspection plays a key role in enhancing
production efficiency. Screen printing, a versatile and cost-effective manufacturing technique, is widely applied in industries
like electronics, textiles, and automotive. However, the production of complex multilayered designs is error-prone, resulting in
a variety of defect appearances and classes. These defects can be characterized as small in relation to large sample areas and
weakly pronounced. Sufficient defect visualization and robust defect detection methods are essential to address these challenges,
especially considering the permitted design variability. In this work, we present a novel automatic visual inspection system for
surface defect detection on decorated foil plates. Customized optical modalities, integrated into a sequential inspection procedure,
enable defect visualization of production-related defect classes. The introduced patch-wise defect detection methods, designed to
leverage less labeled data, prove effective for industrial defect detection, meeting the given process requirements. In this context,
we propose an industry-applicable and scalable data preprocessing workflow that minimizes the overall labeling effort while
maintaining high detection performance, as known in supervised settings. Moreover, the presented methods, not relying on any
labeled defective training data, outperformed a state-of-the-art unsupervised anomaly detection method in terms of defect detection
performance and inference speed.
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1. Introduction

Visual quality inspection plays a key role in achiev-
ing quality standards of premium manufacturers. As
even the smallest defects in high-quality components
lead to customer complaints, zero-defect policies are
striven, resulting in visual inspection of every produced
part. According to the manufacturing industry and the
underlying production processes, manual visual inspec-
tion is still common. Therefore, huge amounts of human
resources are required, conducting elaborate workflows
accompanied with monotonous visual inspection tasks.
This results in overlooked defects as well as unneces-
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sary rejects of produced parts according to the subjec-
tive assessment of the operator [1]. In order to reduce
these quality fluctuations and thus improve competi-
tiveness, the automation of quality inspection processes
as part of the emerging Industry 4.0 is mandatory [2,
3,4,5]. Thus, machine learning-based visual inspection
systems [6,7,8] are intensively researched and build a
crucial part for ensuring 100% fault-free products. High
demand for automated visual inspection arises in the
electronics industries [9]. Common inspected compo-
nents include LEDs, semiconductor wafers and printed
circuit boards [10]. In addition to electronics, there is
high demand in the textile [11,12,13], printing [14,15,
16] and automotive industries [17,18]. Automatic vi-
sual inspection systems can be applied to almost all ma-
terials such as polymers, metals, ceramics, glass, etc.,
regardless of the industry.
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1.1. Machine vision inspection process

In general, machine vision inspection can be roughly
divided into three main stages: defect visualization, pre-
processing, and inference. Based on the optical surface
properties of the sample under investigation, appro-
priate optical components must be determined. These
components include cameras (sensors incl. optics), illu-
minations, and filters, which are used to visualize de-
fects and reduce the prominence of unimportant fea-
tures. Thus, the objective of defect visualization is to
maximize the contrast of imperfections on product sur-
faces in digital images, making them more easily iden-
tifiable and analyzable. Determining suitable optical
components typically requires extensive laboratory ex-
periments and domain knowledge. General approaches
for automatically characterizing defect visibility, appli-
cable to various surfaces and defect textures, remain an
active area of research [19,20,21].

In addition to the common RGB and monochrome
sensors in the visible range, sensors operating in the
ultraviolet (UV) or infrared (IR) ranges can offer ad-
vantages for specific features. For instance, UV sen-
sors (200–400 nm) reveal fine scratches on polished
surfaces that are barely visible to the human eye (e.g.
Sony’s IMX487 [22]). Shortwave infrared (SWIR) sen-
sors (900–1700 nm) are increasingly applied in the elec-
tronics and semiconductor industries to uncover sub-
surface defects [23]. Multi- or hyperspectral cameras,
which combine different spectral bands (e.g. visible and
IR), reveal spatial physical and chemical properties of
the samples being examined [24,25]. These imaging
techniques are particularly valuable in the food, waste
management, packaging, agricultural, and pharmaceu-
tical sectors [26,27]. However, exploiting additional
spectral bands is accompanied by an increased work-
load for data processing. Besides the selected spectrum,
the optimal optical modality is determined by the illu-
mination conditions, including the illumination charac-
teristics (e.g. direct, diffuse, structured) and its position
relative to the surface and sensor (bright field, dark field
or transmission).

In addition to the defect visualization capabilities,
factors such as system integration complexity, data pro-
cessing bandwidth and software interoperability, are
crucial in selecting appropriate hardware for industrial
applications.

Image preprocessing prepares the captured data for
inference with the selected defect detection methods.
This stage may involve tasks such as image registra-
tion, masking, resizing or data normalization, to name a
few. Finally, inference is used for the decision-making,
classifying the inspected product as normal or defective.

1.2. Industrial defect detection methods

With the rise of affordable computing power, deep
learning-based research has gained significant momen-
tum in machine vision tasks. Deep convolutional neural
networks (DCNN) have shown superior performance
over traditional defect detection methods that rely on
manual feature engineering [28]. The performance of
deep learning methods typically scales with the amount
of available training data. However, collecting large
quantities of labeled data is labor-intensive and often
impractical for many industrial applications. In the con-
text of surface defect inspection using supervised neu-
ral networks, this is a major limitation, as an exten-
sive labeling process is required for each new product
type to meet inspection standards. Consequently, cur-
rent research focuses on semi- or unsupervised defect
detection methods [29,30], which require minimal or
no defective samples for training and are therefore of
particular interest for industrial applications. By mod-
eling the underlying data distribution of fault-free (nor-
mal) samples, unsupervised methods overcome possible
generalization problems of supervised methods.

Since the publication of industrial defect detection
datasets such as MVTec [31], several anomaly detec-
tion methods have emerged. These unsupervised meth-
ods can be broadly categorized into representation-
based [32,33,34,35], generative model-based [36,37,
38,39,40,41,42], and flow-based [43,44] approaches.
Representation-based methods compare test data fea-
tures with learned normal representations to measure
feature similarity or distance. Flow-based methods map
feature distributions to multivariate Gaussian distribu-
tions using normalizing flows, with deviations indicat-
ing anomalies. Both approaches use DCNN feature ex-
tractors pretrained on large datasets like ImageNet [45].
These methods are often memory and computationally
intensive due to their architectures and algorithms, such
as k-nearest neighbor. Furthermore, the feature extrac-
tors are biased towards the dataset used for pre-training,
which leads to performance degradation in case of sig-
nificantly different examined data distributions.

Generative models are designed to reconstruct nor-
mal data, failing to properly reconstruct defective re-
gions resulting in anomaly scores. Despite progress
with autoencoders [36], generative adversarial networks
(GANs) [46,38,39] and denoising diffusion models [40,
41,42], challenges persist in overcoming reconstruction
limitations for fine-grained patterns as well as compu-
tational efficiency.

Additional approaches include synthesizing defec-
tive data samples for self-supervised pretraining or data
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augmentation [47,48,49,50,51]. However, GAN-based
synthetization tends to generate simple defect structures
and struggles with complex patterns. In addition, these
methods rely on large datasets including defective sam-
ples for the initial training process. Recent research on
few-shot generative models, including diffusion-based
approaches, aims to address these issues [52,53,54,55].

Given the specific data distributions and detection
tasks in industrial applications, specialized methods are
crucial. The high permissible variability in complex
design patterns of screen-printed products and their di-
verse product portfolio demands robust and adaptable
methods. In addition, short inference times are manda-
tory in order to achieve the required process cycle times.

1.3. Related work

Ongoing research on defect detection of screen-
printed products is being increasingly applied in the
electronics industry. In Zhao et al. [56], the screen-print
of batteries is inspected using a multi-level block tem-
plate matching and k-nearest neighbor method. The pre-
sented inspection system enables the detection of de-
fects, such as blurred prints, local defects or scratches of
the printed product logo, QR code and fabrication num-
ber. Further work presents an automatic inspection sys-
tem for surface defect detection of screen-printed mo-
bile phone back glasses [57]. A dual brightfield imag-
ing system is demonstrated for defect visualization. It
consists of a coaxial bright field and a low angle bright
field illumination, enabling the visualization of defects
such as scratches, dents and discolorations. Defect de-
tection was performed with a symmetric semantic seg-
mentation network trained in a supervised manner. The
training dataset consisted of 34 550 images (6742 de-
fectives), achieving an average test precision and re-
call of 91.8 and 95.3%. Another inspection solution for
mobile phone cover glasses is presented in [58]. The
system adopts backlight imaging in combination with
a segmentation method trained in an adversarial man-
ner utilizing a novel data generation process. A further
defect detection method applied to a screen-printing
process is based on an optimized U-Net++ [59] archi-
tecture, which is described in [60]. To enable accurate
detection of small defects in relation to the product size,
only image patches were evaluated rather than the entire
image. The visualization of the defects was done with a
white backlight and a blue incident illumination. Using
the patch-split method and a customized loss function,
a dice score of 0.73 was achieved. Gafurov et al. [61]
investigated smearing effects of screen-printed lines us-

ing deep neural networks (DNN) and CCD cameras,
installed subsequent to the screen-printing process. For
this purpose, a screen-printing mask was designed con-
taining different line widths and spacings as well as
a variation of squeegee directions. Using an adapted
U-Net architecture, it was possible to detect smearing
defects in various printing conditions.

Commercially available automatic visual inspection
systems are known in the printing, glass and weaving
industries [62,63,64,65,66,67,68,69,70]. However, in-
spection solutions for defect detection in the field of
screen-printing are rather limited. The company OMSO
[71] offers a product for optical inspection of decora-
tions on cylindrically shaped objects such as bottles,
tubes and jars. Cugher’s glass inspection system [72]
enables the detection of defects on the screen-print de-
signs of glass panels. Keko Equipment Ltd. [73] of-
fers an automatic inspection system to inspect prints on
multilayer green ceramic productions. The inspection
software leverages e.g. golden template comparison ap-
plicable for max. inspection areas of 220 × 220 mm at
a resolution of 10 µm. An integrated inspection system
following a screen-printing process is offered by Saku-
rai Graphic Systems Corporation [74] by means of their
SI Inspection Unit. Thereby, two line scan cameras in
incident light illumination compare the screen-printed
pattern to a master reference sample.

1.4. Contributions

The aforementioned studies and commercial auto-
mated inspection systems mostly contain inspection so-
lutions for printed product designs such as logos and
labels, showing clearly defined geometries and image
features. Due to non-complex print designs, e.g. by us-
ing only a few print layers, the spectrum of possible de-
fect causes and subsequent diverse defect appearances
is reduced, which limits the effort of defect visualiza-
tion. Frequently used deep learning-based segmentation
models rely on pixel-wise labeled ground truth masks
for supervised training and are therefore dependent on
the amount and quality of labeled data.

The products studied for the given publication are
designed for use as decorative patterns in a variety of
applications, including products used in the automo-
tive industry. In order to meet the customer’s needs
and requirements, complex designs are developed and
manufactured under high quality standards. To achieve
the desired visual impression of the decorative pattern,
numerous manufacturing steps are necessary, result-
ing in a complex multilayered design. Therefore, the
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aim of this work was to develop an automatic visual
inspection system that inspects decorated foil plates for
production-related surface defects. Generally, the de-
fects appear small in relation to the sample size being
examined. The developed optical modalities must be
able to display the different defect classes with suffi-
cient contrast. Given the large product portfolio, the
adaptability of the system to new product designs is of
great importance. In addition, the applicability of auto-
mated visual inspection in the production line should be
ensured with regard to important process requirements
such as cycle times. Due to the high labor involved in
data acquisition and labeling, defect detection methods
that provide sufficient detection performance with as
little labeling effort as possible are emphasized. Fur-
thermore, they must be capable of handling the allowed
product to product variability.

Currently, there is no available inspection system for
automated full-surface defect detection of decorated
foil plates, accounting for allowed design and prod-
uct variability and adaptability. It has to be mentioned
that this publication builds upon the research work pre-
sented at the ASPAI 2022 [75]. Optical modalities were
introduced that enable the visualization of production-
related defects with sufficient contrast. Therefore, labo-
ratory experiments were conducted to analyze various
design patterns of different products. The possible inte-
gration of investigated optical modalities into the pro-
duction line as part of an inspection approach was out-
lined. By assigning the detected defect classes to the in-
dividual production steps, deviations in the production
process will be detected at an early stage.

Thus, the main contributions of this work can be
summarized as follows:

– Investigation and application of developed optical
modalities for sufficient defect visualization in a
sequential inspection process, given production
related requirements. This includes adaptability
to different product sizes with a “field of view”
(FOV) of up to 1200 mm, as well as to product
designs with their various defect appearances and
resulting defect classes.

– Introduction of scalable patch-wise defect detec-
tion methods utilizing less labeled data, applicable
for automatic full-surface defect detection. There-
fore, a data preparation and preprocessing work-
flow is presented, that minimizes the overall la-
beling effort in supervised training settings, ap-
plicable to various industrial manufacturing pro-
cesses. This enables fast adaptability as allowable
product-to-product variations and unseen defect
types during production emerge.

– Development and implementation of an inspection
system demonstrator in an industrial setting, capa-
ble of automatic defect detection on decorated foil
plates.

Section 2 illustrates the structure of decorated foil
plates and briefly describes the manufacturing process.
Frequently occurring defects are visualized and the for-
mation process of selected ones is described. In Sec-
tion 3 experimentally explored optical modalities are
specified, followed by an introduction of the inspection
system and its underlying procedures in Section 4. Sec-
tion 5 presents the investigated defect detection meth-
ods. Section 6 gives an evaluation of their defect detec-
tion performance as well as inference speed and overall
inspection time. Section 7 provides a summary of the
key findings and an outlook for future improvements.

2. Decorated foil plate

The manufacturing process underlying the products
studied is known as screen printing or silk screen print-
ing. This is a cost-effective and versatile printing pro-
cess that can be applied to a wide range of different
materials such as textiles, metals, glass, wood and poly-
mers [76]. The process is suitable for automation and is
widely used in industries such as textiles, automotive
and electronics [77]. Thereby, ink is deposited on the
sample through a screen with a defined design. The
screen consists of a frame with close-meshed fibers,
forming a grid, onto which a UV-active photo emul-
sion is evenly applied. Once the emulsion has dried, the
desired design is transferred to the screen using a film
exposed to a UV light source. Areas that have not been
exposed to UV light are then washed out and are per-
meable to the ink. In the subsequent printing process,
the ink is transferred through the created stencil to the
underlying sample. The sequential repetition of these
production steps using separate screens for each ink
layer enables the production of multilayer decorative
patterns. The correct alignment of the individual layers
to each other and the quality of each production step
have an influence on the final print result.

Figure 1 schematically shows a typical structure of a
decorated foil plate. Depending on the product design
the dimensions of the carrier foil vary from A4 format
to a width of 1200 mm. Typical materials are polymers
such as polycarbonate (PC), poly(methyl methacry-
late) (PMMA), acrylonitrile butadiene styrene (ABS),
polyethylene terephthalate (PET) or polyvinyl chloride
(PVC). The decorative pattern is formed by sequentially
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Fig. 1. Schematic multilayered design of a decorated foil plate showing possible defective (red) and fault-free patches (blue). Defects appear small
(few pixels in extension) in relation to the investigated sample size of up to 106 mm2.

depositing ink layers on the front- and/or backside of
the carrier foil. The customized screens determine the
design as well as the possible print resolution, which
is defined by the number of meshes per inch and the
ratio of thread diameter to mesh opening [78]. Depend-
ing on the complexity of the decorative design, more
than 10 different colored layers are applied. As a result,
high-quality appealing decorative patterns are obtained,
which in some applications can yield a visual 3D effect.

2.1. Defect formation process and defect classes

The complex manufacturing process results in a large
number of possible defect causes. Basically, defects can
occur in every manufacturing step, which cumulatively
affect the final product. Understanding the origin of
defects and their visual appearance is of central impor-
tance for optimizing the quality standards in the man-
ufacturing processes and, in the event of their occur-
rence, for taking corrective action. In this work, pos-
sible process-related surface defects are investigated.
In the case of surface defect detection, a defect can be
generally described as any sufficient deviation from the
normal sample, considering the allowable product vari-
ability. Typical defect classes include e.g. printing de-
fects, inclusions, mechanical deformations, scratches,

smears, squeegee strokes, pinholes, dust and misreg-
istered control markers. On the right side of Fig. 1,
two image patches on a structured decorative pattern
are illustrated. The defects appear small (approx. 0.07
mm2 on the upper right defective patch), i.e. only a few
pixels in size, relative to the product size of up to 106

mm2. A further characteristic is the high permissible
design variability of the structured patterns. This is ev-
ident when comparing the variance in contrasts of the
patches mentioned above. Depending on the location of
occurrence and product design, these defects can also
be defined as weakly contrasted.

Prior to each print cycle, the new print layer is pre-
cisely aligned to the existing layers. Any misalignment
of individual print layers during this registration process
will be visible in the printed pattern by a so-called pat-
tern misalignment, which is apparent across the entire
surface (Fig. 2, 1C/2C). Deviations during the ink appli-
cation process, e.g. regions with too less ink application,
lead to pinholes or inhomogeneities (Fig. 2, 2A/2B).
Inhomogeneities are print layers with too low optical
density and high variance in color values. Pinholes, in
turn, appear as dot-shaped holes in the print pattern.
Impermissible holes or closed meshes in the stencil of
the screen can lead to screen and print defects (Fig. 2,
1B). Typical inclusions in individual ink layers, such as
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Fig. 2. Visualized defective patches of selected production-related defect classes captured by means of the customized optical modalities. Each row
corresponds to a modality, from top to bottom: Line Scan Modality 1, Line Scan Modality 2, Area Scan Modality. Depending on their spatial
appearance, defects can be divided into point defects such as inclusions (1A), screen or print defects (1B), scratches or dots (3A/3B) and pinholes
(2A), or area defects such as pattern misalignment (1C/2C), inhomogeneities (2B) or squeegee strokes (3C).

Fig. 3. Relative positioning of the camera sensors and illumina-
tions regarding the utilized optical modalities: Line Scan Modality 1
(LSM-1), Line Scan Modality 2 (LSM-2) and Area Scan Modality
(ASM), as presented at the ASPAI 2022 [75].

dust and fibers (Fig. 2, 1A), are caused by impurities
in the process environment and electrostatic charge on
the foil plates. Due to an electrostatic interaction with
charged particles in certain inks, static splashes or stains

may also occur. Automatic or manual product handling
can cause scratches or dots (Fig. 2, 3A/3B), as well as
two-dimensional mechanical deformations, within the
topcoat layer. Changes in the uniformity of the squeegee
pressure and the dwell time of the ink on the screen
can lead to a variable ink application. These so-called
squeegee strokes (Fig. 2, 3C) are characterized as area
defects and are affected by the printing direction.

3. Defect visualization

Defect visualization with sufficient contrast forms
the basis of surface defect detection. Due to the charac-
teristic design of decorated foil plates, a large number
of defect classes emerge, which only become visible
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using certain optical modalities. In addition, some de-
fect classes only occur in distinct decorative patterns.
To find the best possible optical modalities, optical ex-
periments were performed on a variety of decorative
patterns and designs. According to the compliance stan-
dards of the project partner, however, only images of a
selected decorative pattern are illustrated in the given
publication. The experiments included different sen-
sor designs (area, line sensor) as well as illumination
techniques (brightfield, darkfield, and transmission) in
the visible range. As presented in [75] it turned out
that three different optical modalities are necessary to
visualize the wide range of defect classes. The optical
modalities: Line Scan Modality 1 (LSM-1), Line Scan
Modality 2 (LSM-2) and Area Scan Modality (ASM),
consisting of camera and illumination as well as their
positioning in relation to each other, are schematically
visualized in Fig. 3.

3.1. Line scan modality 1

LSM-1 consists of an RGB linescan camera and a
high intensity LED line bar (white, 6200 K). The il-
lumination is equipped with a special lens and light
amplifier foil to ensure the most directional and bright-
est illumination in the focal zone. The optimum dis-
tance, determined by the optical characteristics of the
line bar, is approximately 50 mm above the sample’s
surface. The relative arrangement of light source and
camera, enable a dark field illumination. The camera
is placed planar to the sample’s surface and the angle
of incidence of the illumination is chosen as steep as
possible w.r.t. the horizontal plane. This positioning
avoids strong shadowing in complex decorative pat-
terns showing a 3D effect. Patches 1A–1C in Fig. 2
were recorded by means of this setup. Small punctual
defects such as screen defects or inclusions that stand
out only slightly from the background, are displayed
in good contrast. Furthermore, area defects such as the
pattern misalignment of an entire print layer, occurring
as semitransparent white overlay in patch 1C, is clearly
pronounced. This setup is applicable for defects affect-
ing the decorated pattern like slurred prints. In addition,
it addresses “sawtooth” defects, defined as continuous
eroding at patterned edges, as well as misregistered
control markers.

3.2. Line scan modality 2

LSM-2 similarly utilizes an RGB line scan camera
and a high intensity LED line bar. The illumination is

placed planar and opposite to the camera aligned to
its optical axis. As shown in Fig. 3, this setup allows
transmission measurements of the investigated sample.
As in LSM-1, the optimal distance is determined by
the optical characteristics of the line bar (approx. 50
mm behind the sample) to achieve the highest possible
illumination intensity. A planar alignment of sensor and
illumination to the sample’s surface is mandatory to
reliably investigate thicker layers on large-sized sam-
ples, mitigating geometrical influences on the optical
path. As in the LSM-1 setup, the camera distance is
determined by the demanded maximum FOV as well as
the required object pixel size and can be greater than
1000 mm dependent on the sensor design. In addition
to defects such as pinholes or pattern misalignment
(Fig. 2, 2A/2C), it is also possible to display unwanted
inhomogeneities in semitransparent colored print layers
(Fig. 2, 2B). Line scan cameras in combination with
high intensity line bars are generally the appropriate
choice for the dynamic inspection of flat surfaces, as
they are capable of capturing high resolution images at
high measurement speeds, regardless of the sample size
in the transport direction. However, the experiments
conducted with the line scan camera revealed that the
detection of defects on the transparent top layer was not
satisfactory.

3.3. Area scan modality

To overcome above mentioned limitations an optical
modality, consisting of an area scan camera and a light
bar aligned in direct reflection, was designed (ASM
in Fig. 3). Therefore, the LED light bar (white, 6200
K) is placed as far away as possible from the speci-
men’s surface to create a large optical lever with re-
spect to the monochromatic camera sensor. As shown
in Fig. 2 3A–3C, this illumination method produces
a bright area of direct reflection in the center, which
decreases and fades out to the margins. Defects such as
squeegee strokes or smears are only visible with high
contrast in this transition area of reflection (Fig. 2, 3C).
In general, bright-field images differ significantly from
dark-field images in the LSM-1 and reveal defects in the
transparent top layer, such as scratches and mechanical
deformations (Fig. 2, 3A/3B). The majority of defects
in the transparent top layer are only visible using this
modality.

Utilizing all three modalities it was feasible to visu-
alize the required production-related defect classes with
sufficient contrast within the range of a few pixels in
extension and minimum object pixel sizes of approx.
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Fig. 4. Main components of the inspection system demonstrator,
installed at the production site: Measurement chambers as LSM-1,
LSM-2 and ASM; Programmable Logic Controller as PLC; Human
Machine Interface as HMI; Graphical User Interface as GUI.

75 µm. The different object pixel sizes are clearly ap-
parent in Fig. 2, as patches 3A–3C map a larger FOV at
the same pixel size (256 × 256 px) as patches 1A–2C
captured by LSM-1 and LSM-2.

4. Inspection system

The optical modalities enable a visualization of the
production-specific defect classes with sufficient con-
trast. In order to perform an automatic visual product
inspection using these modalities, an inspection system
demonstrator was designed and installed at the project
partner’s production facility. The following main sys-
tem requirements were considered: 1) Maximum prod-
uct inspection time is determined by the conveyor speed
and transport length and ranges between 15–30 s. 2)
Product sizes of up to 1200 mm (FOV) should be exam-
inable. 3) Adaptivity to different products and designs
must be provided. 4) The defect detection methods must
be able to detect smallest defects in relation to product
sizes considering the allowed product to product varia-
tions. Furthermore, little efforts in data labeling as well
as inference speeds applicable for in-line inspection are
demanded.

4.1. Inspection procedure

As shown in Fig. 4, the inspection system demon-
strator consists of three measurement chambers, respec-
tively one for each modality LSM-1, LSM-2 and ASM,
which are arranged in sequence. Each measurement
chamber is optically shielded to avoid both ambient
light and unwanted reflections from different chambers.
Regarding the above stated system requirements as well

as required optical modalities, suitable hardware com-
ponents had to be selected. The hardware components
of the measurement chamber LSM-1 and LSM-2 con-
sist of commercial 16k RGB line scan cameras includ-
ing optics and commercial high-power LED line bars
according to Section 3. Due to the large required FOV
of 1200 mm, 4 side by side monochrome area scan
cameras (2.2 MP) incl. optics in combination with a
high-power bar light are mounted in ASM. During each
measurement cycle, the sample is manually placed on
a conveyor belt and sequentially transported through
all three measurement chambers. An installed rotary
encoder generates trigger signals that enable distortion-
free image acquisition at different conveyor speeds. Op-
tical sensors detect the onset of the sample’s surface and
thus start image acquisition. Furthermore, the sensors
characteristics were calibrated for a variety of decorated
surfaces. The system parameters such as i.e. conveyor
speed, illumination characteristics and sensor data are
centrally controlled by means of a Programmable Logic
Controller (PLC) and can be adjusted via an Human
Machine Interface (HMI) panel. The inspection soft-
ware operates on a distributed infrastructure. The com-
puting unit consists of two computers, each with an
NVIDIA GPU (GeForce RTX 2080 Ti resp. RTX 3090),
a multicore processor and frame grabbers for the cam-
eras.

4.2. Data processing

The images of the LSM-1 and LSM-2 measurement
chambers consist of 16384 × 12800 px for each color
channel at an FOV of 1200 mm in sensor direction.
The images captured by ASM even contain 8192 ×
65536 px due to the image stitching procedure. This
results in a data amount of 600 MiB per LSM-1 and
LSM-2 chamber as well as 512 MiB in case of the ASM
chamber. In total, approx. 1.7 GiB of image data are
processed per measurement cycle. Given the required
cycle times ranging from 15–30 s, this represents a ma-
jor challenge in terms of data processing. For this pur-
pose, a memory-optimized and parallelized data pro-
cessing pipeline was developed. Thereby, the measure-
ment data, starting from the raw image of the camera
up to the final inference decision, are processed in par-
allel. Key processes include image acquisition, regis-
tration, segmentation, inferencing, post-processing and
saving. A key feature of the data processing pipeline
is that it avoids the evaluation of the entire image at
once. Instead, as part of the preprocessing, overlap-
ping image patches of size 256 × 256 px are extracted
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Fig. 5. Illustration of the patch extraction process in the defined ROI. Overlapping patches (blue squares) are extracted within the entire ROI-area
(green), ensuring a minimum covered sample area at the borders.

within masked image regions that are relevant for de-
fect detection. This results in localized patch-wise de-
fect detection. As shown in Fig. 5, overlapping patches
(blue squares) are extracted in the so-called “region of
interests” or ROIs (green border) of the raw image in
the form of a grid covering the entire samples area.
These regions, predefined by domain experts, define
the product surfaces subject to inspection. A zoomed
fault-free patch is visualized in the upper right corner.
The overlapping patches with strides of 120–160 px
ensure that a potential defect is completely covered at
least in one patch, avoiding overlooking at borders. This
results in 170–300 patches per ROI. Depending on the
product size and the number of ROIs to be inspected,
there are several thousands of patches (e.g. 3400–6000
patches for 20 ROIs) to be evaluated per image and
measurement chamber.

4.3. Calibration and image acquisition

The calibration of the measurement modalities in-
cluded optimizations of the rotary encoder settings,
photo responsive non-uniformity corrections, fixed pat-
tern noise corrections as well as white balancing. De-
pending on the modality, minimum exposure times of
100 µs were selected to achieve the desired contrasts
and limit motion blurring. The MTF50 – value of LSM-
1 could be estimated with the help of an ISO Standard

12233:2000 calibration chart and a self-implemented
slanted edge method as described in [79] with 5 lp/mm.
With the help of the line scan cameras in the measure-
ment chambers LSM-1 and LSM-2, it was possible to
capture samples with FOVs of up to 1200 mm without
gaps. The acquisition of the entire FOV in measure-
ment chamber ASM is only possible by software stitch-
ing of the individual image frames. The difference of
LSM-1 and LSM-2 compared to ASM in the form of a
stretched geometry of the design, is evident in Fig. 6.
The frame rate was chosen as high as necessary (up to
40 frames per second) to avoid possible overlooking of
small defects in the aforementioned transition area of
direct reflection.

5. Defect detection methods

The characteristics of the surface defects to be de-
tected and the processing of large amounts of data
within the production related cycle times pose a chal-
lenge for the selection of suitable defect detection meth-
ods. The evaluation of thousands of patches, most of
which are fault-free, results in an imbalanced data dis-
tribution. In addition to a low false positive rate, de-
fect detection methods are required that exhibit suffi-
cient inference speed. In order to minimize the adapta-
tion effort per product, defect detection methods with
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Fig. 6. Excerpts of masked sample images, acquired by means of
the three measurement chambers: LSM-1, LSM-2 and ASM within a
sequential run.

as little labeling effort as possible are preferred, while
maintaining sufficient defect detection performance.
The following section describes the defect detection
methods utilized in each of the measurement cham-
bers, as well as the data set preparation and method
settings. As a baseline for benchmarking defect detec-
tion performance and inference speed, a state-of-the-art
unsupervised anomaly detection method is introduced.

5.1. Supervised oversampling method

A widely used approach in machine learning to com-
pensate for imbalanced data distributions are resam-
pling techniques such as random undersampling or

oversampling [80,81]. In the case of an imbalanced data
distribution of majority and minority classes, the sam-
ples from the respective class are randomly eliminated
(undersampling) or copied (oversampling) to create a
revised balanced dataset. In the course of this work,
a scalable patch-wise oversampling method is intro-
duced that enables efficient use of scarce and imbal-
anced data available. The following steps are necessary
in providing fault-free (majority class) and defective
data (minority class):

1. Masking of the individual ROI’s of fault-free
and defective samples and setting “out-of-ROI-
values” to a integer value, e.g. zero.

2. Extraction of patches at random positions within
the individual ROIs of the fault-free samples in
the size of 512 × 512 px, ensuring a minimum
covered area between patch and ROI.

3. Augmentation of the extracted patches using ran-
dom affine transformations (rotation, shearing,
etc.) and random color transformations (bright-
ness, contrast, etc.).

4. Centre cropping of 1/2 of the original patch size
(height, width) to avoid image borders, caused by
augmentation.

5. The resulting fault-free and augmented patches of
size 256 × 256 px are stored in a large file storage
format, e.g. hdf5 or TSF as recently introduced in
[82].

6. Extraction of defective patches of size 512 × 512
px in the defective samples, ensuring central de-
fect positioning within the patch.

7. Training of a (pretrained) DCNN in a supervised
manner, whereby the defective patches are in-
jected with a probability of 50% into the stream
of fault-free patches. This step utilizes the same
augmentation settings as described in 3, including
center cropping (256 × 256 px).

Parameters such as the minimum ROI area covered
per extracted patch and the maximum distance of ran-
dom translations during augmentation, determined by
defect type and patch size, must be carefully chosen. It
is crucial to ensure that product surfaces are sufficiently
represented and defects are covered after extraction and
augmentation, to avoid e.g. generating defective patches
that miss defective areas.

The samples used are pre-sorted by a domain expert
prior to image acquisition, with separate samples for
fault-free and defective data. This task eliminates any
unwanted correlation between defective and fault-free
patches in the subsequent data set generation. Thus, the
labeling effort is limited only to the defective data at
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known regions, since the extraction of fault-free patches
is integrated into an automated process (step 1 to 5).
Furthermore no elaborate pixelwise labeling of ground
truths as in in segmentation based approaches is re-
quired. By extracting patches at random positions, the
original dataset can be exploited as much as possible
(several 100 000 patches from a few acquired images
with large FOVs). Moreover, it is theoretically possi-
ble to collect an endless stream of fault-free patches.
Another advantage of patch-wise evaluation is that the
patch context focuses on image features that are rele-
vant for defect detection, while ignoring unimportant
ones. As with other supervised methods that use over-
sampling techniques, attention must be given to possi-
ble overfitting. However, this method is easily scalable
depending on data availability and thus can be fine-
tuned as new defects emerge throughout the production
process.

Above tasks can be seen as an applicable data-
preparation as well as preprocessing workflow in indus-
trial applications, reducing elaborate labeling only to
known defective samples and sample regions.

5.2. Synthetic defect method

Another method used in this publication is based on
the synthesis of artificial defects [48]. This algorithm
enables the synthetization of defects with a wide range
of appearances, imitating a large proportion of real oc-
curring defects. Basically, the synthetization algorithm
consists of four steps:

1. Generation of a binary defect skeleton, that is
based on a stochastic process resembling a ran-
dom walk with momentum.

2. Generation of a random defect texture, based on
the previously generated binary defect skeleton.

3. Modification of the fault-free image patch by
means of the randomly generated defect texture.

4. Assessment of defect visibility and rejection of
synthesized defects below the visibility threshold.

By utilizing different sets of hyperparameters of
the random variables used in steps 1–3, it is possi-
ble to generate a variety of different defect morpholo-
gies (straight, jagged, curved, circular skeletons, etc.)
and characteristics (contrast, intensity distribution). De-
pending on the appearance of the real defects to be im-
itated (elongated, punctual as in Fig. 2), the hyperpa-
rameters that determine the distribution of the random
variables must be chosen selectively.

Due to the transition region of direct reflection as
well as the frequent occurring ROI borders, above de-

scribed method was adapted to generate visually ap-
parent defects in both bright and dark contrasted areas,
exclusively within the ROIs. Thus, defect synthetization
categories and their underlying hyperparameters were
adjusted based on real defects to produce bright and
dark contrasted punctate and filamentous morpholo-
gies of different sizes and characteristics as depicted
in Fig. 7. The preprocessing to generate the training
and validation dataset follows almost the same proce-
dure as steps 1–5 in Section 5.1. Additionally, following
the central cropping in step 4, defects are generated in
50% of the fault-free patches. As a result, the generated
training and validation datasets are balanced. With this
method, it is therefore possible to perform balanced
supervised training without the need for defective data.
However, the generalization ability is only assessable
using a test dataset containing real defects. Since the
synthetization algorithm is based on grayscale, RGB
images, if present, must either be converted or their
channels processed independently.

5.3. Thresholding algorithm

LSM-2 enables the detection of pinholes, pattern
misalignments or general inhomogeneities with low op-
tical density. Due to the characteristics of the trans-
mission measurement, defect features typically appear
as white dots or areas of certain dimensions (Fig. 2,
2A/2C) within the image patch. To detect these fea-
tures, a thresholding algorithm was developed, which
is briefly described in the pseudo code of Algorithm 1.

The connected_components() function groups con-
nected regions and assigns labels to the binarized im-
age patches. These labels are then used to calculate the
area of each defective region by counting the number of
connected pixels per label. In order to utilize GPU-level
parallelization the pseudo code shown in Algorithm 1
was implemented in a batchwise manner. With the help
of this algorithm it is possible to tune parameters like
RGB-thresholds and min. / max. defect areas, depend-
ing on the given quality requirements. As with other
traditional image processing methods, no training data
is demanded.

5.4. Baseline method

The representation-based method by Roth et.al [32],
namely PatchCore, is based on the extraction of mid-
level features of fault-free patches using a pre-trained
DCNN. During the training phase, subsamples of these
locally aware patch features are stored in a memory
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Fig. 7. Synthetic generated defects on fault-free patches of LSM-1 (top row) and ASM (bottom row). Hyperparameters were chosen to mimic
punctual and elongated “real” defects as shown in Fig. 2.

bank. During inference, these features are compared
to the extracted features of the image using a near-
est neighbor search, resulting in anomaly scores. This
method achieves SOTA anomaly detection performance
on the MVTec dataset, resulting in an image-level
AUROC of up to 99.6%.

5.5. Dataset and method settings

In order to evaluate methods described in section
5, image data were acquired by means of all three
measurement chambers (LSM-1, LSM-2, ASM) of the
inspection system demonstrator. Pre-sorted fault-free
samples as well as defective samples of different defect
classes were captured. The samples taken are in a state
in which the printing process, including drying, has al-
ready been completed. Therefore, defects that occurred
during printing are treated as fixed at this stage and no
further significant changes are expected. However, the
samples originate from different production batches and
therefore have a desirable permitted design variability.

A training, validation and test dataset was created
for each measurement modality. Each dataset consists
of patches cropped from the respective ROIs of the ac-
quired samples, resulting in an evaluation patch size of
256 × 256 px. In order to avoid unwanted correlations
between the patches, the extraction of defective and
fault-free patches was done on separate samples. For
the same reason, fault-free and defective patches were

assigned to training, validation and test data from sep-
arate samples. This procedure allows for the creation
of uncorrelated datasets regarding defect classes and
data splits. The training data regarding the supervised
oversampling and supervised synthetic defect training
were created as described in section 5.1, by extracting
100 000 fault-free patches at random positions within
the ROIs. A total of 129 defective patches were col-
lected for the supervised oversampling training. The
extraction of overlapping fault-free patches for the cre-
ation of the training dataset for PatchCore, as well as
for the creation of the validation and test datasets, was
accomplished by using a sliding window with a stride
of 160 px. The LSM-1 dataset consists of 2014 and
1498 fault-free patches together with 74 and 95 de-
fective patches for validation and testing, respectively.
LSM-2 contains 406 and 393 fault-free as well as 44
and 110 defective patches for validation and testing.
The validation of the ASM was performed using a bal-
anced synthetic dataset as described in section 5.2, con-
taining 10 000 fault-free as well as 10 000 synthesized
defect patches. However, the test dataset contains 2060
fault-free and 74 “real” defective patches. In order to
imitate the slice wise image capture process in ASM,
the same defects may appear in different illumination
areas. In general, the datasets contain common defect
classes with respect to their optical modality, which
can be divided into point defects such as dust and fiber
inclusions, mechanical damages, print defects or pin-
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holes, as well as area defects such as pattern misalign-
ment, punctual grid defects or squeegee strokes, etc.
(see Fig. 2). Furthermore, all different defect classes
are combined into one main defect class per modality.
As shown by the distribution of fault-free and defective
patches, imbalanced validation and test datasets were
created to mimic typical imbalanced inspection data
distributions.

Algorithm 1: Thresholding Algorithm
Data:
– Image Batch (batch_size, channels, height,width)
– Threshold (r, g, b)
– Maximum pixel sum above threshold
– Minimum and maximum feature areas
– Filter kernel size (k)
– Image margin indices
Result:
– Predictions if patches are defective or fault-free
– Areas of connected components

1 for patch in batch do
2 for c in channels do
3 for i in {1, 2, . . . , height} do
4 for j in {1, 2, . . . ,width} do
5 if i AND j in margins then
6 patch[c][i][j]← 0;
7 continue;
8 if patch[c][i][j] 6 threshold[c] then
9 patch[c][i][j]← 0;

10 else
11 patch[c][i][j]← 1;

12 if patch[r] AND patch[g] AND patch[b] = 1 then
13 binary_patch← 1;
14 else
15 binary_patch← 0;

16 dilated_patch← dilation(binary_patch, k);
17 if 0 < sum(dilated_patch) 6 px_sum_lim then
18 components←

connected_components(dilated_patch);
19 for c in components do
20 areas← component_areas(c);
21 if any area_lim_lower 6 areas 6

area_lim_upper then
22 predictions← “defective”;
23 else
24 predictions← “fault-free”;

25 else
26 predictions← “fault-free”;

27 return predictions, areas;

5.5.1. Supervised oversampling/synthetic defect
training settings

For both methods, network training was performed
using the stochastic gradient descent optimizer with

parameters (learning rate as 5 × 10−5 to 10−4, weight
decay as 10−2, momentum as 0.9) on a residual net-
work [83] namely ResNet18 pre-trained on ImageNet
[45]. Cosine annealing was used as the learning rate
scheduler, as described in [84]. As an additional pre-
processing step, the individual patches of the LSM-1
dataset were brightness-adjusted. In addition, a weak
smoothing was applied to all the modalities by using
a Gaussian kernel with a kernel size of 3 and a sigma
of 1. Mixed precision training was performed until sig-
nificant overfitting during validation occurred. In addi-
tion, models were selected based on the best Matthews
correlation coefficient (MCC) on the test data. Further-
more, thresholds for the underlying one-class classifi-
cation task were set according to the optimal F1-scores
obtained.

5.5.2. Thresholding algorithm settings
The thresholding algorithm (Algorithm 1) basically

contains a set of seven values out of four parameters
to be adjusted depending on the quality requirements
e.g. defect sizes. The three threshold values of the RGB
color channels, the min. and max. number of connected
pixels above the previously set threshold, and a filter
kernel size. The maximum pixel sum parameter is intro-
duced for reasons of computational speed. Furthermore,
it is possible to account for ignoring image margins
in strided patch-wise extraction scenarios. Threshold
values and other parameters were selected according to
the best detection performance based on a predefined
validation dataset as described in Section 5.5. There-
fore, the optimal parameters were chosen as follows:
Threshold RGB for all channels as 90 (uint8), min. and
max. defect area as 1 and 3000, the maximum pixel
sum as 15 000, the filter kernel size as 3. Patch margins
with a size of 40 px were ignored during inference.

5.5.3. Baseline settings: PatchCore
For reasons of adaptability, this paper investigates

a self-implemented version according to [32]. As fea-
ture extractor, layers 2 and 3 of a ResNet50 resp. wide
ResNet50 [85] pretrained on ImageNet were chosen
with a kernel size of 3 and stride of 1 used for average
pooling. IndexFlatL2 of the GPU-based Faiss library
[86] was selected for feature embedding, while omitting
coreset subsampling in order to exclude any defect de-
tection performance loss. For all datasets, all available
training patches were used for feature embedding, with
the upper limit set to 500 and the number of nearest
neighbors set to 3 resp. 5. Patch margins with a size
of 40 px were ignored during feature embedding and



14 P.J. Krassnig et al. / Efficient surface defect detection in industrial screen printing with minimized labeling effort

evaluation of LSM-1 and LSM-2 to avoid common false
positive detections in these areas. Furthermore, this is
accompanied by an acceleration of inference speed.
For LSM-1, an additional brightness adjustment was
performed. As with the supervised methods above, the
anomaly threshold for the binary classification task was
chosen on the basis of the optimal F1-score. Prior to the
experiments, the method was validated on the MVTec
dataset and resulted in an average image level AUROC
of 98.5% for image sizes of 256 × 256 px.

All methods were implemented in Python (version >
3.8.3) using the GPU version of the PyTorch framework
(version > 1.9.1) with CUDA Toolkit version > 11.1.1.
Experimental tests of the methods described above were
performed on a NVIDIA GeForce RTX 3090, an AMD
Ryzen 9 3950X 16-core processor and 64 GB DDR4
RAM running on OS Windows 10.

6. Method and inspection system evaluation

Experiments by means of the defect detection meth-
ods presented in Section 5 were conducted and eval-
uated regarding the patch-wise defect detection per-
formance (Tables 1, 2) and the inference speed (Ta-
ble 3). In addition, the overall inspection time of the
implemented inspection system demonstrator was de-
termined. As shown in Table 1, the defect detection per-
formance is measured based on the entries in the con-
fusion matrix, true negatives (TN), true positives (TP),
false negatives (FN) and false positives (FP), and met-
rics obtained such as Matthews correlation coefficient
(MCC) and false positive rate (FPR) as well as recall.
Negatives correspond to fault-free patches, while posi-
tives represent defective ones. Commonly used metrics
such as accuracy, F1-score or ROC-AUC are biased to-
wards the majority class in the case of imbalanced data
distributions. The MCC, with values ranging from −1
(inverse prediction) to 1 (perfect prediction), includes
all entries of the confusion matrix, thus making it an
applicable metric eliminating the risk of overoptimistic
outcomes [87]. Table 2 compares the methods used in
LSM-1 and ASM in terms of their underlying defect
group performance. Defect classes as in Fig. 2 can be
broadly grouped into point or area defects, resulting
in the imbalanced datasets as described in Section 5.5.
The defect detection methods are categorized accord-
ing to their utilization of labeled defects. In contrast to
the supervised oversampling method, PatchCore, the
synthetic defect training and the thresholding algorithm
do not rely on any labeled defective data for feature
embedding or training.

6.1. Patch-wise defect detection performance

The following section provides a detailed analysis of
the method’s patch-wise defect detection performance,
considering typical imbalanced inspection data distri-
butions. The best performing method of each optical
modality are highlighted in bold (Table 1). As in LSM-
1, the supervised oversampling method achieved an
MCC of 0.88 at an FPR of 0.2%, closely followed by
synthetic defect training with an MCC of 0.85 and the
same FPR. PatchCore resulted in a 6 times higher FPR
and an MCC of 0.58. With the ASM setup, the best
results were achieved through synthetic defect training
with an MCC of 0.74 and an FPR of 0.5%. PatchCore
performed even less well than in LSM-1, with an MCC
of 0.26 and ten times higher FPR of 5.1%. In the ab-
sence of a sufficient number of defective samples, the
supervised oversampling in ASM was skipped. Due to
the clearly pronounced features in LSM-2, PatchCore
performed robustly with an MCC of up to 0.95 and a
comparatively low FPR of 0.8%. The thresholding al-
gorithm presented in Algorithm 1 resulted in an MCC
of 0.99 with only one overlooked defect.

Figure 8 shows the inference results by means of the
PatchCore method including anomaly overlay. Rows
1–3 follow the optical modalities LSM-1, LSM-2 and
ASM. Columns A–C are arranged according to TP,
FN and FP classification. The image margins ignored
during inference are clearly visible in 1A–2C. Large
area defects, such as the grid defect in 1A, produced
clearly pronounced areas of anomaly, whereas point
defects, such as the print defect in 1B, were overlooked.
The high allowable variance of the structured pattern,
as shown in 1C, led to a large amount of false posi-
tive patches. Large distinct defects, such as the pattern
misalignment in 2A and high contrasted pinholes, pro-
duced large deviating feature vectors with respect to
the learned feature embedding, leading to proper defect
detection. However, small and low contrasted pinholes
as illustrated in 2B were more likely to be missed. As
with LSM-1, small feature variations in the vicinity
of masked border regions also led to anomaly scores,
resulting in false positives as in 2C. The ASM dataset
poses a challenge regarding defect detection due to its
high contrast variance in the transition region of di-
rect reflection and its frequently appearing masked ROI
regions. As shown in patches 3A and 3C, many false
positives occurred at the border areas of the ROI as
well as in before mentioned transition regions. Possible
imperfect ROI segmentation also introduced additional
feature variance, leading to false positives. Frequently,
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Table 1
Patch-wise defect detection performance metrics of leveraged methods; supervised oversampling method (Oversampling), synthetic defect method
(Synthetic defects), threshold algorithm and the baseline method PatchCore. The test datasets are imbalanced to mimic typical inspection data
distributions that overrepresent fault-free samples. The best performing method of each optical modality are highlighted in bold

Modality Method #Real defects TN TP FN FP MCC Recall (%) FPR (%)
LSM-1 Oversampling 42 1493 69 26 5 0.81 72.6 0.3

129 1495 77 18 3 0.88 81.1 0.2
Synthetic defects 0 1495 72 23 3 0.85 75.8 0.2
PatchCore 0 1478 49 46 20 0.58 51.6 1.3

LSM-2 Thresholding 0 393 109 1 0 0.99 99.1 0.0
PatchCore 0 390 104 6 3 0.95 94.5 0.8

ASM Synthetic defects 0 2049 50 24 11 0.74 67.6 0.5
PatchCore 0 1954 29 45 106 0.26 39.2 5.1

Fig. 8. TP, FN and FP (columns) patch inference results of LSM-1, LSM-2 and ASM (rows) using PatchCore. Large area defects, such as the grid
defect in 1A as well as the pattern misalignment in 2A produced clearly pronounced areas of anomaly. However, small and weakly contrasted point
defects, such as the print defect and the pinhole (1B/2B), were overlooked. Feature variations in the vicinity of masked border regions (2C/3C) and
transition regions of direct reflexion (3A) introduced many false positives.

TP patches were classified as defective because of these
detected regions, whereas large area defects such as
squeegee strokes in 3B were partially or not detected at
all.

Table 2 illustrates the performance metrics obtained
by means of the oversampling and synthetic defect

methods in LSM-1 and ASM. For this purpose, the met-
rics previously shown in Table 1 were divided into their
individual defect groups, point and area. In case of the
supervised oversampling method in LSM-1, no area
defect was overlooked, resulting in a recall of 100%.
By utilizing synthetically generated defects as visual-
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Table 2
Patch-wise defect detection performance metrics comparing the methods supervised oversampling (Oversampling) and defect synthetization
(Synthetic defects) by means of the defect groups Area and Points. The test datasets are imbalanced to mimic typical inspection data distributions
that overrepresent fault-free samples. The best performing method of each defect group are highlighted in bold

Modality Defect group Method TN TP FN FP MCC Recall (%)
LSM-1 Area Oversampling 1498 49 0 3 0.97 100.0

Synthetic defects 1495 42 7 3 0.89 85.7

ASM 2049 14 19 11 0.48 42.4

LSM-1 Points Oversampling 1495 28 18 3 0.74 60.9
Synthetic defects 1495 30 16 3 0.76 65.2

ASM 2051 36 5 11 0.82 87.8

ized in Fig. 7, a recall of 86% was obtained. Overall,
area defects have not been synthesized and their mor-
phology is completely different with respect to their
optical modality in LSM-1 and ASM. This can be ob-
served in Fig. 8, comparing the grid defect in 1A with
the squeegee stroke defect in 3B. The grid defect con-
tains punctate features, comparable to some synthesized
point defects in LSM-1, thus potentially led to a robust
recall of the above described 86%. The synthetic de-
fect method performed slightly better than the super-
vised oversampling method in detecting point defects,
resulting in a recall of 65%. In general, the detection
of small sized defects in this modality is challenging,
due to their weak appearance in surrounded structured
patterns (Fig. 2 1A).

However, in the case of ASM, the detection of point
defects was superior to LSM-1 with a recall of 88%.
Although the morphology of the synthesized defects in
ASM is completely different from that of area defects
(as shown in Fig. 2, 3C), this defect group achieved a
recall of 42%. This can be seen as the ability to learn the
underlying distribution of the fault-free data using the
influence of the vast amounts of augmented fault-free
and synthetic defect patches.

Furthermore, the low FPR of 0.2–0.5% observed with
these supervised learning procedures, with respect to
the remaining high recall of certain defect groups, indi-
cates strong generalization ability. Another indicator of
its robustness is that possible imperfect ROI segmen-
tations, such as those seen in ASM (e.g. holes within
darkly contrasted ROI regions), which lead to false pos-
itives in PatchCore, are not noticeable during inference
utilizing the synthetic defect method.

As shown in Table 1, the supervised oversampling
method achieved an MCC of 0.81 and an FPR of 0.3%
by leveraging a reduced set of 42 labeled defects. This
gives an indication of the scalability of this method
when compared to the metrics obtained using 129 la-
beled defects. As stated above 170–300 patches per
ROI are evaluated, thus to avoid any false alarms FPR

less than 0.59 resp. 0.33% are required to be applicable
for inspection runs. Despite PatchCore, struggling with
high FPR, introduced methods are capable of achieving
even lower FPR.

6.2. Inspection speed

In addition to the evaluation of defect detection per-
formance, the inference speed of the applied defect de-
tection methods was determined. As shown in Table 3,
the inference times and their reciprocal, the throughput
of patches per second, were measured in combination
with their CUDA memory footprint. According to the
image processing pipeline as described in Section 4.2,
image batches with batch sizes of 128 were chosen for
evaluation. However, in the case of PatchCore, the batch
size was reduced to one. The use of large feature em-
beddings of 1.5 and 3.1 GiB resulted in a high compu-
tational GPU utilization of up to 91%, preventing any
noticeable speed-up by means of larger batch sizes. The
test image batches consisted of either dummy data sam-
pled from a uniform distribution, or selected defective
and fault-free patches yielding to torch tensors (float32)
allocated on the GPU.

The performance measures shown in Table 3 were
determined using the arithmetic mean of 5 cycles
with 100 repetitions, including preprocessing of the
respective methods. Prior to each measurement cy-
cles, a GPU warm-up of 10 repetitions was performed.
To account for asynchronous CUDA data process-
ing, inference times were measured using PyTorch’s
synchronized CUDA events [88]. The GPU mem-
ory footprint of each method was determined us-
ing torch.cuda.mem_get_info(), deducting PyTorch’s
CUDA context of approximately 1.3 GiB.

As expected, the ResNet18 architecture, used by
means of the supervised oversampling and the synthetic
defect method, achieved the lowest inference time of
0.18 ms, resulting in a throughput of 5556 patches/s.
Inference times larger than 1000 patches/s have already
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Table 3
Patch-wise inference speed measurements of utilized methods resp. their underlying architectures;
supervised oversampling method and synthetic defect method (ResNet18), thresholding algorithm
and the baseline method PatchCore

Method Data Margin Inference time Throughput Memory-Footprint
px ms patches/s ± std GiB

Thresholding Dummy 0 1.81 552 ± 3 1.2
40 1.18 847 ± 5

Defective 40 1.13 885 ± 6
Fault-free 0 0.58 1724 ± 1

PatchCore Defective 0 118.89 8 ± <1 6.0
Defective 40 32.95 30 ± <1 4.5

ResNet18 Dummy 0 0.18 5556 ± 9 2.3

been reported for ResNet architectures in [89]. The de-
pendence of the threshold algorithm on the input data
is clearly visible in Table 3. The highest inference time
was measured with 1.81 ms in the case of the dummy
data and 0.58 ms for fault-free data, missing defective
pixels and thus skipping the computation of defective
areas. These values represent the estimated upper and
lower bounds. Thus, in an industrial setting with a ma-
jority of fault-free patches per batch, throughputs of
up to 1724 patches/s can be achieved. Due to the ex-
haustive nearest neighbor search in large feature em-
beddings, PatchCore led to by far the highest infer-
ence times of 32.95 and 118.89 ms. This means that
both the thresholding algorithm and the methods that
utilize the ResNet18 are approx. 57–183 times faster
compared to the PatchCore configuration, that ignores
image margins. Although, ignoring image margins for
feature embedding and subsequent feature compari-
son led to a approx. 3.6 times reduction in inference
time. For comparison, a thorough evaluation of SOTA
anomaly detection methods inference speeds, includ-
ing PatchCore, can be explored on p. 21 in [35]. The
proposed method, namely EfficientAD, achieved the
highest throughput of up to 614 patches/s, including
CPU to GPU transfers. Thus, in inspection settings de-
scribed above, embedding-based methods like Patch-
Core would lead to bottleneck the overall inspection
process, not achieving required cycle times. In terms of
memory footprint, the thresholding algorithm exhibits
the smallest value with 1.2 GiB, followed by ResNet18
with 2.3 Gib and PatchCore with up to 6.0 GiB.

6.3. Inspection system demonstrator performance

The inference times determined above do not in-
clude all data processing steps during defect inspection
as described in Section 4.2, such as registration, ROI
segmentation or patch extraction, etc. To account for
these computationally intensive tasks and to estimate

the overall inspection time of the implemented inspec-
tion system demonstrator, separate runs of the samples
through all measurement chambers were performed.
The best performing methods regarding defect detection
performance (bold in Table 1) were therefore chosen
for each modality. The time measurements started at the
onset of image acquisition in LSM-1 and ended after
finishing the post-processing of all modalities to ensure
the availability of patch-wise inference results. A to-
tal of 10 inspection runs with various samples resulted
in an average inspection time of 20.25 ± 0.59 s, thus
achieving the required cycle time range of 15–30 s. It
has to be mentioned that the estimated overall inspec-
tion time is generally dependent on the product size
and the resulting amount of evaluated patches as well
as method settings. As with other hardware-dependent
measurements, speed up leveraging more performant
e.g. GPUs can be expected.

In terms of defect detection performance, it was qual-
itatively observed that the used defect detection meth-
ods are capable of detecting the wide range of different
defect classes with high sensitivity at low false positive
rates, confirming the metrics in Table 1. In the case of
LSM-1, small defects that differ only slightly from their
surroundings are more likely to be overlooked than area
defects that are pronounced over the entire ROI. Despite
the observation of missed defects (mostly area defects)
in the test dataset of ASM resulting in a relatively low
MCC of 0.74 compared to other modalities, this was
not the case when performing inspection. Due to the
high frame rates in ASM, the possibility of a defect oc-
curring in more than one patch as well as in different il-
lumination regions is increased and thus counteracts the
determined dataset-specific recall. However, a thorough
quantitative evaluation of the system’s defect detection
performance, considering the quality standards of the
project partner, should be carried out in the future.
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7. Conclusions and outlook

This work presents a novel automatic visual inspec-
tion system for decorated foil plates, applicable for
full-surface defect detection. Developed optical modal-
ities embedded in a sequential inspection procedure,
enable defect visualization of production related defect
classes with sufficient contrast. Thereby, applicability
and adaptability to various product sizes with FOV’s of
up to 1200 mm as well as different product designs is
ensured. Introduced patch-wise defect detection meth-
ods namely, supervised oversampling-, synthetic defect
method as well as the thresholding algorithm are ap-
plicable for full-surface defect detection of small de-
fects (few px in extension) in relation to large sized
samples of up to 106 mm2. Therefore, defect detection
performance and inference speeds considering inspec-
tion related requirements such as e.g. FPR and cycle
times were determined. The synthetic defect method as
well as the thresholding algorithm do not rely on any
labeled defective training data. By means of these meth-
ods it was possible to achieve MCC’s of up to 0.85 resp.
0.99, thus outperforming SOTA unsupervised anomaly
detection method PatchCore. The obtained metrics of
the synthetic defect method underline their applicabil-
ity on structured patterns, although the determination
of suitable hyperparameters is time-consuming. Its au-
tomatization would be beneficial for increasing further
usability.

In terms of defect inspection, area defects that are
pronounced over large sample areas are statistically
more likely to be detected by patch-wise inference than
the less sampled point defects. Additionally, area de-
fects are more apparent than weakly pronounced point
defects in terms of defect visualization. Furthermore,
area defects, such as pattern misalignments, generate
numerous defective patches per sample that can be used
for subsequent training. Thus, point defects are more
relevant to defect synthesis as they are easier to over-
look and more sparse.

Furthermore, an industry-applicable data preprocess-
ing workflow has been introduced, minimizing the
labeling effort in supervised settings. This workflow
leverages the automatic extraction of patches from pre-
selected fault-free samples, eliminating the need for ex-
haustive screening of thousands of patches. Overlooked
defects, such as potential process contamination, had
no significant impact on the training process. This is
likely due to the extraction of a large number of patches
(100 000) and the clean sample preparation by domain
experts. Thus, manual labeling is limited to the extrac-

tion of defective patches at known positions on separate
defective samples. This scalable balanced learning pro-
cedure is able to achieve the demanded FPR as well as
recall, due to the possible utilization of available fault-
free resp. defective samples during production. The pro-
posed workflow is not limited to screen-printed prod-
ucts with flat surfaces. Tests on 3D-shaped products
using additional viewpoints indicated its applicability
to various industrial manufacturing processes (e.g. in-
jection molding, forging, additive manufacturing), min-
imizing the overall labeling effort.

Defect detection of small and weakly pronounced de-
fects in its underlying structured patterns remain chal-
lenging as in case of point defects in LSM-1. Optimiza-
tion in recall could be obtained by separately training
of area and point defect groups, assuming sufficient
defective data is available for each class. Additionally,
subsequent classification of individual defect classes
would be possible enabling logging of defects statistics.
Exploiting fault-free data of all modalities and perform-
ing a self-supervised pretext task (e.g. with synthetic
defects) would generate a robust feature extractor, ap-
plicable for subsequent fine-tuning with collected de-
fective samples on same or similar patterns. Further-
more, including available defective data samples during
synthetic defect training as presented in [90] would be
another viable strategy in improving detection perfor-
mance.

Regarding the thresholding algorithm, attention has
to be given to product designs with low optical density,
introducing possible false alarms. One strategy could
be appropriate masking ignoring these specific regions.
In case of defect visualization in ASM, one has to keep
in mind that orientation dependent defect classes such
as e.g. weak appearing squeegee strokes might be over-
looked. Therefore, proper sample alignment must be
ensured prior to inspection. In addition, attention must
be given to the presence of contamination such as dust
in the inspection environment to avoid potential false
alarms. The possible in-line integration of the inspec-
tion system into a closed manufacturing cycle is part of
further research work.

It can be highlighted that the evaluation of methods
to be capable for industry applications is highly depen-
dent on the experimental design. This includes proper
dataset generation mimicking the imbalanced inspec-
tion scenario as well as choosing suitable performance
metrics. The choice of demanded recall and precision
is dependent on the quality requirements of the appli-
cation as well as on the method itself, e.g. patch-wise
processing. Enabling demanded defect detection perfor-
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mance among required inspection speeds is challeng-
ing, thus further research has to be conducted regarding
industry applicable defect detection methods. Due to
fast emerging unsupervised anomaly detection methods
as listed in [33,34,35,41,44], it is planned to investigate
their capability of defect detection on these challenging
structured patterns in future research.
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