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Highly compressed image representation for
classification and content retrieval

Stanistaw Lazewski* and Bogustaw Cyganek
Faculty of Computer Science, Electronics and Telecommunications, AGH University of Krakow, Krakow, Poland

Abstract. In this paper, we propose a new method of representing images using highly compressed features for classification
and image content retrieval — called PCA-ResFeats. They are obtained by fusing high- and low-level features from the outputs
of ResNet-50 residual blocks and applying to them principal component analysis, which leads to a significant reduction in
dimensionality. Further on, by applying a floating-point compression, we are able to reduce the memory required to store a single
image by up to 1,200 times compared to jpg images and 220 times compared to features obtained by simple output fusion of
ResNet-50. As a result, the representation of a single image from the dataset can be as low as 35 bytes on average. In comparison
with the classification results on features from fusion of the last ResNet-50 residual block, we achieve a comparable accuracy (no
worse than five percentage points), while preserving two orders of magnitude data compression. We also tested our method in the
content-based image retrieval task, achieving better results than other known methods using sparse features. Moreover, our method
enables the creation of concise summaries of image content, which can find numerous applications in databases.

Keywords: Image classification, content-based image recognition (CBIR), deep semantic features, PCA-ResFeats, ResNet-50

1. Introduction

With virtually unlimited access to information, stor-
ing large amounts of data becomes increasingly prob-
lematic. For example, images from surveillance cam-
eras must be overwritten due to a lack of adequate stor-
age resources. Image datasets used in data science or
video require terabytes of storage capacity to store on
disks. However, such images often contain unnecessary,
redundant information that can be removed to achieve
significant compression while preserving the most es-
sential information. In many classification tasks, stor-
ing the original image datasets on which classifiers are
trained is unnecessary or these datasets can be offloaded
to other cheaper but slower media [1]. Ultimately, the
image representations given at the input are sufficient
to receive the corresponding label at the output. Stor-
ing a less dimensional and compressed representation
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of the originals can help reduce the required storage
volumes and allow a much larger number of examples
to be stored, with no apparent impact on classification
performance. As regards to sparse representation of im-
ages, not only the storage space is essential, but also the
processing time. An example is content-based image
retrieval (CBIR), which we also address in this paper. In
this task, a common scenario is that a subset of the most
similar representations is selected from many millions
of images based on the highly compressed representa-
tions. Then, the whole process is repeated on the subset
of less compact representations chosen in the previous
iteration, allowing for more accurate matches and sig-
nificantly reducing processing time. These two limita-
tions, the huge storage usage of present-day datasets
and the long processing time were the primary motiva-
tion for the works on the presented approach.

Such representations can be local sparse features that
carry information in a very compact form, allowing in-
ference about the image content. They can be used to
search for common areas in different images, to deter-
mine camera positions, to combine photos into panora-
mas, or to perform 3D modeling. At the beginning of
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the 21st century, the most popular method for determin-
ing local features became the scale-invariant features
transform (SIFT), proposed by David Lowe [2]. This
work generated significant interest in sparse image de-
scriptors and contributed to the development of many
other methods. Currently, the field of image analysis is
dominated by various types of neural networks [3,4,5,6,
7,8,9,10,11,12] and visual transformers [13]. We have
demonstrated that the use of deep neural networks en-
ables the construction local semantic descriptors which
allow for more efficient image analysis and retrieval
than known solutions.

In this paper, we propose a more compact and ro-
bust version of the ResFeats features proposed by Mah-
mood et al. [14,15]. Our main contributions are as fol-
lows. First, we propose a set of dimensionality reduc-
tion methods for the original ResFeats, which count
3854 floating-point values each in their original form.
In this context, we present and analyze (i) various com-
binations of features from output layers, (ii) principal
component analysis (PCA) [16,17], as well as (iii) fea-
ture sampling on combined high- and low-level ResNet-
50 features. We also investigated (iv) the impact of
a floating-point compression, called ZFP by its cre-
ators [18], on the proposed features. Second, we have
extensively tested various setups in the classification
tasks on six referential datasets and CBIR. The results
show that the most promising is the combination of
PCA with about 60 components and ZFP, which in
some cases allows up to 220-fold reduction in memory
consumption for the representation of features without
significantly reducing or even increasing the accuracy
of classification and CBIR results, as compared to other
published methods.

2. Related works

The quest for the best-performing features has been
the “Holy Grail” of the computer vision community for
decades. We have experienced several breakthroughs
in this field. After using different edge and corner de-
tectors for a long period, the real breakthrough came
in 2004 after D. Lowe published his seminal paper on
the SIFT [2]. It gained many citations, as well as im-
provements and modifications, such as [19,20], to name
a few.

Exciting in the context of our work is the method by
Ke and Sukthankar [19]. They proposed to employ PCA
in the last step of the SIFT algorithm, that is, building a
representation of key points based on patches. Thanks

to this, the PCA-SIFT is constructed, which allowed
not only for data reduction but — in many cases — also
for increased classification accuracy.

The great success of SIFT spawned research in the
field of sparse image descriptors and resulted in many
improvements and similar methods. For example, we
can mention here the speeded-up robust features method
(SURF) [21], keypoint detector Features from Acceler-
ated and Segments Test (FAST) [22], the Binary Robust
Independent Elementary Feature detector (BRIEF) [23],
as well as their follow-up oriented FAST and Rotated
BRIEF (ORB) [24], then very efficient to compute
densely DAISY [25,26], or in the other group — the
scale and affine invariant features by Mikolajczyk and
Schmid [27], as well as histograms of oriented gradi-
ents (HOG) [28,29], to name a few. However, in recent
years, deep neural networks have shown their superi-
ority also in the computation of local descriptors and
sparse features for such tasks as image classification or
content retrieval.

In the work of Mihai Dusmanu et al. [30], a D2-Net
architecture is proposed that finds reliable keypoints un-
der challenging imaging conditions. The approach pre-
sented there assigns a dual role to a single convolutional
neural network (CNN): it is both a feature descriptor
and a feature detector. The backbone of the D2-Net
network is a pretrained on ImageNet VGG16 network.
The proposed method achieves promising results both
on the difficult Aachen Day-Night dataset with photos
of objects taken during both day and night and on the
InLoc benchmark dataset with photos of building in-
teriors. In 2022, a paper was published [31] that cor-
rected two shortcomings of D2-Net: low positioning ac-
curacy of detected keypoints and emphasis only on the
repeatability of detected keypoints, which could lead to
mismatches in areas with the same texture. To increase
the invariance and the correctness of local descriptor
matches counted based on CNN, a paper by Liang et
al. [32] proposed a Multi-Level Feature Aggregation
(MLFA) module for efficient information transfer be-
tween levels. Each level extracts a feature vector, and
the final descriptor concatenates them. In addition, to
exploit the spatial structure within a local image frag-
ment, the authors proposed a Spatial Context Pyramid
(SCP) module to capture spatial information. The algo-
rithm was implemented based on the Harmonic Densely
Connected Network (HarDNet) framework [33]. The
results obtained by the authors show that their method
compares favorably with state-of-the-art (SOTA) meth-
ods. Nevertheless, these require significant computa-
tional resources and memory for data storage. There
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are also approaches to representing a point cloud using
a single feature vector. In [34], using Self-Organizing
Map (SOM), the proposed SO-Net network performs
hierarchical feature extraction at individual points and
processes them into a feature vector.

A method that proposed PCA to be applied directly
to the last semantic layer of ResNet-50 is investigated
in [35]. It shows good results in classification with
spares data representation. However, the size of the fea-
tures is still a few kilobytes per image. We will refer to
this method in a further part of this paper.

A very influential is the work by Mahmood et al. [14].
For global feature extraction of images the features of
the last residual layer called Res5c of ResNet-50 trained
on the ImageNet are proposed. These 7 x 7 x 2048 vec-
tors are then PCA processed, leading to a feature vector
of 2048 floating-point values. Finally, these are then
passed to the linear SVM classifier. In their follow-up
work a more advanced way to obtain image represen-
tations is proposed [15]. The main idea is to use out-
puts not only from the one output layer, but from three
output layers of the residual units after the max-pooling
module that constitute a hierarchy of semantic features,
as shown in Fig. 1. However, these new features, called
ResFeats, are even larger than in their first publication,
since now after concatenation their size is equal to 512
values from the Res3d block, 1024 from Res4f, and
2048 from Res5c, giving in total 3584 floating-point
values. As authors argue, this is still less than 4096 di-
mensional features from the off-the-shelf CNN. How-
ever, they do not perform any compression on the Res-
Feats and the entire processing chain assumes at least
14336 bytes per ResFeat, assuming 4 bytes per floating-
point value. In this paper, we fill this gap and signifi-
cantly improve the method of Mahmood et al. [15] by
using various data reduction methods such as random
sampling, PCA, but also floating-point compression.
Details are discussed later in this article.

Features extracted from deeper layers perform better
than those from shallower layers. However, their size
is also significant due to the size of these output layers,
but also because these need to be represented in the
floating-point format that consumes at least 4 bytes per
feature. In this paper we address this issue, proposing
new ways for this size reduction even by two orders of
magnitude with comparable or even better performance
than the original ResFeats.

Based on superpixels and feature fusion, the solution
proposed in [36] uses a codebook of size 2048 or 1024.
On the other hand, Arco et al. proposed a sparse coding
approach [37]. The images are first divided into tiles,

and after applying PCA to these tiles, a dictionary is
created. The original signals are then transformed into
a linear combination of dictionary elements. The tech-
nique presented in [38], on the other hand, reduces CNN
layers through an iterative process of removing neurons
from the layer and tuning the network. The method
presented in [39] is based on the use of wavelet packet
transform (WPT)/Dual-Tree Complex Wavelet Trans-
form (DT-CWT) to transform images from the spatial
domain to the wavelet domain. The selected channels
are stacked to form a tensor of the C' x 56 x 56 shape,
where C' is the number of selected channels. Another
method proposed for use in CBIR is feature vector ex-
traction, which is a combination of low-level and mid-
level image features (LB-CBIR) [40]. The extraction
of low-level image features (color, shape, and texture)
was performed using auto-correlogram, Gabor wavelet
transform, and multi-level fractal dimension analysis.
Mid-level image features were also extracted using the
Deep Boltzmann Machine. There are many other in-
teresting works that aim to improve the quality of the
CNNs themselves, e.g. Fenton et al. propose automated
optimization of CNN by image pre-processing [41].
On the other hand, Grabek and Cyganek analyze the
influence of tensor-based and ZFP data compression
on CNN performance [42]. The results show negligible
effect of tensor decomposition and ZFP on accuracy
deterioration, while preserving high data compression
ratios. Encouraged by these results we also use ZFP in
the presented method.

In this paper a method is proposed for global image
feature computations of extremely compact representa-
tion than in any of the aforementioned reference papers.
On the other hand, despite such a high compression
ratio, the most essential information is retained that al-
lows for the classification and CBIR tasks with results
that favorably compare to the other works.

3. Proposed method

Based on the assumption that deep features extracted
from ResNet-50 contain redundant information, we pro-
pose the following method for obtaining highly com-
pressed image representations. First, we combine high-
level and low-level features extracted from ResNet-50
residual network blocks (see Fig. 1). Then, we apply
dimensionality reduction techniques to these features.
Finally, we also check the effect of lossy floating-point
ZFP compression on the classification of these com-
pact features. This allows us to store highly compressed
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Fig. 1. A scheme of the ResNet-50 network architecture and subsequent ResFeats extraction layers. Adapted from [15].
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Fig. 2. A general picture of the proposed approach. The regular arrows indicate the data flow in the classification task, and the arrows with a dashed
line show the data flow in the CBIR task. ZFP compression is performed on a dataset of image representations.

datasets that still maintain information sufficient for
high accuracy image classification or retrieval.

This work skillfully combines several concepts, ap-
proaches, techniques and components. Specifically, our
main contributions are as follows.

— Investigations of various combinations of features
from the (2), (3), and (4) layers of ResNet-50 and
feature sampling;

— Application of PCA to various combinations of
features from the (2), (3), and (4) layers of ResNet-
50 that allows even two orders of magnitude
size reduction — we call the new features PCA-
ResFeats;

— Investigation of the floating-point compression
methods to PCA-ResFeats for further required
memory reduction and potential use for computing
summaries of datasets. In this respect, we applied
and verified (i) 32-bit to 16-bit conversion, as well
as (ii) application of the ZFP method;

— Verification of PCA-ResFeats in the classification
tasks of various datasets;

— Verification of PCA-ResFeats in the CBIR prob-
lem.

A general picture of the proposed approach is shown
in Fig. 2. The regular arrows indicate the data flow in
the classification task, and the arrows with a dashed
line show the data flow in the CBIR task. ZFP com-
pression is performed on a dataset of image represen-
tations. The use of this compression will further re-
duce the necessary storage. Hence, a possible use-case
scenario of our method is as follows: a database with
a large number of images can be stored on a cheaper
but slower medium (such as ’old’ tape technology, now
reconsidered as a remedy for energy conservation [1]),
while much smaller representations compressed by our
method can be stored on faster media (such as SSD).
Then various classification and/or data retrieval tasks,
even not known at the time of PCA-ResFeat off-line
computation, can be performed exclusively with the lat-
ter much more compact representation. In the next step,
however, if one wishes to retrieve the original images,
then these are available after an access to the former,
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Fig. 3. A schematic of the ResNet-50 network architecture and various feature extraction layers used in this paper. (4a) is the ResNet-50 layer
after the last average-pool block and before the fully connected one. ResFeats are composed of the (2) 4 (3) + (4) layers, which come after the

max-pool blocks. Adapted from [44].

slower database representation. All this at high speed
and ensuring higher data protection during processing
original data.

Another example of using our approach could be
searching for particular video content based on a lim-
ited number of frames. Namely, instead of searching
through the huge database with original videos (such
as YouTube), we can just quickly search through the
much smaller video representations in the form of our
proposed PCA-ResFeats. Then, only the suitable videos
in which a match was found can be retrieved from the
original repository.

Since our starting setup is identical to the one
from [15], we omit the exact description of the method
of obtaining ResFeats features here. Nevertheless, the
reader interested in the details of ResNet-50 can refer to
publication [11], while the description of base ResFeats
and the used SVM classifier is in [15,17].

The following subsections describe the details of the
aforementioned feature preprocessing methods.

3.1. 32-bit to 16-bit floating-point conversion

The outputs of successive residual units of the resid-
ual neural network ResNet-50 pretreated on the Ima-
geNet, used to extract ResFeats, are stored in the 32-bit
floating-point (float32) representation [43]. Using data
conversion from float32 to float16, should halve the
memory size required to store image representations.
However, this reduction may adversely affect the classi-

fication results. The experiments are designed to deter-
mine whether the increased efficiency due to this type
of conversion comes at the cost of decreased accuracy
during classification.

3.2. Selection of a subset of ResFeats coordinates

Mahmood et al. in [15] proposed to concatenate the
outputs of the second (2), third (3), and fourth (4) resid-
ual units of the ResNet-50 network after the max pool-
ing operation, which have lengths 512, 1024 and 2048,
respectively. For more information about ResFeats, our
study compared classification results obtained with var-
ious variants of ResFeats. Namely, we investigated fea-
ture vectors formed by concatenating the outputs of
third (3) and fourth (4), second (2) and fourth (4), as
well as second (2) and third (3) of the residual block.
The corresponding tensors with lengths of 3072, 2560,
and 1536 respectively — carry more information than
the outputs separately and may contain less noise than
the original ResFeats. Using them would reduce the
memory needed to store the image representations by
about 14%, 29%, and 57%, respectively. Figure 3 shows
the simplified ResNet-50 architecture and the extrac-
tion locations of ResFeats and their proposed modifi-
cations. In addition to the new features from the fusion
layers of ResNet-50, the experimental results of se-
lecting a subset of ResFeats vector coordinates by ran-
domizing and sampling each nth coordinate were also
compared.
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Essential information about the datasets used in the experiments, such as the number of classes
(classes), the number of samples given in thousands (samples [in K]), the size of the smallest
class (min class size), the size of the images (image size), and the difficulty of the dataset

(difficulty)

Dataset Classes ~ Samples [in K]  Min class size ~ Image size  Difficulty
MLC2008 9 43 471 312 x 312 Complex
EuroSAT 10 27 2000 64 x 64 Medium
Caltech-101 101 9 31 Varied Medium
Caltech-256 256 30 80 Varied Complex
Oxford Flowers 102 8 40 Varied Medium
Dog vs Cat 2 25 12500 Varied Simple

3.3. PCA-ResFeats = principal components of
ResFeats

A well-known technique for data dimensionality re-
duction is the principal component analysis (PCA) [16,
17,29]. Since applying this method to the SIFT [19]
allowed to increase the efficiency, given the suspected
correlation of the data in the tensors of ResFeats, our
proposition is to employ PCA also in this case. The
study aimed to find the number of components for
which the classification results on most of the datasets
proposed for the evaluation would decrease by about
five percentage points relative to those obtained with
the ResNet-50 output (4a).

3.4. Floating-point compression of PCA-ResFeats

The necessity of feature representation in the floating-
point (FP) format is a frequently overlooked property.
This negatively influences the size of the output repre-
sentation since the common FP representations occupy
either 8 or 4 bytes. In effect, also the response time
is negatively affected. Hence, to reduce the memory
needed to store image representations, apart from the
PCA, we also propose the use of the ZFP compres-
sion method, initially presented by Lindstrom et al. to
computer graphics applications [45,18,46]. It is a lossy
method for compressing tensors with FP values, where
it is possible to set up the maximum acceptable error
threshold for a single FP value in a tensor compared
to its decompressed value. As shown, ZFP compres-
sion significantly reduces the memory required to store
floating-point data. Our method proposes the use of
ZFP for PCA-ResFeats. Analysis of the classification
results on the representations after decompression com-
pared to those obtained without compression will de-
termine whether the losses resulting from its applica-
tion have a significant impact. Another advantage of the
ZFP method is its ability to recover a single value from
the compressed representation, i.e. it is not necessary to
decompress the entire representation.

4. Experiments
4.1. Datasets

Six datasets were used to determine the quality of im-
age classification methods. Four of them were used by
the authors [14,15]. These are: MLC2008, Caltech-101,
Caltech-256, Oxford Flowers. We added the EuroSAT
and Dog vs Cat datasets. These last two datasets were
selected for further evaluation because they are from
different domains and have different difficulty levels.
Table 1 provides a summary of information about the
datasets used in the experiments, such as the number of
classes, the number of samples given in thousands, the
size of the smallest class, the size of the images, and
the difficulty of the dataset.

4.2. Experimental settings

Some datasets proposed for evaluation are imbal-
anced, which negatively affects the classification. To
perform the classification, we balanced these datasets
as follows: we performed 10 draws z(d) of images,
where z(d) is the size of the least numerous class in
the dataset d. For each of these 10 draws, in 10 ways,
we select from them a training set and a test set with a
split of 8:2. Therefore, for each variant of the experi-
ment, 100 results were obtained on balanced datasets,
which were then averaged. The indexes of the images
belonging to the test and training sets, respectively, are
stored to facilitate the repetition of the experiments. The
images were then preprocessed (scaled to the size of the
256 x 256, cropped relative to the center to the size of
224 x 224, and standardized with means [0.485, 0.456,
0.406] and standard deviations [0.229, 0.224, 0.225] —
standard Pyrorch coefficients [47]), then run through an
appropriately modified pretrained ResNet-50 to obtain
feature tensors. In cases where our proposed methods
required using a StandardScaler, PCA, or SVM clas-
sifier, some objects were serialized and saved in files
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Table 2
Classification results for various ResFeats combinations on six
datasets. (4a) denotes only the last layer of ResNet-50 after the
average-pooling (i.e., “standard” ResNet-50 feature extraction); all
others are combinations of (2), (3), and (4) layers after the max-
pooling; the last combination 2_3_4 denotes the basic ResFeats,
described in [15]

Dataset 4a 2.3 2.4 3.4 234
MLC2008 7248 7342 68.35 6890  68.86
EuroSAT 95.12 95,59 9335 9353 93.70
Caltech-101 90.10 84.14 9032 90.23  90.58
Caltech-256 83.72 7292 8397 84.05 84.04
Oxford Flowers 9124 94.11 91.67 91.92 91.93
Dog vs Cat 98.99 97.25 98.89 98.89  98.90

in .sav format for possible later reuse in subsequent
studies without recomputation. We adopt the accuracy
metric from the works by Mahmood et al. [14,15] to
provide consistent experimental results.

4.3. Classification

Following the original work on ResFeats [14,15], the
same type of classifier, SVM, with a linear kernel and
the accuracy metric were also used. During the initial
research, dozens of experiments were performed with
different SVM kernels: linear, radial (RBF), polyno-
mial, and sigmoid. However, the results did not show
that any kernels performed noticeably better. Therefore,
in this work we only present results with a linear kernel.

4.4. Results

In the following results, we refer to the ResFeats as
features obtained after max-pooling and concatenating
the outputs of any ResNet-50 residual units. In contrast,
the basic ResFeats refer to concatenation of exactly
(2) + (3) 4+ (4) ResNet-50 residual units, the same as
in [15].

4.4.1. Various combinations of ResFeats

The results of different ResFeats combinations are
compared in Table 2. The output of the ResNet-50 net-
work (column 4a), often used for feature extraction,
was compared with various variants (the numbers in
the column name indicate the numbers of the residual
units whose outputs were used for extraction). Basic
ResFeats [15] is placed in the last column.

The best results were obtained (for half of the
datasets) for concatenated outputs of the second and
third residual units. Subsequent layers of the residual
units convey different information, so their combina-
tions may provide better results, depending on the tested
dataset. Results in Table 2 indicate that the first choice

can be just the combination (2) + (3) instead of the last
layer (4a) of ResNet-50, or the basic ResFeats that are
composed as (2) + (3) + (4). Moreover, the length of
a feature vector of (2) 4+ (3) is 1036 elements, com-
pared to 2048 for the network output or 3584 for the
basic ResFeats. The highest compression is achieved
there, and there is no need to pass the original image
through all other units (3 are enough). Interestingly,
for the most complex Caltech-256 the combination (3)
+ (4) shows the best results, although (2) 4+ (3) + (4)
performs almost the same. On the other hand, the orig-
inal ResFeats, i.e. concatenation (2) + (3) + (4) are
the best only for Caltech-101, while (3) + (4) is almost
identical. However, in both these cases the layer (4a) is
also a good option, since it provides high accuracy (i.e.
within 1 percent point from the best), while feature size
is the lowest. Therefore we see that the combination of
layers should be chosen depending on the experiments
with a given dataset.

Several thousand experiments have shown that stor-
ing data in the float16 type, as compared to the float32,
has a negligible effect on the classification results, so
all subsequent experiments were conducted only with
the former representation, simply due to a smaller size
(compression of the representation by half).

4.4.2. Selection of a subset of ResFeats coordinates
and PCA

Since it was suspected that ResFeats convey redun-
dant information, appropriate techniques to reduce their
size were used. For ease of comparison, let ¢ be the
multiplicative reduction in the length of the basic Res-
Feats. First, some coordinates of the feature vector were
selected randomly. Second, every ¢-th coordinate of the
feature vector was chosen. The last method tested was
the principal component analysis with an assumed num-
ber of components. Before applying PCA, all features
were rescaled by subtracting the mean and dividing by
the variance. A comparison of selected results after di-
mensionality reduction for the basic ResFeats is shown
in Fig. 4. The blue area indicates our tolerance range,
set to Spp from the basic ResFeats.

For all datasets, the best results were obtained by
using PCA. Increasing the dimensionality reduction
causes a decrease in the classification results, while it
happens the slowest with PCA. Reducing the feature
vector by 60 times for almost all datasets (except for
Caltech-256, where the result is slightly lower) does
not cause a decrease in accuracy below the previously
assumed five percentage points threshold. Moreover,
for half of the datasets (the simpler ones), even after
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Fig. 4. A comparison of classification results on various datasets depending on the dimensionality reduction factor ¢ for different feature vectors
(various symbols). The black color indicates the result obtained for the base ResFeats, blue after applying PCA, green as a result of taking every
t-th component, and red as a result of randomly selecting the ¢-th part of the coordinates of the feature vector. The legend is common to all charts.

reducing the feature vector 100 times, the results remain of the feature vector gives lower results, while it is
similar to those obtained with the basic ResFeats. On usually better to randomize a subset of coordinates than
the other hand, choosing a subset of the coordinates to take every t-th one. Figure 5 shows more detailed
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Fig. 5. A comparison of classification results on datasets depending on the dimensionality reduction factor ¢t for PCA-ResFeats. X used to mark
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results of the PCA experiments on the feature vectors —

PCA-ResFeats for all tested combinations.

As in previous experiments on the MLC2008 and

EuroSAT datasets, the PCA-ResFeats classification
achieved the best results for combinations of outputs
from the second (2) and third (3) residual units. Unfor-
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Table 3
Classification results on the data obtained after decompression of ZFP compressed PCA-ResFeats with 60
components and the tolerance €. O denotes results obtained on the not compressed (reference) PCA-ResFeats

€ o 0.01 0.05 0.1 0.5 1 5 10 50 100
MLC2008 69.20 6921 69.19 69.21 69.25 6924 6926 6941 6933 6641
EuroSAT 93.00 93.00 93.00 9299 9298 93.00 93.02 93.08 9298 91.54
Caltech-101 86.62 86.62 86.62 86.63 86.65 86.63 86.57 86.50 85.19 81.59
Caltech-256 7690 7690 7691 7690 7690 76.89 76.84 76.78 75.10 70.75
Oxford Flowers  90.75 90.75 90.75 90.75 90.73 90.76 90.71 90.55 88.34 82.40
Dog vs Cat 99.13  99.13 1 99.13 99.13 99.13 99.12 99.13 99.13 99.10 98.88

Table 4

Compression ratios of ZFP PCA-ResFeats representations, depending on the tolerance

€ 0.01  0.05 0.1 1 5 10 50 100
MLC2008 220 255 278 375 425 579 7.08 12.82 20.95
EuroSAT 222 258 281 381 432 592 726 1343 22.15
Caltech-101 220 255 277 373 423 575 17.01 12.60  20.60
Caltech-256 220 255 278 375 425 579 7.07 1279 21.09
Oxford Flowers 221 256 278 376 426 581 7.11 1292  21.32
Dog vs Cat 219 254 275 371 420 569 693 1232 20.20

tunately, for the more difficult two Caltech datasets, sig-
nificantly lower results were obtained. The results of the
other feature combinations are close to each other. Re-
ducing the feature vector by 60 times compared to the
basic ResFeats, using PCA (to get 60 components that
explain most of the variance), results in no more than
the assumed five percentage point deterioration away
from classification with the (4a) layer (i.e., ResNet-50
output before Fully Connected Layer) for all datasets,
except for the most difficult Caltech-256, for which we
got slightly worse results. This means that each im-
age can be represented by 60 float16 values, occupying
only 120 bytes. This also means 120 times reduction of
storage size compared to the basic ResFeats stored as
float32. For the simplest set of Dog vs Cat, even after
reducing the feature vector 100 times, i.e., selecting
only the 36 most important components (only 72 bytes
per image), the classification results are still at the same
value as for the base ResFeats (i.e., about 99%). Thus,
depending on a dataset, it is necessary to experimentally
choose the best performing number of PCA-ResFeats
components.

4.4.3. Influence of the ZFP compression

To make the storage and transfer of the PCA-
ResFeats representation even more compact, we pro-
pose to use the ZFP compression method of its floating-
point values [45]. Since this is a lossy compression tech-
nique, a comparison was made to see how the classifica-
tion results are affected by the compression ratio, which
is controlled by a tolerance parameter. Namely, a tol-
erance of € means that a single reconstructed floating-
point value does not differ from the original value by

more than €. Due to the specifics and requirements of
the used library pyz fp [43], PCA-ResFeats were cast
to the numpy.float32 format, and then compressed with
ZFP. Table 3 shows classification results on the decom-
pressed data of PCA-ResFeats for various tolerance lev-
els €. Table 4 shows the compression ratios achieved
for each ¢ tested. Experiments have shown that clas-
sification results after ZFP PCA-ResFeats decompres-
sion for ¢ tolerances less than 1 hardly change com-
pared to results obtained for not compressed features.
Higher tolerance values cause a larger variance in the
results, but the loss in classification quality is negligible
up to a tolerance € = 50. A tolerance ¢ = 100 causes
a much more significant accuracy drop (up to about
six percentage points for Oxford Flowers), but for the
simple Dog vs Cat dataset, even this tolerance (which
causes a 20-fold memory reduction) lowers accuracy
by only about 0.2 percentage point. The compression
ratios for all datasets look similar for a fixed ¢ value.
Both compressed and standard PCA-ResFeats achieve
high classification scores. Therefore, with ZFP memory
can be reduced by a factor of 7 by choosing a tolerance
e = 10, i.e., on mean only about 35 bytes per image
which has almost no negative impact on the accuracy
(i.e. 60 components x 4 bytes/float + 7; 4 bytes due to
pyzfp implementation). Recall that the original ResFeats
stored in float16 type require 7168 bytes per image,
and the standard PCA-ResFeats require 120 bytes per
image.

Figure 6 shows a comparison of classification results
(including standard deviations) after decompression of
ZFP compressed data with a tolerance ¢ = 10, for
different PCA-ResFeats combinations obtained with 60
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Accuracy on decompressed zfp files by datasets

N pcab0_out
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Fig. 6. Comparison of classification results (with standard deviation bars) before ZFP compression (values in parentheses) and after decompression
of ZFP compressed data, with a tolerance € = 10, for different PCA-ResFeats combinations obtained from 60 principal components.

principal components. The results indicate that using
other combinations of PCA-ResFeats maintains high
classification accuracy even after reconstructing the
compressed representations by ZFP. This also confirms
the previous observation that for most datasets, it is
worth considering using the PCA-ResFeats to represent
the entire image dataset.

4.5. PCA-ResFeats in CBIR problem

PCA-ResFeats can be effectively used not only di-
rectly in the classification task but also in the well-
known CBIR problem [48,49]. Experiments were per-
formed on the most challenging Caltech-256 dataset in
two versions: balanced minimal (with 80 random im-
ages in each class, analogous to the previous classifica-
tion task) and imbalanced (original). The datasets from
both versions were divided into a training set and a test

set in a ratio of 6:4 in 10 splits. On the training dataset,
the images were preprocessed and passed through a net-
work to determine the float16 basic ResFeats (2) + (3)
+ (4), rescaled using StandardScaler. Then, the PCA
transformation was employed to obtain a 60 feature
vector each (i.e., 60 component PCA-ResFeats). Then,
the same steps were performed on the images from the
test set, using scaling and PCA parameters obtained ex-
clusively in the training stage. The Euclidean measure
was used to measure the distance of each query from the
test dataset and the representation vectors of all images
from the training dataset. The original images from the
training dataset with the smallest Euclidean distances
to the query image are then reported as the most similar
to that query. Hence, we employ the k-nearest neighbor
search strategy.

For evaluation, the metrics commonly used in the
CBIR tasks were used: precision for k& responses Pr@k
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Fig. 7. On the left, the query image (256_0081.jpg) from the Caltech-256 toad class. On the right, the 20 images whose PCA-ResFeats were
closest to the PCA-ResFeats obtained for the query. The distances and the classes of the examples are given above the images.

(Eq. (1)), average precision for k responses AP@k
(Eq. (2)) for images within each class, as well as three
versions of the mean average precision MAP (Eqs (3)-
(5)), as a score for the entire dataset. These are defined
as follows:
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(cardinality of the test dataset), g.; is the query of the

Table 5
MAP for the full and minimal version of Caltech-256, along
with a comparison to SOTA method, for £ = 20

Caltech-256 Full Minimal ~ LB-CBIR [40]
MAPover_clasx@QO 47.13% 44.44%
MAPoyeran @20 51.77%  44.44% 32.12%
mAP 46.73%  43.02%

class ¢ with index ¢ (from the test dataset), e(gc.;, J)
is a function that returns a class index c of an image
(from the training dataset), whose distance to the query
is on the j-th position in the list of smallest distances,
Myes(€) is the cardinality of class ¢ in the test dataset,
Myqain(c) is the cardinality of class ¢ in the training
dataset, and C' is the number of classes. Metrics were
averaged over all results.

Figure 7 shows an example of a CBIR task. It
presents the first 20 images with the smallest distance
to the query image on the left. In this interesting case,
just 60% of the responses indicate the correct class (i.e.,
“toad”), while the other returned images, not belonging
to the valid class, are also “visually” similar and prob-
ably only an expert in the field can better distinguish
between “toad” and “frog” classes.
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Table 6
MAP results comparison on minimal Caltech-256 version
Performance PCAResFeats BoW model [50] Q-Way [51]  Dense SIFT [52]
MAP 44.44% (43.02%) 38.98% 38.56% 38.57%
MAP over class MAP overall
e full & full
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Fig. 8. MAP@k based on Eq. (3) (left) and based on Eq. (4) (right), as a function of requested first best responses k, for the full and minimal

versions of Caltech-256.

The mAP (based on Eq. (5) for Caltech-256 reached
46.73% in the full version and 43.02% in the minimal
(balanced) version. Figure 8 represents MAP @k from
Egs (3) and (4) respectively, as a function of the number
k of the best responses, in the full and minimal versions
of the dataset. The results for only one value of & = 20,
along with a comparison to SOTA method, are shown
in the Table 5.

Table 6 compares the results of the proposed method
based on PCA-ResFeats with other published meth-
ods used in the CBIR task for Caltech-256. The results
clearly show that the proposed method performs about
four percentage points better in the CBIR problem than
other published methods, even choosing the least fa-
vorable way to compute MAP (43.02% vs. 38.98%).
In addition, Caltech-256 contains very similar classes,
such as “frog” and “toad”, as shown in Fig. 7.

5. Results and discussion

Based on the results, the proposed PCA-ResFeats
with an experimentally determined length of 60 com-
ponents are particularly interesting. Table 7 shows a
cross-sectional summary of the averaged accuracy re-
sults obtained for the following classification variants:

— (4a) obtained from the output of the fourth residual
unit ResNet-50, after average-pooling, of length
2048 and float16 type;

— (res) that are basic ResFeats of length 3584 and
float16 type. The results from [15] for MLC2008,

Caltech-101, Caltech-256, Oxford Flowers are
84.7%, 94.7%, 82.4%, 93.3% respectively;

— (2_3) obtained after concatenating the outputs of
the second (2) and third (3) residual units after
max-pooling, with a length of 1536 and float16
type;

— (4a_p60) obtained from the representation (4a)
after PCA with 60 components, of length 60 and
floatl6 type;

— (res_p60) that are PCA-ResFeats of length 60 and
floatl6 type;

— (2_3_p60) obtained from the layers (2) + (3) and
after PCA of length 60 and float16 type;

— (res_r60) obtained from the basic ResFeats, after
drawing 60 features of float16 type;

— (res_s60) obtained from the layers (2) + (3) +
(4) and selecting every 60-th feature, i.e. also of
length 60 and float16 type.

For half of the datasets, the best classification results
were obtained for ResFeats extracted from the output of
the second (2) and third (3) residual units. In addition,
these features have the shortest length (compared to
other combinations). However, the Caltech classifica-
tion results are significantly worse than the other fea-
tures. Therefore, in the case of these two complicated
datasets, the best trade-off between accuracy and fea-
ture size is the output (4a) of ResNet-50 as the image
representation since the classification results are closest
to the best results.

Using PCA, dimensionality can be reduced by up to
several orders of magnitude. Our research has shown
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Table 7
Comparison of classification results with variants of ResFeats on six datasets

Dataset | Basic features PCA-ResFeats Sampled features
Feature combination — 4a res 2.3 4a_p60  res_p60 2_3_p60  res_r60  res_s60
Feature vector length — 2048 3584 1536 60 60
MLC2008 7248 68.87 73.42 68.43 69.2 71.92 54.97 52.74
EuroSAT 95.13  93.70  95.59 92.58 93.00 94.35 81.75 83.22
Caltech-101 90.10 90.58 84.14 87.17 86.62 75.38 57.92 55.95
Caltech-256 83.72  84.03 72.92 78.25 76.90 59.95 47.79 46.27
Oxford Flowers 9124 9193 94.11 87.56 90.75 90.31 52.73 52.86
Dog vs Cat 98.99 9890 97.25 99.09 99.13 97.61 95.63 95.67

Table 8
Comparison of our results with SOTA methods
Dataset S&FF [36] ARC[38] DTCWT + ResNet50[39] WPT + MN2 [39] PCA-ResFeats
Caltech-101 74.50 83.20 - - 87.17
Caltech-256 43.33 77.50 72.24 71.02 78.25
Table 9

The storage (in MB) required to store images vs. PCA-ResFeats in different formats and representations;
(ratio) denotes a ratio of memory used to store a dataset in zip format to the proposed ZFP format;
(zfp_res_p60_acc) contains the accuracy obtained for the ZFP decompressed (res_p60) features

Dataset Jjrg zip res res_p60 fp ratio  7fp_res_p60_acc
MLC2008 65.835 66.005 24.321 0.407 0.115 574 69.41
EuroSAT 54.843 56.822  114.688 1.920 0.529 107 93.08
Caltech-101 36.278 36.146 18.099 0.303 0.087 415 86.50
Caltech-256 666.678  653.870  117.441 1.966 0.556 1176 76.78
Oxford Flowers ~ 138.592  138.550 23.396 0.392 0.110 1260 90.55
Dog vs Cat 457215 457456  143.360 2.400 0.693 660 99.13

that selecting only 60 principal components makes it
possible to reduce memory by almost 60 times without
classification accuracy drop by more than Spp compared
to the raw representation. The best results were obtained
for PCA-ResFeats layers (2) + (3) + (4) and (2) + (3).
Using them reduces the representation of a single image
to just 60 float16 values or 120 bytes. Other tested naive
feature dimensionality reduction techniques, such as
subsampling, may only work well on simple datasets,
e.g., Dog vs. Cat. The comparison of our results with
SOTA methods was presented in Table 8.

PCA-ResFeats can be further compressed using the
ZFP method, in order to store their several times smaller
representations. Table 9 shows how much disk space
(in MB) is occupied by each training dataset (in which
all classes have the same number of samples), in the
following representations:

— (jpg) dataset in .jpg format;

— (zip) ZIP compressed (jpg) files;

— (res) data in the numpy (.npy) format, contain-
ing representations of images (basic ResFeats) in
floatl6 type;

— (res_p60) proposed in this paper PCA-ResFeats,
of length 60 and .npy format;

— (zfp) proposed in this paper PCA-ResFeats, in
float32, then ZFP compressed with an ¢ = 10,
stored in the ZFP format.

The column (ratio) shows the ratio between the stor-
age used by the zipped dataset (zip) and used by the ZFP
compressed PCA-ResFeats, with ¢ = 10 (zfp). Column
(zfp_res_p60_acc) contains the accuracy obtained for
the ZFP decompressed (res_p60) features.

By storing a dataset as ZFP compressed PCA-
ResFeats with ¢ = 10, the required storage can be re-
duced by up to about 1200 times compared to an im-
ages zip file. The storage of representation files smaller
than about 0.5 MB, from which high classification
and CBIR results can be obtained for various systems,
indicates that using ZFP compressed PCA-ResFeats
can significantly increase the efficiency of future data
analysis. Processing of small files is also much faster.
Moreover, the classification results obtained for float16
features were similar to those for floar32. Certainly,
there is no way to recover the original image from its
PCA-ResFeats representation. However, this has an ad-
ditional value of privacy protection in data analysis
and ML/AL The results clearly show that using PCA-
ResFeats to prepare summaries of datasets can be an
efficient solution.
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The CBIR task completion time was also measured
for the balanced Caltech-256. The results are as follows:
it lasted 2593.44 seconds to perform CBIR on features
extracted from the second, third, and fourth layers of
ResNet-50 with a length of 3584. It lasted 49.14 sec-
onds to perform the same experiment with additional
PCA calculation and computation of PCA-Resfeats
with a size of 60 from the basic features. It lasted just
45.55 seconds to perform the CBIR task on the cached
PCA-Resfeats (without determining them). This means
a more than 60-fold reduction in computation time and
shows the advantage of using our proposed features for
this task. A possible additional cost would be to refer
to the database containing the original to return a user-
interpretable image. However, it is more affordable than
calculations performed on more extended features.

All experiments, but the CBIR, were repeated 100
times (10 random splits of datasets in each of the 10
drawn datasets) for each combination of the method
and its parameters and six data sets. This gives the total
number of more than 222,000 experiments. These have
shown that our proposed PCA-ResFeats performs well
in image classification sets while achieving a high com-
pression ratio for the representation of these datasets.

The method also has potential practical applications.
A huge image database can be stored hierarchically on
a large storage device, disk, or tape (which is increas-
ingly becoming a storage [1]). It is combined with a
high-speed layer containing access to equivalent im-
age representations (PCA-ResFeats). The experiments
have shown that in such a case, it is worthwhile to per-
form CBIR on small but informative representations
and then perform another search limited only to the im-
ages obtained in the previous step. Such a process can
be repeated iteratively for representations compressed
to varying degrees. With successive iterations, the num-
ber of examples returned can also be reduced, further
optimizing the process. Using our approach can signifi-
cantly speed up the entire process.

5.1. Data and code availability

All accuracy values, averaged results with standard
deviations, ZFP compression reports and also other
CBIR images are available here: https://aghedupl-my.
sharepoint.com/:f:/g/personal/slazewsk_agh_edu_pl/Ep
ESLQmXBIpDpVU44eYjuMYBMBCdbs3gO0EtEz9
LIfo02w?e=TaumAv. We also provide a repository with
code: https://github.com/Stanislaw-Lazewski/PCA-Res
Feats.

The experiments were conducted on a server with
an AMD Ryzen Threadripper 3990X 64-Core Proces-

sor. The code was written in Python using the Pytorch
library.

6. Conclusions and future work

In this paper, we propose methods to improve the
efficiency of image analysis using features derived from
the ResNet-50 convolutional neural network — PCA-
ResFeats. This is a significant extension and improve-
ment of the results obtained by the method of Mah-
mood et al. [15]. Computation of PCA-ResFeats con-
sists of several steps. First, ResFeats — feature vectors
consisting of no more than 3584 floating-point val-
ues — are extracted as a concatenation of outputs (af-
ter max-pooling) of residual units of ResNet-50, pre-
trained on ImageNet. However, we also tested differ-
ent combinations of the output layers, showing their
usefulness. Then, thanks to PCA, we reduce the size
of the feature vector to 60 floating-point values. Re-
search has shown that they can be stored in the float16
format without losing information. The proposed tech-
nique gives classification accuracy not worse than 5pp
when compared with much larger basic ResFeats on the
benchmark datasets MLC2008, EuroSAT, Caltech-101,
Caltech-256, Oxford Flowers or Dog vs Cat. At the
same time, they achieve significant storage reduction.

The second contribution proposed in this paper is
the further compression of PCA-ResFeats with the ZFP
method. An additional 3.5 compression ratio and up
to about 220-fold memory reduction can be achieved
compared to storing basic ResFeats.

Our approach has also been tested in the CBIR task.
For example, for the difficult dataset Caltech-256 us-
ing the proposed PCA-ResFeats with 60 components,
results outperforming other published methods were
obtained, and this is the third contribution of this paper.
In conclusion, compared to other studies, the developed
method of representing images with semantic local de-
scriptors PCA-ResFeats, combined with the ZFP com-
pression, achieved SOTA. It can also be successfully
used to prepare summaries of datasets.

In the future, we will explore the use of other net-
work architectures, such as densely connected convo-
lutional networks (DenseNet) [53] or MobileNet [54,
55], as well as network ensembles [56], to extract raw
features and see if they contain redundant information
with little impact on classification. We will also test
the application of our approach to medical data [57,
58,59,60]. We plan to generalize our approach to 3D
representations of medical images [61], such as whole
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scan imaging (WSI) in histopathology. In this case,
our approach can be very effective due to the enor-
mous size of the WSI data. We will also compare the
results of PCA-ResFeats extracted from the network
pre-trained on ImageNet with those extracted from the
network after fine-tuning the domain dataset. In this
case, our method can be used in many other fields that
use compact image representation, e.g. construction,
various production lines, transport, autonomous vehi-
cles, etc. [62,63,64,65,66]. The next subject of study
will be a fusion of the features obtained from different
neural networks. Another direction for future research
may be the issue of image preprocessing. Perhaps the
approach presented in [67] would enable the application
of our method to thermal images. We can also explore
the modern image binarization [68].
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