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Abstract. In the application areas of streaming, social networks, and video-sharing platforms such as YouTube and Facebook,
along with traditional television systems, programs’ classification stands as a pivotal effort in multimedia content management.
Despite recent advancements, it remains a scientific challenge for researchers. This paper proposes a novel approach for television
monitoring systems and the classification of extended video content. In particular, it presents two distinct techniques for program
classification. The first one leverages a framework integrating Structural Similarity Index Measurement and Convolutional Neural
Network, which pipelines on stacked frames to classify program initiation, conclusion, and contents. Noteworthy, this versatile
method can be seamlessly adapted across various systems. The second analyzed framework implies directly processing optical
flow. Building upon a shot-boundary detection technique, it incorporates background subtraction to adaptively discern frame
alterations. These alterations are subsequently categorized through the integration of a Transformers network, showcasing a
potential advancement in program classification methodology. A comprehensive overview of the promising experimental results
yielded by the two techniques is reported. The first technique achieved an accuracy of 95%, while the second one surpassed it
with an even higher accuracy of 87% on multiclass classification. These results underscore the effectiveness and reliability of the
proposed frameworks, and pave the way for a more efficient and precise content management in the ever-evolving landscape of
multimedia platforms and streaming services.
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1. Introduction

In the realm of TV program recognition and con-
tent analysis, which includes acronyms, program types,
and various data points, identifying relevant informa-
tion is crucial, particularly when working with large
datasets that require classification. This challenge be-
comes even more complex when optimizing network
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training in a supervised manner, especially with the in-
troduction of new programs, TV program acronyms, or
advertisements. Furthermore, it is essential to recognize
that each channel has its unique characteristics and pro-
gramming lineup. An examination of Italian television
programs reveals that they can be broadly classified
into two principal genres: fiction and non-fiction. Fic-
tion encompasses TV films, series, miniseries, cartoons,
soap operas, and telenovelas. Non-fiction, in contrast,
includes pro-grams addressing real-life issues such as
news, weather, talk shows, current affairs, popular sci-
ence, cultural segments, variety and game shows, reality
series, advertising, and teleshopping. The Communi-
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cations Guarantee Authority acts as the regulatory and
supervisory body within the audiovisual communica-
tions sector, delegating certain responsibilities to the
Regional Communications Committees (Co.Re.Com.).
These bodies oversee local audiovisual broadcasts and
address any irregularities, such as exceeding program
durations, airing unauthorized commercials, broadcast-
ing con-tent inappropriate for all audiences, catego-
rizing de-bates (political, historical, etc.), recognizing
program credits or acronyms, and classifying program
types according to nationally regulated criteria [1]. Re-
cent researches made significant advances in this area.
This paper aims to contribute to this field, in order to
aid communication agencies, especially through the de-
ployment of two innovative and comparative method-
ologies. The first methodology implements a frame-
work that integrates Structural Similarity Index Mea-
sure (SSIM) and ResNet50, as proposed in [2]. It ana-
lyzes stacked frames to classify the beginning and the
end times of programs, along with their content. While
versatile, it is limited by the predetermined image size
required for SSIM comparison. The second method-
ology, which is an evolution of the first, is considers
the processing of optical flow. This approach relies on
a shot-boundary detection technique with background
subtraction to pinpoint changes in frames, which are
then categorized using a Transformers network. The
rest of this document is organized as follows: Section 2
lays out the fundamental theories behind the techniques
employed in our frameworks. Sections 3 and 4 evaluate
the frameworks and discuss the results, respectively.
Finally, Section 5 summarizes the conclusions from our
research.

2. State of the art

Some of the most advanced video classification meth-
ods are founded on CNNs, which have evolved to in-
clude a variety of new methodologies. For instance,
the 3D Convolutional Neural Networks (3D CNN) in-
troduced by Tran et al. [3] utilize a three-dimensional
kernel to extract features across multiple frames. Karen
et al. [4] proposed the Two-Stream CNN, a model com-
prising two neural networks: one assessing the video’s
appearance and the other its motion. The appearance
stream employs a standard CNN to analyze frames,
while the motion stream leverages a 3D CNN to assess
optical flow between frames. Wang et al. [5] introduced
the Temporal Segment Network, which uses a 2D CNN
for spatial analysis of video frames paired with a 1D

CNN for temporal sequence analysis. Carreira et al. [6]
adapted a 3D CNN, pre-trained on ImageNet, for video
analysis by extracting features from frames and their
temporal progression. Feichtenhofer et al. [7] combined
a ‘slow’ 3D CNN for spatial analysis with a ‘fast’ 3D
CNN for temporal sequence analysis. The ongoing ad-
vancement of these techniques has led to the develop-
ment of attention-based networks, which concentrate
on specific video segments for classification, often used
in tandem with architectures like 3D CNNs or LSTMs.
Pioneered by Bahdanau et al. [8], attention mechanisms
have been applied in video classification by researchers
such as Sharma et al. [9] in “Action Recognition Using
Visual Attention.” A fundamental initial step in video
classification is video segmentation, which aims to par-
tition the video stream into manageable segments for
indexing [10].

In the domain of TV program recognition and con-
tent analysis, recent studies indicate that substantial
strides have been achieved, highlighting the signifi-
cant progress in this field. Yi Cao et al. [11] proposed
a model that uses a CNN network to encapsulate the
information extracted from video scenes, incorporat-
ing a visual attention technique via a separate convolu-
tional neural network. This network generates a visual
attention map. However, the model demands significant
computational resources, notably for creating the visual
attention map, which involves numerous convolutions
and scalar products between large tensors. This could
render the model computationally inefficient on less
robust hardware. Additionally, the reliance on a visual
attention map may reduce interpretability, as the cri-
teria for selecting the most relevant video sections for
classification aren’t explicit. It might necessitate the ap-
plication of model interpretation methods for a clearer
understanding of its operation.

Fangzhao Wu et al. [12] applied a CNN for image
analysis and an RNN for text analysis. They also em-
ployed multi-task learning to handle various tasks si-
multaneously and embedding techniques to numeri-
cally translate textual TV program descriptions for deep
learning application. Nonetheless, potential enhance-
ments could include the adoption of sophisticated data
pre-processing, such as natural language processing
(NLP), to capture more nuanced information from TV
program descriptions, thereby im-proving the analysis
quality. Moreover, the images in the study were down-
scaled to 64x64 pixels, potentially limiting the model’s
capacity to discern intricate visual details.

The dataset used in their research was sourced ex-
clusively from the Chinese streaming platform Youku,
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which may affect the model’s applicability to other re-
gions and cultural contexts. In ‘Automatic TV Pro-gram
Genre Classification Using Deep Convolutional Neu-
ral Networks’ [13], Hieu Khac et al. utilized a lim-
ited dataset of images from diverse origins, which con-
strained the model’s generalizability across different
genres. They implemented a VGG16 neural network to
extract image visual features. Despite this, the model’s
ability to represent the semantic content of TV pro-
grams, such as dialogue or storylines, remains a limita-
tion. They later used a Support Vector Machine (SVM)
classifier to categorize each image by genre. However,
the study did not benchmark the model against other
genre classification methods, leaving its comparative
efficacy undetermined.

3. Methods

3.1. Materials

In this section, we’re going to introduce the two
methods we have developed for classifying television
broadcasts and extended videos. Our goal is to pro-vide
an in-depth explanation of the methodologies we’ve uti-
lized throughout the classification process. We’ll delve
into the specifics of each method, spot-lighting their
distinctive features and the fundamental principles upon
which they’re based. This thorough analysis will clarify
the two separate strategies, set ting the stage for an ex-
haustive evaluation of their efficiency and their ability
to adapt to different scenarios. This level of detailed
scrutiny is essential to pinpoint the most appropriate and
effective approach for categorizing television content
and longer video formats.

We created an initial dataset for the SSIM-CNN
framework. We used a first dataset comprising test im-
ages to evaluate the SSIM [14]. Originally, the im-
ages in our dataset captured the opening and closing
acronymous of a sports news program. We have since
expanded this dataset to include content from addi-
tional programs beyond sports, incorporating various
categories from a second dataset created for CNN. To
train CNN network, we assembled datasets using im-
age annotations sourced from web search engines and
video frame captures from the specified channels. The
project’s initial phase concentrated on identifying con-
tent from sports news. We later expanded our dataset
to include a wider range of categories. The training
dataset now covers diverse genres: Geo documentaries
(826 images), Religious events (769 images), Game

shows (525 images), Talk shows (685 images), Sales
promotions (470 images).

For our second initiative, the Shot Boundary Detec-
tion with Transformers framework, we have developed
an enriched dataset of mini videos. These were gen-
erated utilizing Shot Boundary Detection techniques
and were systematically classified into diverse cate-
gories following the A.g.Com program classification
guidelines. This comprehensive dataset includes the fol-
lowing segments: Cartoons (559); Cooking (313); Cul-
ture (244); Debates (164); Religious (309); Geography
(439); Interviews (476); Weather (337); Politics (100);
Commercials (604); News Summaries (570); Sports
(122); also integrating videos from UCF-101 [15] from
specific categories due to data scarcity, particularly Bas-
ketball (15), Soccer (8), Tennis (15), Swimming (26),
Golf (12), chosen based on the monitoring of the chan-
nels and the creation of the dataset itself, Teleshopping
(450), and News bulletins (191).

3.2. Similarity structure index measure with
convolutional neural network

The proposed architecture utilizes an image com-
parison system based on SSIM, augmented with a
ResNet50 [16]. This novel method focuses on analyz-
ing stacked frames from the target video. Each frame
undergoes a detailed comparison against standardized
test images obtained from the broadcasting channels of
the TV shows in question.

The Structural Similarity Index Measure (SSIM) [17]
works as a perceptual tool quantifying image qual-
ity degradation by measuring changes in structural in-
formation. Unlike most image quality metrics, which
typically calculate discrepancies based on pixel value
differences like mean squared error, the SSIM index re-
flects the human visual system’s ability to detect struc-
tural information within a scene. It excels at discerning
the details between a reference image and a comparison
image. A metric that mimics this capability generally
excels in tasks that require this level of discrimination.
The SSIM index evaluates three essential characteristics
of an image: Luminance, Contrast, and Structure, as
shown in Fig. 1.

Consider a collection of test images; every image is
represented as a Matrix I that capture specific moments
of detection, such as the beginning or the end of a TV
show’s acronym. Each image has size N· N, and we
define with n the n-th image {I1, I2, I3, . . . , In}.

A video is essentially a temporal sequence of im-
ages, each always represented as a matrix Mi where
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Fig. 1. Comparative visualization of the SSIM metrics: Original,
Luminance, Contrast, and Structure.

i indicates the frame number over time. If the video
consists of n frames, then we have a set of matrices
{M1,M2, . . . ,Mn}.

The goal is to precisely identify these distinct mo-
ments, like the commencement or conclusion of a TV
show acronym. Under the assumption of discrete sig-
nals, Luminance is determinate by computing the aver-
age of all pixel values:

µx =
1

N

N∑
i=1

xi;µy =
1

N

N∑
i=1

yi; (1)

The luminance comparison function, denoted as
l (x, y), relies on µx and µy. In this context, xi repre-
sents i-th pixel value of image x, while yi denotes the
i-th pixel value of image y. The variable
N represents the total number of pixel values. Re-

garding contrast, it is determined by calculating the
standard deviation, i.e. the square root of the variance,
across all pixel values:

σx =

(
1

N − 1

N∑
i=1

(xi − µx)2
) 1

2

; (2)

σy =

(
1

N − 1

N∑
i=1

(yi − µy)2
) 1

2

; (3)

The contrast denoted as c(x, y), involves comparing
σx and σy.

In this case, x and y represent the two images under
comparison, and µ is the average of the pixel values.
The structural comparison is conducted by dividing the
input signal by its standard deviation, which normalizes
the result to a standard deviation of one, facilitating a
more reliable comparison:

Nx =
x− µx
σx

;Ny =
y − µy
σy

; (4)

We define functions that compare two specified im-
ages based on these parameters. We refer to the lumi-
nance comparison function as follows:

l (x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
; (5)

where C1 serves as a constant to ensure stability when
the denominator drops to zero. C1 is given by:

C1 = (K,L)2; (6)

where K is a constant and L represents the dynamic
range of the pixel values, which is set to 255 because
we are analyzing 8-bit images. The contrast comparison
function is defined as follows:

c (x, y) =
2σxσy + C2

σ2
x + σ2

y + C3
; (7)

C2 shares the same structure as C1. The structure com-
parison function is defined as follows:

s (x, y) =
σxy + C3

σx + σy + C3
; (8)

where σx represent the standard deviation of a given
image, and σxy pertains to the covariance of images be-
ing compared. Now, we can define the similarity index
using:

SSIM (x, y) = [l(x, y)α · c(x, y)β · s (x, y)γ ] ; (9)

The parameters γ > 0, β > 0, and α > 0 are uti-
lized to adjust the relative prominence of the three com-
ponents. By setting α = β = γ = 1, and assigning
C3 = C2/2, we obtain the following expression:

SSIM (x, y) =

(2µxµy + C1)
(
2σxy + C2

)(
µ2
x + µ2

y + C1

) (
σ2
x + σ2

y + C2

) ; (10)

It is advantageous to use the SSIM index locally
rather than globally for assessing the image quality.
Instead of applying the metrics globally, it is more ef-
fective to apply them regionally for higher accuracy.
Facing the challenge of comparing images extracted
from videos, referred to as Mn, with test images, labeled
In. It’s crucial to note that while the Mn video frames
include specific date and time information at the time
of their recording, displayed on the edges of the image,
the In test images have been saved with fixed date and
time stamps, corresponding to the original video from
which they were extracted. This temporal discrepancy
between the test images and the video frames can vary,
especially if the video frames are from recordings made
on different days. This difference in date and time infor-
mation can lead to errors in comparisons based on the
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SSIM index, a metric used to assess image similarity.
To address this issue, we have developed and applied a
mask ofH×L dimensions to both the Mn video frames
and the In test images. The use of this mask allows
us to exclude the date and time information from the
comparison process, thereby improving the accuracy
in evaluating the similarity between the images. This
leads to a further reduction in image size. Regarding
classification, we feed the video’s SSIM index between
an old and a new scene change duration, resulting in
a floating-point value SSIM (x, y) = fn, where the in-
dex n represents the n-th comparison between the Test
image In, and the n-th frame in the Mn video.

Using a standard parameter threshold t:

fn > t; (11)

By setting t to a high value, we can accurately iden-
tify when an image of interest represents a TV theme
acronym. Once the image of interest is identified, CNN
with ResNet50 initiates the classification of general
content, including sports, human activities, sales, prod-
ucts, talk shows, debates, and others. For training the
network, we converted the images to grayscale and
employed the technique of transfer learning [18]. This
involved pre-training the network on ImageNet [19].
Splitting the model into a head and body, training only
the head while freezing the body. In our training data,
we incorporate random rotations, zooms, shifts, shears,
and flips to augment the dataset. We employed a stacked
frame recognition technique: to achieve temporal clas-
sifications of scenes, we implemented a moving average
prediction, by considering the frames per second of the
video.

As we have represented the frames in a video as an
M matrix, we define:

Y =

n∑
i=1

Mi; (12)

The ResNet50 makes predictions on each frame, as-
signing a classification percentage to every nth frame.
Mn, we write the prediction function as:

P (Mn) = pn; (13)

here pn represents the probability assigned to the nth
frame. We only consider the highest probabilities and
can define a subset of these probabilities. Let’s as-
sume we want to consider the top k probabilities, where
k 6 N and N is the total number of frames being
considered. We order the probabilities in descending
order and take the first k: {p(1), p(2), . . . , p(k)} where
p(1) > p(2) > . . . > p(k). Let p(j) denote the jth-

Fig. 2. Architecture of SSIM with CNN.

highest probability, after ordering all probabilities in
descending order.

We now calculate the average of the top k probabili-
ties as follows:

mean =
1

k

k∑
j=1

p (j) ; (14)

This value represents the overall mean probability based
on the frames with the highest classification confidence
of the neural network. This approach is used to evaluate
the performance of the network on video segments.

3.3. Shot boundary detection with transformer

The proposed framework operates based on optical
flow. In this scenario, the video to be analyzed is divided
into subsequences.

Given a video as Y , let us define Y as a sequence
of frames Y = {M1,M2, . . . ,Mn} where Mn repre-
sents the i-th frame of the video. With the shot bound-
ary detection technique, we divide the video Y into
n sub videos, y1, y2, . . . , yn, where each yk repre-
sents a video segment with a distinct semantic event.
This subdivision can be expressed as: Y =

⋃k
j=1 yj,

where yj = {Maj,Maj+1, . . . ,Mb} defining aj e bj
as variables that represent the indices of the frames
defining the start and end of each sub video yj with
1 6 aj 6 bj 6 n e aj + 1 = bi + 1 for every i from 1
to k − 1. This ensures that each frame of Y belongs to
exactly one sub video yj. Each subsequence will be the
input for the Transformers Network [20].

The video segmentation is realized with a shot
boundary detection [21], that generates a binary mask
My(i, l), where i represents the vertical coordinate of
the pixel. Then, l denotes the horizontal coordinate of
the pixel. Representing the area of the image occupied
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by the foreground object. This mask is produced by
applying an adaptive threshold to the difference map
between the current frame Iy(i, l) and the background
model By(i, l). The adaptive threshold is determined
as the mean plus a constant multiplied by the standard
deviation. It is specifically dependent on the standard
deviation of the difference map My(i, l) = 1 if:

|ly (i, l)−By (i, l)| > µ+ kσ; (15)

and 0 otherwise, where µ represents the mean of the
difference map, highlighting the disparity between the
current frame and the background model. σ denotes the
standard deviation of the difference map, while k is a
multiplicative constant used to compute the adaptive
threshold for generating the binary mask.

In this study, we introduce a novel video classifica-
tion model that harnesses the capabilities of Transform-
ers, a category of neural networks renowned for their
proficiency in handling sequential data. The structure
of our model consists of several critical components.
Initially, video subsequences yj, are pre-processed by
segmenting them into frames, then sub-sampled to cre-
ate sequences. These sequences are subsequently pro-
cessed by a DenseNet121 [22], a pre-trained convolu-
tional neural network, to extract prominent features.
The top layers of the DenseNet are excluded to maintain
its expertise in capturing detailed spatial information.

Features of each frame (X ∈ RNxD) are arranged into
a sequence (S ∈ RTxNxD), like the patch-based method
used in Vision Transformers. This sequence, enhanced
with positional embeddings (PE ∈ RTxD), is processed
by a single layer of the Transformer. The output of the
Transformer, Z, is provided by:

Z = Transformer (S + PE) ; (16)

where S represents the sequence of features extracted
from each frame of the video, organized to reflect the
spatial and temporal structure of the original sequence
of frames.

Each element of S is a feature vector describing a
frame or frame segment of the video. PE represents po-
sitional embeddings, which are added to the S sequence
to provide the Transformer with information about the
temporal position of each frame within the sequence.
This layer is designed to learn spatial and temporal de-
pendencies among the features, providing a proficient
solution for the analysis of video data. Moreover, the
model makes use of a GlobalMaxPooling1D operation
to effectively refine spatial information:

(Zpooled = GlobalMaxPooling1D(Z)); (17)

and this is complemented by a dropout layer to reduce
the risk of overfitting.

The Transformer features a single attention head, and
projects the embeddings through a dense layer with a
dimensionality of 4 (F ∈ RTx4), thereby enhancing the
model’s learning capabilities:

F = Dense (Zpooled) ; (18)

in essence, F represents the final processing of the in-
put data through the Transformer model, where, after
leveraging the spatial and temporal learning capabilities
of the single attention head, the features are synthe-
sized into a four-dimensional vector for each timestep.
This condensed output, F , embodies the understanding
gleaned by the model and is poised for deployment in
decision-making stages, such as classification or ad-
vanced interpretation of patterns in video data.

4. Experimental verification

In this Section, we examine the experiments con-
ducted on the two proposed frameworks. The experi-
ments were executed on a dedicated system with the
following specifications: an Intel(R) Xeon(R) Gold
6126 CPU at 2.6 GHz, 64 KiB of BIOS, 64 GiB DIMM
DDR4 system memory, and 2×GV100GL [Tesla V100
PCIe 32 GB]. The frameworks were developed using
Python and the Keras library with TensorFlow back-
end. Video classification tests were performed for both
frameworks on the same datasets. Specifically, we con-
sidered LaC as a local channel, and we considered addi-
tional channels such as RTV, TeleSpazio, TenTv while
also analyzing two 24-hour video recordings.

4.1. Performance of the proposed system

To evaluate how well the system operates, we use P
to represent a favorable outcome, and N to symbolize
an unfavorable one. Here’s how we classify the results:
TP refers to the count of scenes accurately recognized
in a video, FP is used for the count of scenes recognized
in a video but labeled incorrectly, TN is the count for
scenes that were misidentified in a video, and FN stands
for the scenes in a video that went undetected or for
any irregularities found. We paid more attention to the
2 transformer and shot boundary methodology.

The framework’s performance was carefully assessed
by utilizing:

Precision =
TP

TP + FP
; (19)
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Fig. 3. Architecture of the shot boundary detection with transformer.

Table 1
Processed classification SSIM and CNN-ResNet50 output

Time Label Probability
00:00:11 LAC_SPORT_TV_THEME 98.28%
00:00:24 Football 99.94%
00:00:34 TV news 97.33%
00:00:55 Football 98.60%
00:00:57 Football 98.76%
00:00:59 TV news 99.00%
00:01:06 Football 99.48%

Recall =
TP

TP + FN
; (20)

F score = 2 ∗ Precision* Recall
Precision + Recall

; (21)

Accuracy =
TP + TN

TP + TN + FP + FN
; (22)

Accurately describing the results obtained.

4.2. Evaluation of similarity structure index measure
with ResNet50

The results of the classification are shown in Table 1,
which serves as an example of the results derived from
the framework classification process. In this table, we
can examine the first row that details the performance of
SSIM, then the classification done on each framework
by ResNet50. We divided the dataset, allocating 80%
for training and 20% for validation. Figure 4 illustrates
the training loss and accuracy of the network, employ-
ing cross-entropy to measure the difference between the
model’s predictions and the actual labels throughout the
training period. The network underwent training over
20, 50, 100, and 120 epochs.

Graph (a) – 20 epochs: The training loss decreases
rapidly, indicating that the model is learning from the
dataset effectively. Both the training and validation ac-
curacy improve quickly, and appear to stabilize by the
20th epoch. There’s a small gap between training and
validation loss, suggesting minor overfitting.

Graph (b) – 50 epochs: This graph extends to
50 epochs and shows a continued decrease in training
loss. The training and validation accuracy both rise and
then plateau, indicating that the model may not be gain-
ing significant improvements from additional epochs.
There’s a consistent gap between training and validation
loss, but it does not appear to be widening significantly,
which is positive.

Graph (c) – 100 epochs: Here, over 100 epochs,
the training loss continues to decrease but at a much
slower rate. The accuracy seems to have plateaued. The
gap between the training and validation loss appears
slightly larger compared to the 50 epochs graph, which
may indicate overfitting as the model continues to learn
specifics about the training data that do not generalize
to the validation data.

Graph (d) – 120 epochs: Extending the training to
120 epochs, the loss and accuracy trends seem consis-
tent with the 100 epochs graph. There’s a noticeable
gap between the training and validation loss, which may
suggest that the model isn’t likely to benefit from fur-
ther training on the same data without adjustments or
regularization to reduce overfitting.

The best results obtained for 120 epochs shown in
Table 2 are discussing the results, Geo and Religious
categories have high precision, recall, and F1 scores, all
around 0.94 to 0.98, indicating that the model performs
very well in these categories, with a balanced ability
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Table 2
Performance of the Network CNN-ResNet50

Class Precision (%) Recall (%) F1_Score (%) Support (%)
Geo 0.98 0.98 0.98 206
Religious 0.95 0.94 0.94 192
Game_show 0.94 0.95 0.93 137
Talk_show 0.93 0.95 0.94 190
Sales_promotion 0.94 0.92 0.94 118
Accuracy 0.95 843
macroavg 0.94 0.94 0.94 843
Weighted avg 0.95 0.95 0.95 843

Fig. 4. Comparison of learning curves for training and validation loss and accuracy on a dataset, with incremental epochs of 20, 50, 100, and 120.

to identify relevant cases (precision) and to identify all
actual cases (recall).

Game show, Talk show, and Sales promotion cate-
gories have slightly lower but still robust performance
metrics, ranging from 0.92 to 0.95, which implies that
the model is generally reliable in these classifications
as well.

The accuracy of 0.95 suggests that the model cor-
rectly classifies 95% of the overall data, which is quite
high for most applications.

Both the macro average and weighted average scores
across precision, recall, and F1 are consistent at 0.94
and 0.95 respectively. The macro average treats all
classes equally, while the weighted average takes the
support (the number of true instances for each label)
into account. High values in both suggest that the

model’s performance is uniformly strong across all
classes and that the model is not biased towards more
frequently occurring classes.

The support for each class varies, with ‘Geo’ having
the highest number of instances (206) and ‘Sales pro-
motion’ the least (118). Despite these differences, the
model’s performance is steady across classes.

In conclusion, the model demonstrates excellent and
consistent performance across different categories with
no significant signs of bias towards frequent categories.

4.3. Evaluation of shot boundary detection with
transformers

In our work, we pay special attention to the classifi-
cation results obtained with this technique.
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Table 3
Performance of the network shot boundary detection with transformer

Class Precision (%) Recall (%) F1_Score (%) Support (%)
50EPOCHS

Cartoons 0.99 0.83 0.91 168
Cooking 0.92 0.71 0.80 93
Culture 0.71 0.58 0.64 76
Debates 0.75 0.90 0.81 49
Religious 0.72 0.80 0.76 93
Geography 0.81 0.95 0.88 133
Interviews 0.74 0.81 0.77 142
Weather 0.97 0.94 0.96 102

Politics 1.00 0.43 0.60 30
Commercials 0.81 0.89 0.85 185
News summaries 0.87 0.98 0.92 156
Sports 1.00 0.94 0.97 36
Teleshopping 0.81 0.88 0.84 57
News bulletins 0.90 0.77 0.83 110
Accuracy – – 0.84 1430
Macro avg 0.86 0.82 0.82 1430
Weighted avg 0.85 0.84 0.84 1430

100EPOCHS
Cartoons 0.95 0.93 0.94 168
Cooking 0.89 0.78 0.83 93
Culture 0.58 0.75 0.65 76
Debates 0.81 0.90 0.85 49
Religious 0.77 0.80 0.78 93
Geography 0.85 0.91 0.88 133
Interviews 0.83 0.83 0.83 142
Weather 0.92 0.98 0.95 102
Politics 0.93 0.83 0.88 30
Commercials 0.95 0.85 0.90 185
News summaries 0.89 0.95 0.92 156
Sports 0.97 0.81 0.88 36
Teleshopping 0.98 0.88 0.93 57
News bulletins 0.94 0.87 0.91 110
Accuracy – – 0.87 1430
Macro avg 0.88 0.86 0.87 1430
Weighted avg 0.88 0.87 0.88 1430

150EPOCHS
Cartoons 0.94 0.97 0.95 168
Cooking 0.90 0.74 0.81 93
Culture 0.71 0.54 0.61 76
Debates 0.60 0.92 0.73 49
Religious 0.77 0.84 0.80 93
Geography 0.93 0.81 0.87 133
Interviews 0.77 0.89 0.83 142
Weather 0.92 0.97 0.94 102
Politics 0.92 0.80 0.86 30
Commercials 0.91 0.87 0.89 185
News summaries 0.94 0.96 0.95 156
Sports 0.97 0.83 0.90 36
Teleshopping 0.83 0.91 0.87 57
News bulletins 0.91 0.85 0.88 110
Accuracy – – 0.87 1430
Macro avg 0.86 0.85 0.85 1430
Weighted avg 0.87 0.87 0.87 1430

200EPOCHS
Cartoons 0.99 0.89 0.94 168
Cooking 0.84 0.69 0.76 93
Culture 0.80 0.58 0.67 76
Debates 0.88 0.90 0.89 49
Religious 0.88 0.66 0.75 93



448 F. Candela et al. / Effectiveness of deep learning techniques in TV programs classification: A comparative analysis

Table 3, continued

Class Precision (%) Recall (%) F1_Score (%) Support (%)
Geography 0.70 0.97 0.82 133
Interviews 0.76 0.89 0.82 142
Weather 0.82 0.98 0.89 102
Politics 1.00 0.53 0.70 30
Commercials 0.91 0.84 0.87 185
News summaries 0.98 0.92 0.95 156
Sports 0.97 0.86 0.91 36
Teleshopping 0.84 0.93 0.88 57
News bulletins 0.78 0.91 0.84 110
Accuracy – – 0.85 1430
Macro avg 0.87 0.83 0.84 1430
Weighted avg 0.86 0.85 0.85 1430

Fig. 5. Confusion matrix on 100 epochs.

We allocated 80% of the dataset for training and the
remaining 20% for testing. We conducted experiments
across the different numbers of epochs at 50, 100, 150,
and 200 epochs, as reported in Table 3. The best results
were achieved after 100 epochs, especially when ana-
lyzing the different categories, in conjunction with the
corresponding confusion matrix as illustrated in Fig. 5.

Our classification model demonstrates good results,
particularly in the Cartoons and Weather categories,
achieving accuracies of 0.95 and 0.92, respectively. The
model’s precision in classified cartoons is confirmed by
the confusion matrix, which shows 156 correct classifi-

cations out of 168 items, with very few false positives
and negatives. Similarly, in the Weather category, the
model correctly classified 100 out of 102 items.

For Commercials and News Summaries, the model
showed high accuracy, with 158 and 148 correct clas-
sifications out of 185 and 156 items, respectively. In
Sports, despite a very high accuracy of 0.97, the preci-
sion is lower at 0.81, suggesting some confusion with
other categories; however, the confusion matrix reveals
29 correct classifications out of 36. Teleshopping ex-
hibits the best performance with near-perfect accuracy
of 0.98 and 50 correct classifications out of 57, despite
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Fig. 6. ROC graphics on 100 epochs.

Table 4
Comparison of shot boundary detection
and transformer with other methodologies

Methodologies Accuracy
3dCNN [23] 90.2%
CNN+RNN [24] 80.2%
PAC+CNN [25] 89.3%
CNN+MLP [26] 93.7%
DNN [27] 53%
LogRegression [28] 82%
SSIM+CNN 95%
S.B.+Transf. 96%

a moderate amount of misclassification indicated by the
confusion matrix.

The model’s overall performance is robust with an
accuracy of 0.87 across 1430 items. The macro aver-
ages for accuracy and precision, which calculate the
average performance of the model for each category
separately and then average these results, are 0.87 and
0.88, respectively. This indicates balanced performance
across categories, ensuring that each category is given
equal importance regardless of its size. Meanwhile, the
weighted average, considering the number of items per
category, confirms good overall performance. These
results underscore the effectiveness of the model as a
classification tool across a broad spectrum of categories.

Figure 6 shows the ROC (Receiver Operating Char-
acteristic) curves over 100 epochs. These curves chart
the model’s classification efficacy across 13 distinct

classes by plotting the true positive rate (TPR) against
the false positive rate (FPR) for various threshold set-
tings.

The key observations from the ROC curves include:

– Perfect Classification (AUC = 1.00): Classes 0, 7,
8, 10, and 11 achieved an AUC (Area Under the
Curve) of 1.00, signifying flawless classification
with an absence of both false positives and nega-
tives. The ROC curves for these classes perfectly
align with the ROC space’s left and top edges,
denoting 100% sensitivity and specificity.

– Near-Perfect Classification (AUC > 0.98):
Classes 1, 2, 3, 4, 5, 6, 9, 12, and 13 are charac-
terized by near-perfect classification, with AUC
values between 0.98 and 0.99. Positioned close to
the top left corner, these curves reflect the model’s
high true positive rate alongside a minimal false
positive rate for the classes.

– Consistency Across Classes: The high AUC val-
ues’ uniformity across all classes indicates a robust
model with consistent performance, reliably pin-
pointing true positives while concurrently keeping
false positives to a minimum.

– Distinct Classes with No Overlapping Curves: The
absence of overlapping curves implies clear dis-
tinction between classes, highlighting the model’s
effective differentiation capabilities.
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Fig. 7. GPU consumer during training of the CNN and Transformer.

The dashed line represents the baseline of random
guessing (AUC = 0.50), with all class curves signif-
icantly outperforming this benchmark. This demon-
strates that the model’s predictions are substantially
superior to those made by the chance.

4.4. Experimental results discussion

In this section, we provide a comparative analysis
against existing research. The initial SSIM framework,
when combined with a CNN, excels at quickly iden-
tifying specific TV program opening (or closing) se-
quence. Notably, it obviates the need for additional
training when a channel updates its opening sequence; a
simple test image input suffices. ResNet50 consistently
shows proficiency in recognizing broader categories.
However, it does come with a caveat: the alignment of
the test image’s dimensions with the video’s frames per
second (fps) is crucial. Conversely, the second frame-
work, which utilizes the Transformers network for Shot
Boundary Detection, adopts a more general approach
to opening (or closing) sequence. Rather than focusing
on individual opening sequence, it includes ‘spots’ that
cover advertisements, aiming to universalize the model,
thereby eliminating the need for retraining. While SSIM
with ResNet50 sometimes struggles with accurately
marking the beginning of TV News specifically when a
journalist introduces a new report the results are gen-
erally reliable. Additionally, Fig. 7 details the GPU’s
usage during training. The accompanying graph reveals
that the ResNet50 network requires more power than
the Transformers network. Nonetheless, it achieved re-
markable results in the 120-epoch training phase, boast-
ing an impressive 95% accuracy rate.

4.5. Comparative analysis

For comparison with existing technologies, it is es-
sential to highlight that our frameworks show promis-
ing results when benchmarked against ongoing research
efforts. This underscores the potential and effectiveness
of our approach amidst the current technological ad-
vancements in the field. In Table 4, we juxtapose our
findings with those from recent studies in this area.
For instance, in [23], the authors leverage the UCF101
dataset to classify a variety of human actions or activi-
ties in videos. Notably, their study reveals that our pro-
posed methodologies forego the need for optical flow
extraction, enhancing efficiency in terms of execution
speed. Our approach utilizes a dual-stream data setup,
one stream for visual inputs and another for motion,
ensuring a robust representation of spatiotemporal data.
It should be noted, though, that training deep neural
networks like three-dimensional CNNs demands exten-
sive data and computational power, culminating in a top
accuracy of 90.2% for our Two-stream 3D network.

In [24], the researchers introduce a hybrid model that
combines a Convolutional Neural Network (CNN) with
a Recurrent Neural Network (RNN) to discern video
content types, classifying them into categories such as
‘Animation,’ ‘Gaming,’ ‘Natural Content,’ ‘Flat Con-
tent,’ and so on. They propose a novel technique for
classifying only key frames, thus curtailing process-
ing time without significantly affecting performance.
Using specific classes from the COIN dataset, they se-
lected 1,000 images for training and testing, yielding
an accuracy of 80.27%. The model’s efficacy was as-
sessed on low-power hardware, which imposed limita-
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tions on processing capacity and necessitated the use of
a smaller dataset sample.

In [25], the focus is on scene change detection within
videos, using PCA in the context of identifying scene
transitions. This involves extracting frames from videos
and compiling them into a dataset categorized by types
of content, such as journalistic reports and sports, with
an accuracy of 89.3%. ResNet50 was deployed for clas-
sifying transition and non-transition frames within the
training classes.

Lastly [26], presents a framework detailing the use of
audio features to differentiate between types of televi-
sion programming like news, sports, and entertainment.
Audio data is converted into spectrograms, visual rep-
resentations of frequency and time within the audio sig-
nal, which then serve as inputs for a Convolutional Neu-
ral Network (CNN) trained on Audio Set and tested on
a tailored BBC dataset, coupled with a Multilayer Per-
ceptron classifier on the backend. The CNN assesses the
likelihood of specific sound events within the recording,
achieving a commendable accuracy of approximately
93.7%. However, the spectrogram representation might
not capture the entire spectrum of relevant audio infor-
mation in television programs. Despite the inclusion
of broadcasts from various genre categories, there’s a
possibility that some genres are overrepresented relative
to others. In [27], the focus is on classifying violent
content in videos using deep neural networks (DNNs)
trained on the VSD2014 benchmark, which differenti-
ates between violence and non-violence. The highest
accuracy achieved was 53% with a network consisting
of 21 hidden layers, implemented on a MacBook Pro.
The experimental findings suggest that all the various
architectures of hidden layers and nodes explored did
not surpass 57% accuracy, warranting further research.

In [28], the authors explore and compare different
methodologies for the challenging task of classifying
television programs. Logistic Regression emerged as
the most effective, boasting an 82% accuracy for newly
classified content. This method has proven its merit,
particularly in scenarios involving brief documents and
a limited number of training samples. The principal lim-
itation identified in the study is that despite certain en-
hancements, incorporating semantic information from
Wikipedia did not significantly improve the accuracy
of television program classification. In [29] contribute
to the ongoing research discourse, as presented at the
the European Conference on Advances in Databases
and Information Systems in 2023. It introduces vari-
ous methodologies for the classification of television
programming.

5. Conclusion

In conclusion, this article underscores the pivotal
importance of program classification within the ever-
evolving landscape of multimedia content. It acknowl-
edges the persistent challenges faced by researchers in
this field. Two methods of classification are proposed.
The first method integrates the Structural Similarity
Index (SSIM) with a custom-designed Convolutional
Neural Network (CNN) specifically for overlapping
frames while this method is versatile across different
systems; it does come with the constraint of needing
a predefined sample image size for SSIM comparison.
In contrast, the second approach proposes the use of
the optical flow to achieve remarkable precision and
wide range applicability for various program types. A
thoughtful examination of the limitations and the poten-
tial future developments of these techniques is carried
out. It suggests the adoption of more sophisticated deep
learning strategies and the inclusion of additional data
sources to increase classification accuracy. Moreover,
it proposes that investigating the integration of seman-
tic comprehension could be a compelling direction for
future research.

Overall, these promising results indicate opportuni-
ties for further enhancement in program classification,
a process particularly relevant for television monitoring
systems and the sorting of substantial video archives.

The manuscript offers a detailed presentation of the
proposed methods and their empirical results. It also
highlights the complexities of program classification,
considering the variety of formats, genres, and produc-
tion styles, and the ever-growing volume of daily con-
tent production. This underscores the urgent need for
developing sophisticated and flexible automated classi-
fication techniques to improve the efficiency of televi-
sion monitoring systems.

Future work should focus on ensuring these meth-
ods are seamlessly integrated into the dynamic media
environment. A critical goal is to expand the dataset
significantly, particularly for national broadcasters.

Additionally, the second proposed method opens an
exciting path for specialization. This involves investi-
gating binary classification training with varied weights,
an approach that could fine-tune the precision of spe-
cific categories during further assessments. A future
prospect worth considering is the integration of a Neu-
ral Dynamic Classification (NDC) algorithm [30]. This
algorithm could be useful for classifying for television
programs. With content continuously being updated,
program features may vary considerably, whereas the
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broader categories generally stay more stable. Thus, ap-
plying an algorithm like NDC might offer an effective
means to manage this variability. The dynamic classi-
fication enabled by the NDC algorithm goes beyond
just static features. It also considers how these charac-
teristics may change over time or in reaction to certain
changes. This is especially relevant when the associa-
tions between features and classes are subject to shifts
or dynamic influences, as often seen with the evolving
nature of television content.

Moreover, it would be wise to evaluate the efficacy of
an NDC algorithm specifically for television program
classification. Such an approach could provide a flexible
and robust solution to the unique challenges posed by
the fluid nature of television content and its inherent
properties.

Replace “TV” with “television” in the sentence dis-
cussing the unique challenges posed by the fluid nature
of TV content. (Page 5, Line 768)

Methods like those described in [31] utilize a com-
bination of techniques, including the strategic addition
and subtraction of neurons, to optimize the neural net-
work architecture. The aim is to develop a suite of high-
performing neural networks that can dynamically and
adaptively process complex data. This could be advan-
tageous, particularly with large datasets, such as those
encountering in television program classification.
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