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Abstract. Achieving Lifelong Open-ended Learning Autonomy (LOLA) is a key challenge in the field of robotics to advance to a
new level of intelligent response. Robots should be capable of discovering goals and learn skills in specific domains that permit
achieving the general objectives the designer establishes for them. In addition, robots should reuse previously learnt knowledge
in different domains to facilitate learning and adaptation in new ones. To this end, cognitive architectures have arisen which
encompass different components to support LOLA. A key feature of these architectures is to implement a proper balance between
deliberative and reactive processes that allows for efficient real time operation and knowledge acquisition, but this is still an open
issue. First, objectives must be defined in a domain-independent representation that allows for the autonomous determination of
domain-dependent goals. Second, as no explicit reward function is available, a method to determine expected utility must also be
developed. Finally, policy learning may happen in an internal deliberative scale (dreaming), so it is necessary to provide an efficient
way to infer relevant and reliable data for dreaming to be meaningful. The first two aspects have already been addressed in the
realm of the e-MDB cognitive architecture. For the third one, this work proposes Perceptual Classes (P-nodes) as a metacognitive
structure that permits generating relevant “dreamt” data points that allow creating “imagined” trajectories for deliberative policy
learning in a very efficient way. The proposed structure has been tested by means of an experiment with a real robot in LOLA
settings, where it has been shown how policy dreaming is possible in such a challenging realm.

1. Introduction

A truly autonomous robot should be able to find out
on its own how the domains it faces work and what to do
to achieve its purpose in them. In other words, through-
out its lifetime, the robot should be capable of finding
goals that lead to the completion of the functions the
designer or user seeks from it learning skills that permit
achieving those goals in whatever domains it operates.
This is a step up from more traditional artificialintelli-
gence (AI) based approaches where a single function
or type of domain is addressed [1,2]. Thus we say that
the robot must be endowed with open-ended learning
autonomy (OLA) [3]. Furthermore, for the sake of ef-
ficiency, we would expect these robots to transfer and

∗Corresponding author: Richard J. Duro, Escola Politécnica de
Enxeñaría de Ferrol, Campus de Esteiro, 15403, Ferrol, A Coruña,
Spain. E-mail: richard@udc.es.

adapt knowledge learnt in previously experienced do-
mains to make learning in new domains more efficient.
In other words, autonomous robots should be capable
of lifelong learning [4]. Joining these two requirements,
we would be seeking robots with lifelong open-ended
learning autonomy (LOLA) to continue advancing the
field. This is a very challenging objective that has par-
tially been addressed from many perspectives with some
remarkable results.

LOLA implies not only learning new skills or mod-
els when a goal is provided by a designer, such as in
Reinforcement Learning (RL) [5] or other recent ap-
proaches [6]. It also implies discovering goals compat-
ible with the functions assigned to the robot indepen-
dently of the domain it finds itself in, as well as man-
aging all the knowledge that is acquired in the process.
This knowledge includes motivational knowledge, per-
ceptual classification knowledge, modeling knowledge
or skill related knowledge among others Unlike more
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standard AI and machine learning approaches [7–10]
that usually concentrate on one skill and are gener-
ally based on off-line learning, this knowledge must be
learnt through on-line interaction in continuous, uncer-
tain, and dynamic domains These types of systems must
also contemplate the capability of transferring knowl-
edge [11] in an orderly and efficient manner. Conse-
quently, an internal management structure in the form of
some type of cognitive architecture must be established
to provide for: a) open-ended learning, in this case pro-
viding components concerned with motivational and
knowledge modelling aspects and b) lifelong learning,
creating components devoted to contextual storage and
knowledge transfer and reuse aspects.

Cognitive architectures thus make up a formal struc-
ture to achieve LOLA in robots. From a functional per-
spective, these architectures provide a software frame-
work to support and relate the knowledge designed by
the robot creator, as well as that discovered and learned
by the robot itself so that useful decisions can be made.
In addition, such a structure must be able to adapt its
decision-making processes to cater to its level of knowl-
edge elaboration. That is, a key property of cognitive
architectures is to properly implement and complement
deliberative and reactive (intuitive) decision-making
processes, so that proper LOLA operation can be ac-
complished by the robot.

1.1. Decision-making processes in LOLA

As indicated above, to achieve optimal action selec-
tion in a robot there is a need for both reactive and delib-
erative processes. A correct equilibrium between them
under different circumstances is the key to successful
robotic behaviors in real operation [12].

Deliberative capabilities permit deciding on action
through a prospection/evaluation cycle following dif-
ferent possible action paths. They are necessary if a
robot has no experience in a domain or is faced with
novel circumstances. Deliberation permits selecting an
action without actually having learnt a policy. It is thus
a way for the robot to explore and gain experience for
the generation of new knowledge. Thus, the robot must
determine the best action towards the achievement of its
objectives from its starting state. Consequently, appro-
priate world models (WM), also called state-transition
models in RL, should be available to perform prospec-
tion; whereas utility models (UM) are needed to be able
to evaluate states. However, in LOLA settings WMs
and UMs are not known beforehand, so the cognitive
architecture must also support their online learning.

In the case of the autonomous acquisition of WMs,
several approaches have been recently proposed in the
field of Intrinsically Motivated Open-ended Learning
(IMOL) [13,14]. These approaches make use of intrin-
sic motivations (IM) to induce agents to reduce the dis-
crepancy between their knowledge and their percep-
tions [15]. Some of the most influential work, such as
those carried out in [16,17] on machine learning or
in [18,19] on robots, have led to algorithms that al-
low autonomous agents to learn models of the domain
in which they operate, so that they can "predict" and
anticipate the environmental effects of their actions.

Regarding UMs, different ways of acquiring and re-
fining them have been proposed in the literature [20].
One of the most popular approaches in the field of RL is
through the concept of value [21,22] and the definition
of value functions (VF). These functions generate an
accurate expected value for each point in the state space,
i.e., they provide the utility of each point towards the
achievement of a goal. Thus, they provide an indication
of how far away the goal is, allowing for a quantitative
comparison of different possible trajectories towards it.

These concepts have also been applied under LOLA
conditions, where different procedures have been de-
veloped to learn VFs online. An example in this line is
that by [23,24] who have presented an approach based
on the use of eligibility trace strategies to construct
VFs when working in continuous domains that are not
known in advance.

Reactive or intuitive capabilities, on the other hand,
are useful, for instance, when the robot is already com-
petent and requires acting speedily due to real-time
operational constraints imposed by dynamic environ-
ments. In this case, the robot should select an appro-
priate policy that outputs the optimal action to be ap-
plied as a function of the goal it seeks and its current
state. The policies the robot chooses must have been
previously designed in by a designer or they should
have been previously learned by the robot itself. Several
approaches have been proposed for learning policies
in traditional robotics and in the field of RL. These go
from Q-learning [25], policy gradient [26], and actor-
critic methods [27] to model-free policy search [28]
and many others. However, they are mainly aimed at
pre-obtaining the policy given a pre-established reward
function over the whole state space, with some remark-
able exceptions like [29].

Figure 1 contains a diagram of the decision-making
processes in LOLA, with the main cognitive blocks in-
volved. Label “a. Deliberative” shows the typical exe-
cution path where, given a current state, for each action
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Fig. 1. Diagram of the decision-making processes involved in LOLA.

of the candidate set, the WM predictions are used as
input in the UM to evaluate them, so the best one can
be selected. On the other hand, “b. Reactive” shows a
single policy that directly provides the best action. It is
the correct balance between one branch and the other
what is really challenging in this scope.

Cognitive architectures that support LOLA must sup-
port both deliberative and reactive decision processes.
For this very reason, and as shown in the “Model & Pol-
icy Learning System” block of Fig. 1, they must allow
WM, UM and policy learning. This learning must take
place while the robot interacts with the world (not be-
forehand) and without any preset reward function over
the entire state space. In fact, in LOLA environments,
the reward that can be obtained in a domain that is new
to the robot has to be discovered as the robot interacts
with it. Moreover, depending on the robot’s activity in
that domain, it usually does not cover the entire domain,
so knowledge about the reward function is relative and
imperfect.

WM or UM learning, as commented before, are rel-
atively straightforward to transform into online pro-
cesses. This is because the data they require for learn-
ing is directly accessible through interaction with the
environment. They just need states, actions performed
and rewards in different instants of time, no matter what
the robot is doing or trying to achieve. As some authors
posit [30], they may even be random.

Policies, on the other hand, involve a mapping be-
tween the states the robot may find itself in and the

action to be carried out to be able to achieve a specific
goal. Consequently, given this goal dependency, they
are a bit more difficult to learn on-line The main prob-
lem is that to learn policies it is necessary to be able
to predict or test the effects of the robot’s actions as
related to the goal to be achieved. Moreover, this pre-
diction must be possible starting from any point in the
state space that is relevant. Thus, to perform this opti-
mization the robot must either try out all the possible
actions over all its real-world states (with the cost and
danger this may entail) or it needs to internally perform
a deliberative process using an appropriate WM and
some type of UM that allows evaluating which is the
most adequate action to move towards the goal.

Given the problems posed by the first approach, some
authors in the RL literature have already hinted towards
the second strategy for policy learning in robots that are
operating online. They usually refer to it as dreaming,
hallucination, or imagination, in the sense that the pol-
icy learning processes rely on internal reasoning and
deliberation, as a sort of “introspection”. In [30] the
authors present an experiment where they learn a policy
by means of a so-called dreaming process in order to
control a real robot. This dreaming process makes use
of a learned WM that is used to determine trajectories
to the goal. Therefore, they learn a policy by interacting
with the WM instead of the real world. Similarly, in [31]
the authors present an agent that learns behaviors to
solve some visual control tasks. These behaviors are
learned by backpropagating gradients of learned state



208 A. Romero et al. / Using perceptual classes to dream policies in open-ended learning robotics

values through imagined trajectories in the state space
given by a WM, which is also learned.

However, in these RL approaches, the learning pro-
cesses are possible because the goals are known in ad-
vance so perfectly defined UMs in the form of VFs can
be pre-learned This means that the data required for
learning the VF is well-defined, and it covers the com-
plete domain Therefore when learning a policy using
this approach, any state is a possible valid input state.

In the situations contemplated by LOLA robots, this
is not usually the case. The goals the robot must achieve
throughout its lifetime are not known beforehand. In
fact, they have to be discovered through interaction
with the world. This implies that their corresponding
UMs must be created on the fly as a function of what
the robot needs to achieve each moment in time. No
explicit reward function is available and reward arises
from the satisfaction of internal robot motivations (as
will be detailed in Section 2). To make it even more
challenging, the cognitive architecture must learn such
UMs concurrently with the discovery of new goals and
in different domains that could change over the life-
time of the robot Consequently, data for model learn-
ing could be obtained in an interspersed fashion, with
different learning periods corresponding to different
goals. Hence, to cope with all the uncertainties existing
in LOLA settings, a new approach for policy learning
must be developed.

1.2. Specific scope and contributions

Endowing a cognitive architecture with complete
decision-making capabilities (deliberative and reactive),
implies solving the challenging problem of policy learn-
ing in LOLA settings. To this end, there are three main
issues to be addressed.

Firstly, motivations must be defined in a domain-
independent representation This allows for the au-
tonomous determination of domain-dependent goals
since we deal with unpredictable domain changes.

Secondly a method to determine expected utility
under the challenging and uncertain circumstances of
LOLA must be developed, so that a continuous version
of UMs can be inferred. This is required because, in
the most challenging case, reward or utility can only
be obtained when in the state space point or area corre-
sponding to the goal.

Finally, it is necessary to provide an efficient way to
internally generate data on which perceptual states are
relevant for policy learning. This is because policies do
not have to be valid in the whole state space, but only

in areas where WMs and UMs are well defined (since
policies are learned from them by “dreaming”).

The first two issues have been previously addressed
in the scope of the e-MDB cognitive architecture [32].
First, a domain-independent strategy for goal creation,
based on needs and drives, has been developed and
tested in real experiments with robots [33]. Second,
a method for online value function learning based on
predicted utility and Separable Utility Regions has been
also studied in detail [23].

Dealing with the third issue established above makes
up the main scientific contribution of the current work.
Thus, here we propose the introduction of a metacogni-
tive structure within the cognitive architecture that rep-
resents Perceptual Classes, which will be represented
within the architecture by components called P-nodes
These components, which are contextually linked to
goals, as well as to WMs and UMs, are acquired and
delimited during the on-line operation of the robot as it
learns these models. Once learnt, they permit inferring
the relevant perceptual domain from which the robot
is able to achieve the goal. Thus, they can be used to
generate “dreamt” or “imagined” starting state space
points that allow generating “imagined” trajectories for
deliberative policy learning in a very efficient way.

With these three methods implemented in a cognitive
architecture, policy dreaming in LOLA settings is pos-
sible, as will be shown here by means of the execution
of an experiment with a real robot. In it, a procedure for
online policy learning based on neuroevolution, which
uses the P-nodes as a core element for efficient data
generation in internal deliberation processes (dreaming)
will be tested.

The rest of the paper is structured as follows. In Sec-
tion 2, a formal statement of the policy dreaming prob-
lem in LOLA setting is presented, based on a com-
parison with the same problem in traditional RL. Sec-
tion 3 contains a brief description of the motivational
system that allows for goal creation and UM learning.
In Section 4, Perceptual Classes are described in de-
tail, and the specific policy dreaming strategy based
on neuroevolution is explained. Section 5 presents the
experiments run to show the validity of the proposed
approach. Finally, Section 6 describes the conclusions,
and open issues that need to be addressed in future
work.

2. Policy learning by dreaming in LOLA

Figure 2 left shows a schematic representation of
the processes involved in policy learning and decision



A. Romero et al. / Using perceptual classes to dream policies in open-ended learning robotics 209

Fig. 2. Schematic representation of the processes involved in online policy learning for a robot in traditional RL settings and in LOLA settings.
The goal represented in the figure are operational, so they are related with the task to be solved in specific domains.

making following the “dreaming” trends in RL, such
as those used in [31,34]. In these contexts, the authors
establish a clear goal to be achieved through the in-
stantiation of a reward function, which defines, within
the state space, all the rewards that are possible for the
domain. This is highlighted in the figure in a yellow
block.

The “Model & Policy Learning System” block re-
ceives episodes consisting of actions performed and
state space points in different instants of time, as well
as the reward, obtained as the robot interacts with the
environment (represented using the “perception” label
in Fig. 2). These episodes are stored in a Working mem-
ory and used to train world models and value functions
(VF) online.

Once these models have been learnt, they are used in
a deliberative process to "dream" different trajectories
of the robot towards the goal, and with them, learn a
policy online, in a similar way to that shown in Fig. 1 in
the “a. Deliberative” branch. Thus, different sequences
of actions are generated using the WM to predict their
outcomes. These outcomes in turn are evaluated us-
ing the VF, allowing to choose the best actions with
respect to the goal that has been set by the designer.
These trajectories usually start from random points in
the state-space and follow a path that can always be
evaluated by the reward function, which was provided
beforehand and covers the whole state space. Conse-

quently, any state space point evaluated will result in a
coherent value.

The previous learning process is, in general, more
complicated and diffuse for LOLA (see Fig. 2 right).
First, in LOLA some processes run concurrently with
others because there are different domains that are
visited in an intermingled fashion, so separate learn-
ing stages are not possible. For instance, WM learn-
ing could be performed in parallel with representation
learning, so that the representational space is optimal
for WM learning. Moreover, establishing when a model
is reliable in LOLA settings is complicated as, due to
lifelong learning processes, it will be improved in dif-
ferent operational stages.

Anyway, the most important differences stem, on
the one hand, from the fact that in LOLA a designer
does not provide goals for specific domains, as in RL.
This is quite an important difference as it implies that
goals must be discovered in the different domains, and
then UMs have to be created (without a predefined
reward function) for each specific domain. Therefore,
UM learning is much more challenging. The top block
of Fig. 2 right displays the basic elements involved in
the motivational system of a LOLA robot with regards
to learning and decision making.

As will be explained in Section 3, the approach pre-
sented here for goal discovery relies on the concepts
of Need and Drive (top block of Fig. 2 right), and in a
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balancing strategy that allows to manage the discovered
goals, so that robot operation is feasible. Needs and
Drives are defined on a generic representation space
(motivational space) that is internal to the robot, so they
are domain independent. This way, managing goals dis-
covered in different domains is possible. But the goals
are still defined in the domain specific representation.
Goals are linked to drives, so achieving a goal will lead
to the satisfaction of a drive. Therefore the drive is a
way to provide an indication of reward. How drives
and goals can be connected in online operation is a key
aspect of the motivational system because it defines
the relation between domain dependent and domain in-
dependent representations. A possible implementation
was defined and tested in [33].

The second main difference between policy dream-
ing in RL and LOLA is a consequence of the lack of re-
ward functions that encompass the whole domain. The
UMs that are obtained may only be valid or relevant
in certain regions of the state-space and only in certain
domains. This implies that, when the robot is dreaming,
it cannot randomly select state-space points or consider
trajectories that are not within the areas where the UM
is valid. Otherwise, the evaluations, and thus the results
of the deliberation processes, will be unreal or even
absurd.

To consider that UMs may not be defined over the
whole state space, we will introduce the concept of
perceptual class and contextual processing (presented in
Section 4.1). They will allow to learn in an interactive
way in what areas of the state space the UM is reliable,
and even how much. This has been represented in Fig. 2
right by means of the P-node block, a function that must
also be learned online, and which is used in the policy
dreaming process.

Following this approach, initially the robot explores
its domain using an uninformed deliberative process
(WMs and UMs are not reliable) that leads to an amount
of randomness of action, and learns the representation,
WMs and UMs. As these WMs and UMs improve, the
robot operation is guided by ever more informed de-
liberative processes. Once they reach a given reliabil-
ity level, they can be used together with the associated
perceptual classes, in an internal process to learn the
policy. Finally, the robot can use the policy, once learnt,
in a reactive fashion [35,36].

Summarizing, policy dreaming in LOLA settings
goes beyond the state of the art in RL. Under these
conditions, UM learning is controlled by a motivational
system which runs in a domain-independent represen-
tation to support domain specific goal discovery. This

makes the process much more abstract and challenging.
An additional component that provides an indication
of where in state-space the UM is reliable, and even
how reliable it is, must be learnt in parallel with the
UM. It also must be used in policy dreaming to prevent
deceitful deliberative processes. In the following two
sections we will describe the approach we propose to
address these issues.

3. Motivational system

In this section we describe the motivational system
that we propose to guide the robot’s learning processes
when it operates under LOLA conditions. The main
objective of this system is to allow the robot to discover
goals, learn how to reach them consistently, and select
which ones are active in the different domains. There-
fore, it is the driver of the robot’s open-ended learning
operation, as it provides domain independent needs and
drives [33,37] which are progressively linked to domain
specific goals that are in line with the needs of the sys-
tem. It must be pointed out that all the representations
used in this approach are sub-symbolic.

3.1. Needs and drives

Needs correspond to internal states that the robot
wants to reach or preserve. Thus, a need nj is a goal
point or area within the motivational state space M of
the robot. M is a specific state space that is designed
by the robot’s designer and its dimensions are given by
domain independent variables mi usually referring to
internal parameters of the robot.

Each need nj ∈ M has a drive Dj ∈ R assigned
to it that reflects how far the system is from satisfying
nj . The value of the drive Dj is established through
a function fj that provides a distance (not necessarily
Euclidean) between the current motivational state of the
system xt ∈M and the point nj ∈M where the need
is satisfied:

Dj = fj(xt, nj)

These drive functions fj are defined by the system
designer and permit assigning a purpose to the robot by
balancing and prioritizing the different needs within its
motivational system.

It is important to note here that the motivational space
M is different from the robot operational state space S,
whose structure depends on the specific representation
the robot is using for a particular domain.

The fundamental idea of this motivational approach
is that the robot will always strive to satisfy its needs
and thus, to reduce the values of its associated drives.
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3.2. Goals and expected utility

Since robots operate in real domains, to reduce the
values of their drives, they must find perceptual situ-
ations Si ∈ S that, within the particular domain they
are currently operating in, result in the satisfaction of
the needs in M . These perceptual situations are called
goals.

Thus, a goal can be defined as a point or areaGr ∈ S
that when achieved leads to the reduction of the value
of at least one drive Dj associated to a need nj ∈M .
Goals provide utility. Thus, for a given domain k, the
utility kU of a point Si ∈ S will be a measure of the
change in the value of the corresponding driveDj when
that point is reached. Therefore, by creating a utility
model kUM, it would be possible to know how close
the robot is to satisfying a drive (or to reaching a goal),
when at that point Si ∈ S.

The problem when working in real domains, and
therefore with real operational state spaces, is that there
are not too many areas that provide utility. In fact, utility
often appears sparsely and in a discrete form. Conse-
quently, finding utility can be a very complex problem.
To solve this problem and to improve the chances of
finding goals (areas that provide utility), an option is
to model the state space utility in terms of expected
utility. Thus, the expected utility, k

r Ûi with respect to
a goal Gr ∈ S of a point Si ∈ S can be defined as
the probability of reaching Gr starting from that point
modulated by the utility provided by the goal. Thus,
an expected utility model, k

r ÛM, could be constructed
for each goal, Gr, by determining k

r Ûi with regards to
that goal for each point Si ∈ S. A remarkable feature
of these models is that the expected utility value in-
creases monotonously as we approach Gr. Therefore,
by constructing this type of models, the robot has a
mechanism to choose actions that lead to the goal in a
deliberative manner. For compactness reasons, in the
rest of the article we will refer to the expected utility
models simply as utility models, UM.

3.3. Types of needs and drives

The only control the designer has over the behavior
of the robot is by defining its needs and creating the
appropriate drives. Therefore, when needs and drives
are created to define the behavior of a robot, it must
be endowed with the necessary tools to explore the
domains, find goals, and learn how to achieve them,
i.e., model expected utility. These objectives lead to

a classification of needs and drives into two different
groups: operational and cognitive needs and drives.

Operational needs and drives (opnj , opDj) are associ-
ated with the purpose that must be instilled in the robot.
They reflect what the designer wants the robot to do,
but in a domain-independent manner. Thus, for each
domain the robot faces, it must identify and learn to
achieve goals to fulfill these operational needs.

Cognitive needs and drives (cgnj , cgDj), on the other
hand, enable the robot to efficiently explore and acquire
relevant knowledge. These drives reflect how the de-
signer wants the system to regulate its learning pro-
cess. Therefore, their satisfaction may be related to how
much is explored (e.g. novelty [38]), to obtaining WMs
(e.g. curiosity [39]), to generating goals by seeking to
find ways to produce effects over the environment (e.g.
effectance [40]), or to acquiring competence over those
goals (e.g. competence [41]).

The details of how to design these drives have been
discussed in [33,42]. What is important here is the idea
that through the correct selection and design of drives
a robot can acquire the ability to find goals in the do-
mains it faces and provide motivation for modelling the
domains as well as learning how to achieve those goals
consistently.

4. Autonomous policy learning

As mentioned in the introduction, when learning poli-
cies under LOLA conditions, it is essential to know the
context of operation of the robot. That is, to learn a pol-
icy it is necessary to know which goal to achieve and in
which domain, but it is also fundamental to determine
under which perceptual conditions it is possible to do
it. In this case, it cannot be assumed that the knowledge
elements that are available (i.e., world and utility mod-
els) are valid throughout the complete state space of the
robot for that domain.

Consequently, once the motivational system pre-
sented in Section 3 allows discovering goals and learn-
ing the UMs necessary to reach them in a deliberative
manner, to be able to learn a policy from that knowledge
it is still necessary to solve the problem of determining
under what perceptual situations the UM is valid so
that it is not used outside its “universe”. To address this
issue, as commented in Section 2, we describe here the
concept of perceptual classes and P-nodes.

4.1. Perceptual classes and P-nodes

We define a perceptual class, Ŝj , as an area of the per-
ceptual/statespace whose points share some operational
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characteristics and are thus taken as a single entity. This
leads to a discretization of the perceptual/state space
into areas whose points lead to the same results under
specific contexts. When considering action determina-
tion, this means that the response of the robot in terms
of action is the same for every point in the perceptual
class when operating in the same domain and striving
to reach the same goal. Thus, a perceptual class can be
considered an abstraction of perceptions leading to a
discrete, higher-level representation associated, in this
case, to a particular response of the robot.

To represent perceptual classes within a cognitive
architecture, a knowledge component called perceptual
node or P-node was proposed in [43]. A P-node, de-
noted as Pj , is a component that is activated when a
perceptual state Si belongs to a given perceptual class
Ŝj(Pj = 1↔ Si ∈ Ŝj). Thus, a P-node is a metacog-
nitive component in the form of a filter over the percep-
tual state space. It permits determining the presence of
state space points that belong to Ŝj .

Under ideal conditions, a P-node Pj will be perfectly
active when a perception Si belongs to its correspond-
ing perceptual class Ŝj . However, in more uncertain
settings, such as the real world, a probabilistic repre-
sentation of P-node activation may be considered. In
this representation the activation level depends on how
confident the system is about Si ∈ Ŝj . This confidence
function in the perceptual space, denoted as Γj(Si), can
be created using the information the robot has about the
points it has experienced. Thus, the membership to a
perceptual class Ŝj of a state represented by P-node Pj

is given by:

Pj = Γj(Si)pj(Si)

where pj denotes the activation of the P-node under
ideal conditions. To compute this confidence function,
we make use in this article of a point-based cluster-
ing representation [43], although neural network based
representations would also work, as the authors have
described in [44].

In a point-based interpolation approach, the state
space area represented by a P-node is given by the
set of points actually perceived by the robot and some
distance-based rules. This way it is possible to delimit
the areas for which the system hypothesizes the P-node
is active. In this line, state space points can be classified
into two categories: points for which the P-node should
be active (activation = 1), which will be called simply
points, and points for which the P-node should be inhib-
ited (activation = 0), which will be called anti-points.
Both types of points are stored in a memory structure

related to the P-node. All other points within the class,
which were not actually experienced by the robot, will
be assigned confidence values in the interval [0:1] de-
pending on their distance to points and anti-points. The
specific algorithm used here for learning the perceptual
class that corresponds to a P-node is described in [43].
Algorithm 1 describes the procedure to decide on the
activation of a P-node representing a perceptual class
Ŝj and given a new perceptual situation Si. This pro-
cedure leads to the delimitation of an area in the state
space that activates the P-node. Through continuous
interaction with the environment, new P-nodes will be
created, and existing P-nodes will be populated with
new points and anti-points, so that perceptual classes
will be progressively delimited.

Therefore, P-nodes are very important for deter-
mining the perceptual context when working in high-
dimensional continuous domains, such as those that a
real robot may encounter. So, by associating these nodes
to the goals to be achieved, a high-dimensional delimi-
tation of the perceptual state space can be established.
This will make it possible to know more accurately un-
der which perceptual conditions these goals are achiev-
able and also to delimit those perceptual situations that
need to be considered when learning a policy.

Algorithm 1: P-node activation algorithm

Pj = {p1, . . . , pn, a1, . . . , an} P-node given by points and anti-
points
Pj(x) denotes the activation of Pj for perception x
Si is a new perception
1: Calculate k as the closest point/anti-point to Si out of those

representing Pj

2: if (k ∈ {p1, . . . , pn}) then
3: Pj(Si) = 1/(‖k − Si‖+ 1)
4: else if k ∈ {a1, . . . , an} then
5: Calculate the centroid of {p1, . . . , pn} as C
6: if (‖C − Si‖ < ‖C − k‖) then
7: Calculate k′ as the closest point to Si out of those

representing Pj

8: Pj(Si) = 1/(‖k′ − Si‖+ 1)
9: else

10: Pj(Si) = −1.0
11: end if
12: end if
13: if (Pj(Si) < ε) then
14: Pj(Si) = 0.0
15: end if

4.2. Policy dreaming strategy

As mentioned in Section 1, given that in open-ended
learning problems the domains and tasks to be ad-
dressed by the robot are not known at design time, pre-
learning policies directly is not possible. However, this
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learning can be achieved using the deliberative models
(UMs and WMs) and the perceptual classes that the
robot has acquired on-line, as detailed in Section 2.
Once they have been adequately learnt, these models
contain the information needed to be able to decide on
the optimal action to apply at each moment in time in
order to reach a goal in a particular domain. They per-
mit the implementation of prospection processes (us-
ing WMs), and the later evaluation of resulting states
(using UMs). However, to take into account the ar-
eas where these models are valid, that is, the areas of
the perceptual state space from which it is possible to
achieve these goals, their associated perceptual classes
(P-nodes) need to be known.

As previously indicated, the main objective of a robot
with a motivational system, such as the one presented
in Section 3, is the satisfaction of its needs. That is, the
maximization of drive satisfaction. As indicated above,
this can be achieved by maximizing expected utility
û in the particular domain the robot is operating each
instant of time. In other words, we are seeking a policy
that results in actions leading to the maximum expected
utility for a given domain or sets of domains.

In our approach, the different components (models
and policies) have been implemented by means of Arti-
ficial Neural Networks (ANN). This is so because in our
cognitive architecture, the e-MDB [32], knowledge is
represented using neural networks. Therefore, we will
address policy learning as the process of producing an
ANN that implements the policy. In addition, we must
consider that it is not possible to estimate beforehand
how complex the task to be solved will be, which makes
it difficult to decide on the appropriate ANN size. Thus,
model and policy learning will be achieved by means of
a neuroevolutionary algorithm. In particular, we use the
NEAT [45] algorithm, that allows learning the network
architecture in terms of number layers and of neurons
per layer, as well as which layers connect to which, and
the weights of the individual connections. Thus, it is
not necessary to establish beforehand the architecture
of the network.

As explained in Section 2, online policy learning
starts once a reliable WM and UM have been learned
in a given domain. At this point, the process begins,
like any other evolutionary algorithm, by generating
a population of candidate policies (Π) in the form of
random ANNs. These policies are evolved taking the
world and utility models as “simulators and evaluators
of the current reality”. Additionally, the P-node infor-
mation is used to generate the initial states from which
deliberation starts, since it indicates for which percep-

tual states the UM is applicable. Algorithm 2 describes
the procedure used to evaluate an individual policy πi
from the policy population Π, starting from a set of per-
ceptions/states that are extracted from P-node P∗ ∈ Pn

to make them representative.

Algorithm 2: Policy evaluation process
pk: current perceptual point
P ∗: set of representative perceptions from the P-node Pn

πi: individual policy
Π: population of candidate policies
π∗: optimal policy from πi
WM: world model
UM: utility model
ûk: expected utility provided by UM for pk
ūi: average expected utility for πi
aik: action provided by πi for pk
1: for πi ∈ Π do
2: for pk ∈ P ∗ do
3: aik ← πi(pk)
4: pk+1 ← WM(aik, pk)
5: ûk+1 ← UM(pk+1)
6: ūi ← getAverage(ûk+1)

7: π∗ ← argmax(ūi)

This process is repeated for a relevant number of
representative points of P ∗, pk ∈ P ∗ averaging the ex-
pected utility, which is used as the evolutionary fitness
for policy πi. The same set of perceptions and world
and utility models are employed for the evaluation of
the whole policy population. This way, the best pol-
icy (the one with highest average expected utility) at
the end of evolution, is the one that the robot will use
to achieve that specific goal in that domain and under
those specific perceptual conditions. Therefore, for each
domain in which the robot operates, and whatever goals
it discovers, it will have a method that will allow it to
acquire the necessary policies to achieve them.

To sum up, it must be pointed out that unlike in the
cases presented in [31,34] related to more traditional
RL settings, where it was assumed that models were
valid throughout the whole state space, P-nodes are key
elements in policy learning under LOLA settings. In the
case of LOLA, goals have to be discovered and models
are acquired as the robot interacts with the world. There
is no guarantee, or even need, that they are valid in
the whole state space. Consequently, to be able to run
dream like policy learning processes that do not go into
unmodeled areas of state space, and thus produce absurd
predictions or evaluations, the area of validity of the
models must be tracked and used when dreaming. This
is precisely what is done through the use of P-nodes,
hence their importance.
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Fig. 3. Scenario (left) and reachable areas (right). The dashed lines display the reachable area for each arm.

5. Experiments and analysis

The objective of this section is to provide a real ex-
ample of how the procedures commented above make
it possible to learn policies when operating under con-
ditions of lifelong open-ended learning autonomy, that
is, when the goals to be achieved and the domains of
operation are not known beforehand. Therefore, we will
show how through the appropriate design of the motiva-
tional system of a robot it is possible to discover goals
in the different domains and learn how to reach them in
a deliberative way. In addition, we will see how from
this knowledge it is possible to learn reactive behav-
iors in the form of policies through an offline dreaming
process mediated by P-nodes representing perceptual
classes. We will also address the creation and manage-
ment of perceptual classes since they are one of the key
elements of the proposed method.

5.1. Experimental setup

An experimental setup has been considered in which
a real robot must learn to organize a set of objects
located on a table. Figure 3 shows this setup, which
includes a Baxter robot, a white table, a circular box,
a base with a stick for stacking objects, a push button,
and some movable elements: a solid red cylinder and a
yellow cylinder with an axial hole. The final purpose
of the robot is to pick up the red cylinder and place it
in the box and insert the hollow cylinder in its base.
The robot must determine that this is what it needs to
do and learn to do it irrespective of the starting object
positions on the table. Additionally, the box in which to
deposit the solid cylinder may start out of the reach of
the robot. In this case, to bring it closer, the robot will
have to press the push-button first. The right image in
Fig. 3 shows the areas that can be reached by the robot
arms.

To achieve this response, the motivational system of
the robot is the only element that has been designed be-

forehand. We have endowed it with four different needs
and their corresponding drives (one operational and
three cognitive ones). For each drive we have created
an associated drive function.

The operational drive that has been defined is related
to object collection. This drive, opDtask, is associated
with a need opntask that is linked to a sensor that detects
whether the objects are in their corresponding storage
locations. Thus, each cylinder placed at its destination
will produce partial satisfaction of the drive. Similarly,
the drive will be fully satiated (the need achieved) when
the table is completely organized (both cylinders are in
their corresponding storage places). As it is an open-
ended learning problem, the robot does not initially
know how to satisfy its need. That is, it does not know
that correctly storing the objects is what it needs to do.
Consequently, it must first figure this out.

As explained in Section 3, to foster exploration, goal
discovery and skill learning, the robot is endowed with
a set of cognitive needs and drives based on novelty,
effectance and competence. As this is not the main
goal of the paper, we will not go into details of its
implementation, nonetheless, a detailed explanation of
it can be found in [33]. These drives (operational and
cognitive) will be the ones in charge of allowing the
robot to learn to grasp the cylinders and place them in
their corresponding storage locations. They will guide
the learning of the different deliberative models and
P-nodes.

Concerning the perceptual system, P ∈ R, in this
experiment we use an RGB-D camera located on the
ceiling of the room and binary sensors associated to the
presence of objects in the grippers of the robot and to
button pressing. The camera information is redescribed
in the form of distances between the objects and the
robot’s end effectors, and relative angles between the
objects and the robot base. Specifically, the percep-
tual vector has 18 dimensions: 2 binary variables cor-
responding to the gripper sensors, 1 binary variable re-
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Table 1
Parameters of the evolutionary process

Generations (epochs) 1000
Candidate policies (population) 100
Input neurons 18
Output neurons 4 or 2
Number of perceptions/states
used for evaluation

1000 points evaluated in batches
of 100. Batches changed every
30 generations.

lated to the button state, 10 continuous variables related
to distances from each robot arm to each of the 5 ob-
jects shown in Fig. 3 (dobject-arm ∈ [0: 1]), and finally 5
angles corresponding to the orientation of these objects
with respect to the robot’s body (aobject ∈ [−1: 1]):

P (t) =


gripper1, gripper2, button

dred-r, dred-l, ared,
dgreen-r, dgreen-l, agreen,
dbox-r, dbox-l, abox,
dbase-r, dbase-l, abase,
dbutton-r, dbutton-l, abutton


Regarding action space, A ∈ R, the Baxter robot

presents a two-arm configuration, each offers 7 degrees
of freedom. To carry out the experiment, and for the
sake of clarity, we have defined a set of actions that
control the motion of both arms, i.e., the change in
the direction of movement of the arm end effector in
sexagesimal degrees (α ∈ [0: 360]) and its displacement
in cm (v ∈ [0: 5]). These actions are continuous in the
ranges indicated. Therefore:

A(t) = (αleft, vleft, αright, vright)

where αleft and vleft are the direction of movement and
the displacement for the left gripper, and αright and vright

are the direction of movement and the displacement for
the right one. The movement of the arms is carried out
at a constant height. In addition, the actions related to
the opening and closing of the grippers are predefined:
if the robot reaches one of the cylinders with one of its
grippers, it will automatically pick it up. Also, in the
case of reaching the box or the stick when cylinder is in
its grasp, it will drop it. Additionally, if both arms cross
when one of them has the cylinder in its gripper and the
other is empty, the robot will automatically transfer the
object to the empty gripper. This action is helpful since
the robot is not able to reach the whole table with only
one arm.

Finally, the models and policies are implemented
using Artificial Neural Networks (ANNs). The Multi-
NEAT implementation of the NEAT algorithm, ex-
tracted from [46], was used to evolve the ANNs cor-
responding to the policies. The evolutionary process

was configured as shown in Table 1. The parameters
not included in the table were kept at their default val-
ues. These networks have 18 inputs (the perception of
the robot at each time instant), and different outputs
depending on whether the policies control the move-
ment of one of the arms (2 outputs) or both of them (4
outputs).

5.2. Experiment dynamics

Initially, the robot has no idea where the goals are
or how to reach them. That is, it does not know the
UMs or under which perceptual conditions to use them.
Consequently, to achieve its purpose, it must discover
its goals and learn the UMs that allow it to reach them
on demand. It must also associate them with their cor-
responding contexts so that goals can be reached re-
gardless of the initial conditions of the scenario. So, for
this to happen, it will also have to learn the different
P-nodes. We are assuming that the WM representing
the domain in which the robot is operating has already
been learned in previous stages where the robot inter-
acted freely with the world. This learning is carried out
online from the values that are stored in a short-term
episodic memory as the robot interacts with the world.
An example of this procedure can be found in [35].

The robot will initially explore the environment in
the search for novel states or states that provide ef-
fectance, which will lead to the discovery and creation
of different goals. The creation of goals will also in-
volve the creation of UMs and P-nodes associated to
their achievement. Therefore, the robot will alternate
between learning the UMs, modelling the activation ar-
eas of the P-nodes and exploring its environment in the
search for new goals. Thus, initially the operation of the
robot will be guided by cognitive drives and delibera-
tive decision processes. However, as soon as the models
used for deliberation have been adequately learnt, i.e.,
the robot consistently reaches the goal from whatever
state it is in within the area delimited by the P-node, the
dreaming-like learning of the policies can start. From
the moment the policy has been learnt, the robot can
resort to it as a fast reactive decision process to achieve
its goal.

The results of this learning process are shown in
Fig. 4. The figure displays the evolution of the time that
the robot required to reach its purpose and the moments
when the different UMs and P-nodes were considered
learned. As a result of this learning process, the robot
has discovered six different goals, and has learned their
UMs and associated P-nodes. In addition, following
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Table 2
Goals discovered after the execution of the experiment

Goal Description
G1 Button pressed
G2 Hollow cylinder gripped in left arm
G3 Hollow cylinder gripped in right arm
G4 Solid cylinder gripped in right arm
G5 Hollow cylinder on stick for stacking objects
G6 Solid cylinder in box

Table 3
P-nodes learned after the execution of the experiment

P-node Description
P1 Box out of reach
P2 Hollow cylinder on the left side of the table and left

arm free
P3 Hollow cylinder gripped in the left arm and right arm

free
P4 Solid cylinder on the right side of the table and right

arm free
P5 Hollow cylinder gripped in right arm
P6 Solid cylinder gripped in right arm

the dreaming-like method explained in Section 4, the
policies corresponding to the six UMs have also been
learned. Tables 2–4 contain a summary of the content
of these knowledge nodes as described by an external
observer. As can be seen, the P-nodes correspond to
the different perceptual situations that the robot may
encounter, while the UMs and policies represent the
actions to be performed to go from these perceptual
situations to the associated goals. To provide an idea of
the statistical distribution of the behavior of the learning
process, Fig. 5 shows the results, in terms of purpose
achievement, resulting from 10 different runs of the
experiment. The experiments shown in Figs 4 and 5
are divided into trials, each of which ends when the
robot achieves its purpose. Similarly, a trial is divided
into time steps, where each time step represents the
execution of an action. Remember that each actionA(t)
moves the robot’s arms a maximum of 5 centimeters
in a particular direction, so that to reach a goal it is
necessary to concatenate several actuations.

At a first glance, it can be seen from the figures that
there is a gradual reduction in the number of time steps
required to achieve the robot’s purpose as the robot
acquires more knowledge. Moreover, this reduction is
associated with the learning of the different UMs and
P-nodes. Something that was expected, since as the
robot learns to reach the different goals, the time to
achieve its purpose also decreases. Furthermore, once
it learns how to achieve the last goal, the number of
steps needed to achieve the purpose converges. A video
illustrating the robot operation once all the UMs and P-

Table 4
Utility models and policies learned after the execution of the experi-
ment

Utility model
/policy Description

UM1/π1 Reduce the distance between the left arm and the
button

UM2/π2 Reduce the distance between the left arm and the
hollow cylinder

UM3/π3 Reduce the distance between the right arm and the
hollow cylinder

UM4/π4 Reduce the distance between the right arm and the
solid cylinder

UM5/π5 Reduce the distance between the right arm and the
stick to stack objects

UM6/π6 Reduce the distance between the right arm and the
box

Fig. 4. Number of iterations required to achieve the purpose in a
representative run of the experiment. Since the UMs and P-nodes
related to the same goal are learned in parallel, the end of the learning
process is the same for both.

nodes have been learned can be found in the following
link: https://github.com/GII/ICAE2023.

5.3. P-node learning

The different P-nodes, as representations of percep-
tual classes, are constructed starting from the initial
perception (state space point) that led the robot to reach
each one of the goals for the first time. From that mo-
ment on, the P-node presents an activation value of 1.0
for that representative point and lower values (depend-
ing on the representation function used) in the hypothe-
sis area surrounding it. This initial delimitation of the
P-node is only a hypothesis and, consequently, some of
the area it encompasses may actually not be part of the
perceptual class.
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Fig. 5. Performance analysis for 10 runs of the experiment (median
and 25 and 75 percentiles).

As interactions with the environment take place in-
volving a P-node, more information will become avail-
able, i.e., more points (P-node activating perceptions
from which it was possible to reach the related goal by
using the related UM) and anti-points (P-node activat-
ing perceptions, but from which, in this case, it was not
possible to reach the related goal). This will lead to a
progressive improvement of the delimitation of hypoth-
esis areas corresponding to the perceptual classes. Con-
sequently, the robot will become more efficient when
trying to achieve its goals.

To illustrate this process, Fig. 6 shows the evolu-
tion in time of the hypothesis area of P-node P1. Given
that in this experiment the perceptual space is eighteen-
dimensional, to facilitate the visualization of the data
the figures show the P-node activation map associated
to the most relevant two dimensions. That is, the two
sensors that play the most important role in the calcu-
lation of the activation have been chosen. In this case,
as it is a P-node associated with pressing the button,
and it is only useful to press it when the box is out of
the robot’s reach, the most significant sensors are those
corresponding to where the box is (distance and angle
between the robot and the box). Bear in mind that this
is just for visualization purposes, as the robot has learnt
the eighteen-dimensional P-node activation map on its
own and determined when it was relevant for the P-node
to be activated. With this representation we want to pro-
vide an idea of how the perceptual classes work and of
their importance when determining in which regions of
the state space to use the different UMs.

Figure 6 shows the areas of the state space in which
the P-node will be activated and in which it will be in-
hibited. The darker zones (higher activation values) are
those that correspond to perceptions that are included

within the perceptual class. From the time evolution
sequence of images in the figure, it can be appreciated
that when the robot has not interacted much with the
environment, the perceptual class boundaries are quite
poor. In fact, in this particular case, the hypothesis made
by the robot on the perceptual class clearly shows that in
trial 10 the robot has not experience related to when the
box is on the right side of the table. However, as more
points and anti-points are experienced, a much more
detailed delimitation of the P-node area is obtained,
leading to more accurate decisions based on it.

Figure 7 shows a similar representation to that on
Fig. 6 for some P-nodes at the end of the execution of
the experiment. The top graph displays the joint acti-
vation areas of P-nodes P2 and P4, which are the ones
related to grasping the different objects. Thus, in the
figure it can be seen how when the objects (cylinders)
are close, i.e., within the robot’s reach area, the P-nodes
are activated indicating that the robot can reach them.
It is worth noting that this representation is comple-
mentary to that of the perceptual class shown in Fig. 6,
which indicates when the object, in that case the box, is
out of reach.

Another interesting plot is the one corresponding to
P-node P3 (Fig. 7 bottom), associated with the UM cor-
responding to moving an object from one gripper to the
other when stacking objects. The most significant sen-
sors are those that allow the robot to determine whether
the object and the stacking stick are on the same side or
not. In this case they are the angle from the robot base
to the object (cylinder with an axial hole) and the angle
from the robot base to the stick used to stack objects.
To put the hollow cylinder there, the robot first needs to
have this object in the gripper that is on the same side
as the stick. This is what the perceptual class shows,
when the hollow cylinder is not on the same side as the
stick the robot must move it from its current gripper to
the other one.

The main conclusion to be drawn from these figures
is that P-nodes are a good tool for partitioning the per-
ceptual space in terms of the context (domain and task)
to be addressed. Furthermore, they are key to delimit
the perceptual conditions necessary to try to achieve
certain goals, as they create well-established bound-
aries that delimit where the P-node should be activated
and, thus, where the UM that is being used to evaluate
possible actions is valid. This is a fundamental issue,
as we will comment in the next section, when trying to
learn policies from deliberative processes that involve
these learnt UMs. In addition, it must be noted that, as
appreciated in Fig. 4, the correct delimitation of these
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Fig. 6. Evolution of the activation areas of P-node P1 for trials 10, 30 and 45.

Fig. 7. Final activation areas for P-nodes P2 and P4, and P3.

classes is linked to an increase in the performance of
the system when achieving its purpose as the system
makes fewer erroneous evaluations of actions.

5.4. Policy learning and results

As the learning process was the same for each policy,
for the sake of brevity we will explain it for the ones

corresponding to depositing the hollow cylinder on the
base to stack objects, UM5, and to moving the cylinder
from one arm to the other, UM3. For clarity, they will
be referred to in what follows as “Put object in” and
“Change hands”. These policies were chosen because
they present different complexity levels. In the case of
the first one, π5 or “Put object in”, given that objects
were always presented on the right side of the robot, it
“only” has to control the movement of the right arm.
In other words π5 = f(αleft, vleft). In the case of the
second one, π3 or “Change hands”, it must control
the movement of both the right and left arm, π3 =
f(αleft, vleft, αright, vright).

As mentioned in previous sections, to evaluate each
of the candidate policies generated in the evolutionary
process, the previously learned UMs were used. They
will provide a higher utility value (higher fitness) to
those actions that satisfy the description shown in Ta-
ble 4 for models UM3 and UM5. Thus, in the case of
“Put object in” candidate policies, those that provide
actions that allow the robot’s right arm to move closer
to the stick for stacking objects will be valued higher.
While in the case of “Change hands” policies, the best
valued ones will be those that provide actions that allow
the robot arms to get closer to each other.

Additionally, to be able to evaluate candidate poli-
cies, it is essential to know the areas of the state space
in which the UMs that are used for this are valid. This is
where the perceptual classes play a key role since they
provide the necessary information to “contextualize”
the learning. It is worth remembering that in LOLA
conditions this information is not available beforehand,
and that P-nodes are learned autonomously. Thus, dur-
ing the dream-like learning process, these perceptual
classes are used in order to generate points (dreamt per-
ceptions) belonging to the area of the perceptual state
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Fig. 8. Time steps needed to achieve the goals using the learned policies and deliberative models considering different numbers of actions. A
maximum of 80 time-steps were allowed to reach the goal.

space in which the policies are going to be used, that is,
where the UMs of the deliberative processes employed
during dreaming are valid. These perceptions, pk, will
be the inputs of the candidate policies and will allow
obtaining the actions that will then be evaluated with
the help of the world and UMs in a deliberative process.
To illustrate this stage of the autonomous learning pro-
cess, Fig. 7 bottom shows a representation of the state
space covered by the P-node associated to goal G3.

To evaluate the efficiency of the policies obtained
after the evolutionary process, we have compared the
actions they provide with those that would be provided
by the deliberative process using the learnt UMs. Fig-
ure 8 shows a representation of the number of time
steps (action selections) needed to reach the goals us-
ing the learned policies. To this end, 100 random start-
ing points from within the P-nodes associated to these
UMs/policies are shown. These starting points are ar-
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ranged according to their increasing distance to the
goal, so that the further to the right the starting point is,
the farther the robot will be from reaching the goal and
the more actions it will have to take in order to achieve
it.

In turn, to draw conclusions regarding the efficiency
of the actions obtained using the policy, the number of
time steps necessary to reach the goal is compared to
those that would be necessary if the deliberative system
considered 1, 5, 50, 500 and 5000 candidate actions
during its deliberations. It should be remembered that
these actions are generated at each time instant, that
they take random values in the continuous range of
possible actions and that they control the direction of
movement and the displacement of the robot grippers.
Therefore, the larger the repertoire of possible actions,
the greater the probability of finding the optimal action
for each situation. However, this will also imply a longer
computational time since more actions will need to be
evaluated (each one of them will imply prospection and
evaluation). In the case of the policy, it directly provides
the action it considers optimal, without the need for
evaluation.

Figure 8 top shows the results corresponding to pol-
icy ‘Put object in’. It should be remembered that each
action involves moving the robot arm a maximum of 5
centimeters in a particular direction, so that to reach an
object several actions are necessary. Thus, in the figure
it can be seen how the actions provided by the policy
are very close to being optimal, since, on average, it
needs only two more actions than the best deliberative
case to reach the goal. This difference arises because
the robot needs high precision in the final step towards
the goal. That is, if the last actions imply too large a
displacement, the robot will overshoot the position of
the base to drop the object. Thus, to prevent this from
happening, the policy chooses to use shorter displace-
ments as the robot approaches the goal, which results
in a slight loss of efficiency.

On the other hand, observing the results obtained
for the ‘Change hands’ policy (Fig. 8 bottom), it is
possible to verify that these are optimal. The actions
proposed by the policy are as good as those of the
deliberative system that contemplates 5000 candidate
actions. It is interesting to comment that the deliberative
systems need more time steps to reach this goal than
the goal associated with policy “Put object in”. This is
because these actions control the two arms of the robot,
so that each candidate action (randomly generated) has
four components, (αleft, vleft, αright, vright), enlarging the
candidate action search space. Thus, the more complex

the actions that are applied to control the robot, the more
difficult it will be to find the optimal action through
deliberation, and the more valuable it will become to
have a policy that can do it.

To end the comparison, it is worth mentioning that
the use of policies is much less computationally expen-
sive. The reason is clear: each candidate action in a de-
liberative process involves the evaluation of two ANNs,
one corresponding to the WM and one corresponding
to the UM. Thus, 2n evaluations will be needed, being
n the number of candidate actions. Whereas in the case
of policies, only one ANN needs to be evaluated. To
demonstrate this, we have used an intel i7-7700HQ @
2.80 GHz CPU and computed the average time for ob-
taining 100 different actions with each of the systems
shown in Fig. 8. The order of magnitude of the com-
putational time for the policy was 10−5 seconds, the
same as for the deliberative process with 1 candidate
action. In the case of 5 candidate actions, the time was
10−4 seconds, while for 50 candidate actions it was
10−3 seconds. In the same way, the average time for
500 actions was 10−2 seconds and for 5000 actions was
10−1 seconds.

To conclude, it was possible to see that the au-
tonomous learning of policies through dreaming pro-
cesses in LOLA conditions is feasible. This is possi-
ble by using the knowledge contained in the world and
UMs and, above all, the information contained in the
perceptual classes that provide an indication of where
these models are valid and thus allow the generation
of relevant starting state space points in order to gener-
ate dreamt trajectories that permit evaluating actions. It
is thus possible to contextualize learning, without the
need to know in advance the goals and the domains of
operation.

6. Conclusions

This paper has proposed and tested a new approach
towards online policy learning in the realm of au-
tonomous robotics. The approach is different from oth-
ers existing in the Reinforcement Learning literature,
mainly, because it was developed to provide robots with
Lifelong Open-ended Autonomy (LOLA). That is, with
the capability of reaching their design objectives in un-
known and intermingled domains, in periods of time
with no predefined ending, and in real conditions of
operation. As it can be supposed, online policy learning
is really challenging under these conditions.

The current work has shown, through a real robot
experiment in LOLA settings, a possible path towards
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addressing this issue. It is based on a motivational sys-
tem which relies on the domain-independent concepts
of need and drive, which guide the lifelong operation
of the robot. With a proper combination of cognitive
and operational drives, goal discovery is possible, even
with intermingled domains, as shown in the experiment.
In addition, a learning method to determine expected
utility under LOLA constraints was also tested, so that
continuous utility models have been inferred online.

But the main contribution of this work is focused on
the online policy learning process itself. Deliberative
policy learning has been addressed in the realm of Re-
inforcement Learning with success. However, LOLA
conditions imply that it cannot be assumed that the
learned world and utility models are valid throughout
the complete state space of the robot for a given do-
main as in the case of RL. Hence, state inputs that are
relevant must be provided to the dreaming deliberative
process to generate data that allows learning a policy.
In this line, we have implemented and tested a policy
learning process that involves Perceptual Classes as a
metacognitive structure in the form of P-nodes. They
are contextually linked to goals, world models, and util-
ity models, and they are also learned on-line. During
normal operation, they allow inferring the relevant per-
ceptual domain from which the robot is able to achieve
the goal and thus for which a given expected utility
model is valid. Consequently, they can be used to gen-
erate feasible data points that permit generating trajec-
tories for deliberative policy learning in a very efficient
way. Perceptual Class learning and application has also
been successfully tested in a real-life experiment.

From the results obtained in this paper, promising
future work arises in many aspects, with the aim of
solving more realistic tasks in real robot conditions.
One of the most challenging topics for the near future
is related with the integration of State Representation
Learning strategies in LOLA, which has been started
with a preliminary work in [36]. It is necessary to study
the management of multiple representations within a
cognitive architecture, so that it is possible to chain
multiple representation functions that gradually reduce
the dimensionality of the state space and facilitate learn-
ing and decision-making. In this line, it would also be
valuable to study in more detail the introduction of at-
tention mechanisms and their integration with the rep-
resentation system, so that it is possible to achieve task
or goal-oriented representations. Finally, newer super-
vised machine learning/classification algorithms will be
tested to improve P-node learning and model learning
such as Neural Dynamic Classification algorithm [47],
Dynamic Ensemble Learning Algorithm [48], and vari-
ations of the NEAT algorithm used here [49].
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