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Modal identification of building structures
under unknown input conditions using
extended Kalman filter and long-short term
memory

Da Yo Yun and Hyo Seon Park*
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Abstract. Various system identification (SI) techniques have been developed to ensure the sufficient structural performance of
buildings. Recently, attempts have been made to solve the problem of the excessive computational time required for operational
modal analysis (OMA), which is involved in SI, by using the deep learning (DL) algorithm and to overcome the limited applicability
to structural problems of extended Kalman filter (EKF)-based SI technology through the development of a method enabling SI
under unknown input conditions by adding a term for the input load to the algorithm. Although DL-based OMA methods and
EKF-based SI techniques under unknown input conditions are being developed in various forms, they still produce incomplete
identification processes when extracting the identification parameters. The neural network of the developed DL-based OMA
method fails to extract all modal parameters perfectly, and EKF-based SI techniques has the limitations of a heavy algorithm and
an increased computational burden with an input load term added to the algorithm. Therefore, this study proposes an EKF-based
long short-term memory (EKF-LSTM) method that can identify modal parameters. The proposed EKF-LSTM method applies
modal-expanded dynamic governing equations to the EKF to identify the modal parameters, where the input load used in the EKF
algorithm is estimated using the LSTM method. The EKF-LSTM method can identify all modal parameters using the EKF, which
is highly applicable to structural problems. Because the proposed method estimates the input load through an already trained
LSTM network, there is no problem with computational burden when estimating the input load. The proposed EKF-LSTM method
was verified using a numerical model with three degrees of freedom, and its effectiveness was confirmed by utilizing a steel frame
structure model with three floors.

Keywords: System identification, operational modal analysis, modal parameter, extended Kalman filter, deep learning, long
short-term memory

1. Introduction and property and even the collapse of social systems.
Considering this situation, various system identifica-

The structural performance of buildings deteriorates tion (SI) techniques have been developed in structural
continuously owing to earthquakes and typhoons that engineering to evaluate the structural performance of
occur during their life cycles and the continuous aging buildings [1-10]. The SI technique enables the identifi-
of structural members. Severe deterioration in struc- cation of modal parameters representing the dynamic
tural performance can cause enormous damage to life characteristics, such as the natural frequency, mode

shape, and modal damping ratio, as well as system pa-

rameters based on spatial properties determined by the
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in mass and stiffness, these parameters can be used as
intuitive indicators of the structural performance of a
building [11-13]. Furthermore, the modal damping ra-
tio and damping are important parameters for reduc-
ing the vibration of a building and are generally deter-
mined by complex actions such as material damping of
structural materials and structural system design and
connection after the building has been completed. This
structural phenomenon is called structural damping, and
these damping parameters determine the acceleration
response level of the building in ambient conditions
and resonance peak by the dominant frequency. There-
fore, the modal damping ratio and damping parame-
ters can be considered as indicators affecting structural
performance in terms of both safety and serviceabil-
ity [14-16].

The SI technique was mainly developed as an opera-
tional modal analysis (OMA) method to identify modal
parameters during the operation of the building [11,13].
This method does not use information about the in-
put load applied to the building, but rather, only the
structural response measured from the building to iden-
tify the modal parameters, thereby being evaluated as
a practical method in terms of applicability for the ac-
tual building [2,17]. Representative OMA methods in-
clude frequency-domain decomposition (FDD), pro-
posed by [18], and covariance-driven stochastic sub-
space identification (SSI-COV), an SSI-data driven
method, proposed by [19,20]. Simultaneously with the
OMA study, the SI technique research using the ex-
tended Kalman filter (EKF) has been conducted to iden-
tify system parameters [21,22]. The EKF has the ad-
vantage of enabling continuous observation of changes
in system parameters as it is easy to apply to structural
problems and enables real-time estimation, which is
the main characteristic of the EKF [23-27]. To identify
system parameters, dynamic governing equations are
derived as state space representations and applied to
the EKF algorithm to estimate the system parameters
in real time [28-32]. Representative studies include the
methods estimating the change of parameters in real-
time by determining the state variables as stiffness or
damping parameters [33-37], the adaptive EKF meth-
ods enabling the convergence of state vectors adaptively
by sudden stiffness decrease [32,38—40], and recently,
the hybrid EKF method enabling optimized estimation
through optimal selection of the initial parameters for
the EKF [41].

Although various SI techniques have been developed
to evaluate the structural performance of buildings, the
problems of excessive computational time and input

load usage have persisted [42-46]. The OMA method
for identifying modal parameters has the advantage of
not requiring input load information due to the char-
acteristics of output-only data, but it still has the dis-
advantage of high computational cost as more accu-
rate modal parameter results can be obtained only by
performing modal analysis after accumulating a certain
amount of measurement data [20,42,46]. EKF-based
SI approaches to estimate system parameters have the
limitation of needing to use an input load [44,47,48]
Because performing SI using EKF requires assuming
that the input load is known, there may be limitations in
building applicability [43]. When an earthquake load is
applied, the input load information can be determined
by measuring the ground acceleration with an accelera-
tion sensor installed on the ground to gather the input
load information. However, not all structures neces-
sarily have sensors for measuring ground acceleration,
or it may be difficult to measure the input load due to
sensor loss and damage [43]. Therefore, the EKF-based
SI method that uses an input load may have limitations
in building applications.

Recently, deep learning (DL)-based OMA methods
have been developed to solve this problem, identify-
ing the modal parameters through a pre-trained neu-
ral network without utilizing algorithms such as de-
composition functions and inverse Fourier transform
in the OMA method. These approaches seem to be ef-
fective in overcoming the issue of excessive computa-
tional time [49,50]. Furthermore, scholars investigating
system parameter identification have added the input
load term to the Kalman filter algorithm to identify the
system parameters under unknown input conditions,
solving the problem of restrictions on the use of input
load [34,43,45,48,51]

Although DL-based modal parameter identification
technique and system parameter identification tech-
nique under unknown input conditions is being devel-
oped in various forms [6,52—57], the identification pro-
cesses are still incomplete when extracting identifica-
tion parameters [49,50]. Even though the modal param-
eter identification method using the recently developed
DL-based convolution neural network (CNN) identi-
fies the natural frequency, it fails to identify subsequent
parameters, such as mode shape and modal damping
ratio [49]. In addition, the modal parameter identifi-
cation technique using a deep neural network (DNN)
identifies the modal response and mode shape, but the
conventional SI method is used to identify the natural
frequency and modal damping ratio [50]. As can be
seen from the previous studies, DL-based modal param-
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eter identification does not fully identify all parameters
with a neural network and produces incomplete iden-
tification results. In addition, in studies on identifying
system parameters under unknown input conditions,
the input load term is included in the EKF algorithm
and identified through the process, and the algorithm
becomes heavy, requiring additional computational ef-
fort [43,45,58] Accordingly, there is a need for addi-
tional research to enable full identification of the modal
parameters and use of an EKF while satisfying the un-
known input condition without causing a computational
burden.

Therefore, the objective of this study was to develop
an EKF-based long short-term memory (EKF-LSTM)
method that can identify modal parameters. The devel-
oped EKF-LSTM method uses LSTM, a type of DL
algorithm, to execute an EKF under an unknown in-
put. The LSTM method is a DL algorithm specialized
for sequence and time series data, which is suitable
for data characteristics where time order is important.
The structural acceleration response, obtained as a time
history response, is used as an input of the LSTM to
configure the training network, and the ground acceler-
ation response obtained from the ground is utilized as
the output of the LSTM. Because the input load is esti-
mated immediately through the already trained LSTM
network, the unknown input is satisfied without caus-
ing a computational burden. Furthermore, the dynamic
governing equation is modally expanded to form a state
space equation as the proposed EKF-LSTM method
estimates the modal parameters. Therefore, the state
variables estimated by the EKF can be estimated by de-
termining the modal responses, natural frequency, and
modal damping ratio. Owing to the high applicability
of the EKF method to structural problems, the modal
parameters can be completely identified by constructing
a state vector with the modal parameters. A detailed de-
scription of the EKF-LSTM method is provided in Sec-
tion 2. The remainder of this paper is organized as fol-
lows. Section 2 introduces the fundamental theory used
in the EKF-LSTM method proposed in this study and
a schematic procedure of how the EKF-LSTM method
works. Sections 3 and 4 respectively provide verifica-
tions of the numerical model and EKF-LSTM method
through a three-story steel frame structure model. Fi-
nally, Section 5 summarizes the conclusions.

2. Methodology

This section introduces the method of applying the
dynamic governing equation extended to modal coordi-

nates to the EKF for applying the EKF-LSTM method
proposed in this study and describes the procedure for
estimating input load using LSTM.

2.1. Fundamental algorithm of extended Kalman filter

The Kalman filter is a recursive filter algorithm de-
veloped by [59]. It performs estimation by updating
the state vector while correcting the residual between
the sensor response and predicted response. Hoshiya
and Saito [28] attempted to estimate system parameters
using the EKF algorithm by expressing the dynamic
governing equation as a state space equation. Until re-
cently, the EKF algorithm has been actively used in SI,
and this section briefly introduces the EFK algorithm.
The state space equation of a nonlinear dynamic system
to which an earthquake load is applied can be expressed
as shown in Eq. (1):

X(t) = £(X(1), iy (1)) + w(t) (1

In Eq. (1), X(t) denotes the state vector for contin-
uous time and i, () denotes the ground acceleration
applied to the dynamic system. w(t) denotes the pro-
cess noise vector with a covariance matrix Q(t). The
measurement equation can be expressed as follows:

Y, = h(Xi) + v 2)

In Eq. (2), Y} denotes the output vector at t = kAt
for discrete time and X; denotes the state vector at
t = kAt. v, denotes the measurement noise vector
with a measurement covariance matrix Ry. The state
space equation for continuous time in Eq. (1) must
be expressed in discrete time for interaction with the
measurement equation. When ¢ = kAt, the state vector
for discrete time can be obtained for every section (k +
1) At through integration. Therefore, the predicted state
space equation can be evaluated as shown in Eq. (3):
(k+1)At

Xpt1/k = Xp/ +/ (X, /5, 0y(t)) dt (3)

kAt

where the superscript of the state vector X indicates
the predicted state. In addition, the subscript k& + 1/k
indicates an uncorrected state vector. The predicted
error covariance matrix used in Kalman gain for state
correction can be calculated by applying Eq. (4):

Priin= Fk+1/kPk/kF;€+1/k +Q, “4)

Here, Fj | 1/ denotes a state transient matrix, and in
order to update the state transient matrix, a Jacobian
matrix is calculated using Eq. (5):
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Of(X(2), uy(1)) ]
OX(t) X(t) =X} /i

The predicted measurement vector can be obtained
by utilizing Eq. (6), which represents the state vector
corresponding to the measurement sensor response in
Eq. (3), which is the uncorrected predicted state:

Yip1 =h(X 1/0) (6)

In order to update the predicted state vector of
Eq. (3), the Kalman gain is calculated as shown in
Eq. (7). Hy41 in Eq. (7) is a Jacobian matrix that is a
partial derivative of the measurement vector h(Xj.;1)
with respect to the state vector Xy, which is given by
Eq. (10). The predicted state vector in Eq. (3) is up-
dated as shown in Eq. (8) by correcting the residual of
the sensor measurement data Yy and the predicted
measurement vector ?k+1 with Kalman gain, and the
updated error covariance matrix can be calculated by
applying Eq. (9):

Friin=1+At { (5)

K1 =Py i (e Py HE
+Ryp1) !
Xit1/k41 = Xip1/k+Kig1 (Vg — Yigr) 8)

Prii/kr1 =1 — Kep1Hp1]Pry1/a [l — Kigr

)

)
Hi]” + KR 1 Ki
Hy., = X1 (10)
8Xk+1 Xk+1:Xk+1/k

2.2. Application of the modal extended dynamic
system to the extended Kalman filter

The dynamic governing equation of the multi-degrees
of freedom system for earthquake load is as shown in
Eq, (11).

Mii + Ci + Ku = —Mii, (11)

M is the mass matrix, C the damping matrix, and
K the stiffness matrix. In addition, i, 0, u, and t, in-
dicated the acceleration, velocity, displacement, and
ground acceleration of the system, respectively. To esti-
mate the modal parameters, Eq. (11) is expanded into
modal coordinates.

K —w’M]v; =0 (12)

The eigenvector (mode shape) v acquired through
eigen value analysis by the determinant of Eq. (12) can
be represented as the modal matrix ® for all modes.
After multiplying this to both side of Eq. (11) and su-
perpositioning the mode, the modal equation for the jth

mode can be presented as shown in Eq. (13).
Gj + 2Gjw;d; +wia; = —Ljig (13)

Here, w is the natural angular frequency and ( the
modal damping ratio. The base j denotes the jth mode.
L; is the modal participation factor, and ¢, ¢, and g rep-
resent the modal response of the acceleration, velocity,
and displacement, respectively.

Applying the modal equation of Eq. (13) that was
expanded to modal coordinates to the EKF algorithm
requires the sensor measurement vector of Eq. (8) Y41
for updating the state vector in EKF must be obtained
as a modal response. However, acquiring the modal re-
sponse without additional filtering process is difficult.
Therefore, the predicted measurement vector of Eq. (6)
f(kﬂ must be acquirable with the system response for
application in reality. Using Eq. (14), the modal re-
sponse can be represented as the system response.

iy = Z @il = Di1G1 + Ginda + i3d3
j=1
e Gijd;

In Eq. (14), ¢;; indicates the jth mode eigenvector
element from the 7th degree of freedom. Additionally,
n is the total number of MDOF system’s degree of free-
dom. Eq. (14) implies that the physical behavior of the
MDOF system at the ¢th degree of freedom is equal to
the results of the total sum of modal responses of j =
1,...,n.In Eq. (14), ¢;; multiplied by §; separates by
each degree of freedom the modal response §; that in-
cludes the response of all degrees of freedom. Thus, the
modal response separated for each degree of freedom
is represented by Eq. (15).

iy = Gijq; (15)

Based on Eq. (15), the following Eq. (16) is obtained
by multiplying ¢;; to both sides of Eq. (13).

(14)

ﬂij + 2Cjwj"llij + w?iiij = —gbl‘ij’U,g :Fﬁg (16)

In Eq. (16), I is the modal participation factor sep-
arated for each degree of freedom, and Eq. (16) is a
modal equation separated for each degree of freedom
from the modal equation of Eq. (13).

Therefore, to convert the predicted measurement vec-
tor of Eq. (6) into the form of system response for each
degree of freedom, Eq. (16) was developed into an equa-
tion for the acceleration, which was reproduced into
Eq. (17) as an expression of the sum of the acceleration.

ﬂi = Z(Fug — 2Cjwj‘1lij — w?uij) (17)

j=1
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The number of modes in Eq. (17) depends on the
total number of the degree of freedom in the direction
of the sensor’s measurement. Therefore, n can be up
to as many as the degree of freedom. The predicted
measurement vector S?Hl of Eq. (6) can be determined
by the following Eq. (18) through Eq. (17).

Yir1 =h(Xeq1/k)

(18)

= (Fug — ZCjo"dij — w?uij)
j=1
The predicted measurement vector SA(;CH of Eq. (16)
is determined by the sum of modal response. Therefore,
‘A(k+1 can be obtained by the system response instead
of the modal response. This research uses the top floor
response as the system response of Eq. (8). The reason
for this is because in general the modal responses of
the top floor responses have higher the modal partici-
pation ratio in system response with a mode of a lower
degree. The following Eq. (19) is the state vector of the
structure with three degrees of freedom. In this case,
the mode occurs up to the third mode, for which n=3
determined for Eq. (18) and the predicted measurement
vector Yy 1 is determined as 2?21 1i;; if the accelera-
tion response is obtained at the top floor. Additionally,
to estimate the state variables of w and ¢, the composi-
tion of the state vector that includes w and ( is as shown
in Eq. (19).
X=[uiy @iy wy G Ty .. wgg s wy G T3] (19)

The state space equation for Eq. (19) is as shown in
Eq. (20).

uil 1.17;1

i]'il Fliig—QleiLil—wfuil
w1 0

G 0

I'y 0

X={ : 5= : (20)

U3 U3

13 Dyiig —2(3wstliz —wiuss
w3 0

2 0

Is 0

2.3. LSTM network for input load estimation

The EKF-LSTM approach developed in this study is
a method of estimating the input load by constructing
a network between the structural response and input
load as an LSTM algorithm. Therefore, the input load

becomes the output data in the LSTM algorithm and
the structural response becomes the input data. Figure 1
shows a schematic diagram of the specific EKF-LSTM
method developed in this study. In Fig. 1, the LSTM
unit can be determined by the time series length or
the number of time steps. In addition, in the LSTM
unit, information about the time sequence of training
data is transmitted through the cell state and hidden
state. Regarding the learning process in Fig. 1, structural
responses as long as the time series are input into the
LSTM unit as input data. After passing through the
learning layers of the LSTM layers, fully connected
layer, and regression layer, the predicted output and
output of the input load, which constitute the output
data, are compared with a loss function, and the weight
of the LSTM unit is updated using the optimizer. As
learning by batch progresses, learning state information
of time series data between batches is delivered by
stateful. Therefore, the time series of the training data
is learned dependently regardless of the batch. Further
details on the LSTM algorithm can be found in the
literature [60,61]. Furthermore, the loss function used
in this research as the mean square error is determined
by Eq. (21).

1 S B
55 2D (wra—ina)’ 1)
t=1d=1

In Eq. (21), S is the sequence length of the train data
and R the dimension of the output data.

In addition, the adaptive moment estimation (Adam)
optimizer applied for optimizing the weight value was
proposed by [62]. The weight value update of the train
network is determined by the following Eq. (22).

n
Vor + e

0 is the weight, bias parameter, ) the learning rate, 1
the estimate of the first moment (the mean) of the gra-
dients, and v the second moment (the uncentered vari-

ance) of the gradients. € as the default value is proposed
as 1078 [62,63].

Ori1 — 0 — e (22)

2.4. EKF-LSTM

The general flowchart for EKF-LSTM is as shown
in Fig. 2. To compose the LSTM network that can esti-
mate the input load, the structural response and the in-
put load, which is the ground acceleration, are acquired
from the SI target structure. The network using the ob-
tained structural response and input load as training
data is trained through LSTM as shown in Fig. 1. Train-
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Fig. 1. Schematic of LSTM for the estimation process of input loads.

ing proceeds only for the initially set max epoch. The
initial state vector is established to use the EKF method
for SI. The input load that was estimated through the
LSTM network trained during the calculation of the
predicted state space equation is used. This study is
composed of a state vector that includes the modal re-
sponses, frequency, and damping ratio for estimating
the modal parameters as shown in Eq. (19). In addition,
as mentioned in Section 2.2, the sensor measurement
data Y41 for application to Eq. (8) uses only the top
floor responses for proceeding with the EKF.

3. Numerical verification
3.1. 3-DOF numerical model
To verify the proposed method, a dynamic system

model with three 3-DOF was constructed and struc-
tural responses were obtained through Newmark nu-

merical analysis. The specific system parameters for
the model included a mass of 5 kg for each of the
first, second, and third floors, with each floor having
a stiffness of 1000 N/m. When the model was sub-
jected to eigen value decomposition (EVD), the nat-
ural angular frequency was approximately 6.29 rad/s,
17.63 rad/s, and 25.48 rad/s for the first, second, and
third modes, respectively, and the damping ratio for
each mode was assumed to be 1%. The applied load was
a white-noise input load. Furthermore, the sampling
frequency is 100 Hz. Figure 3 shows the training data
used as input and output data. To divide the training
data shown in Fig. 3 into the input and output datasets,
200 pieces of data were generated for each dataset and
used for LSTM learning. The learning rate was 0.001,
minibatch size was 20, maximum epoch was 5,000, and
maximum number of iterations was 50,000. The grad-
ual decrease of the loss function in Fig. 4 indicates that
the LSTM network was trained normally.

Figure 5a compares the estimated and exact ground
acceleration results. As shown on the time axis of
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(c) Ground acceleration used for the output.
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Fig. 3b, the training was conducted with a time series
length of 100 s, but the LSTM algorithm showed re-
sults over 10 s. As such, the LSTM algorithm enabled
estimation regardless of time. To compare the similarity
between the exact ground acceleration and input load
estimated by LSTM, the RMS results were compared.
The RMS results can be used as a good index for repre-
senting the average for the signal that intersects the O-
axis. The root-mean-square (RMS) result for the exact
ground acceleration was 9.8739e—05 m/s2, and the es-
timated result was 1.0336e—04 m/s2. It can be observed
that the relative error of the two for RMS is estimated
to be approximately 4.6%. Figure 5b shows a scatter
plot between the results estimated by LSTM and the
observed (measured) results. The more the predicted
results in the scatter plot match the observed results,
the more linear the plot. In addition, if an estimated
result in Fig. 5a shows a shifted bias error off the axis
of 0, the scatter plot result will appear as a parallel
translation result. In Fig 5b, the results estimated by us-
ing the LSTM algorithm show a similar gradient to the
observed results, with no bias error. Furthermore, the
R-squared value, representing the scale of regression
between the predicted and observed results, was 0.9201,
indicating a similarity of approximately 92%. There-
fore, the input load estimation using the LSTM network
proposed in this study proceeded normally, suggesting
that EKF-based SI was possible under unknown input
using LSTM.

As it is necessary to set the initial values of the state
variables of the initial state vector to execute EKF-
based SI, the initial values for modal responses up to
the third mode were set to zero, the natural angular
frequencies and the modal damping ratios were set to
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Fig. 5. Estimated ground acceleration from LSTM: (a) Comparison
between the estimated and the exact ground accelerations, and (b)
Scatter plot of predicted and exact results.

w1 = 10 rad/s, wy = 25 rad/s, wz = 30 rad/s and
(1 = (2 = (3 = 0.5, respectively. The initial error
covariance matrix Py was set to diag{1, 1, 10'°, 1019,
10'°,1,1,10'°,101°,10'°, 1, 1, 10'9, 10'°, 10°}, pro-
cess noise covariance matrix Q to 10~4I;5, and mea-
surement noise covariance matrix R to 10~%I;. The in-
put load was estimated using LSTM for 100 s, equal
to the time series length of the training data, and was
applied to EKF for SI. Figure 6 presents the SI results
obtained by using the EKF-LSTM method. Figure 6a
shows only the convergence results up to 30 s, as the
obtained natural angular frequency is a constant value
after 30 s. The RMS natural angular frequency after 20 s
estimated by the EKF was identified to be 6.29 rad/s,
17.64 rad/s, and 25.60 rad/s for the first, second, and
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Table 1

193

Modal parameter results identified as EKF-LSTM and EKF

Methods Mode

Natural angular frequency (rad/s)

Modal damping ratio

Identified

Exact . .
without noise

SNR 20 dB

Identified

without noise SNR 20 dB

Error (%)  Exact Error (%)

6.29
(6.28)
17.64

(17.59)
25.60
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ural frequency and (b) Modal damping ratio.

third modes, respectively. The EVD results were ap-
proximately 6.29 rad/s, 17.63 rad/s, and 25.48 rad/s,
with an identification error of less than 1%. The modal
damping ratio was identified as 0.0101, 0.0099, and
0.0098 for the first, second, and third modes, respec-
tively, after 20 s. The damping ratio was identified with

a maximum relative error of 2%. Considering the error
at the fourth decimal place in the damping result, even
the damping result, which showed a relatively large er-
ror, also provided similar estimation results, proving the
effectiveness of the EKF-LSTM method developed in
this study. Regarding the convergence speed of the state
vector, the convergence speed to the correct value of
the natural angular frequency and modal damping ratio
can be determined by the Py matrix. If the Py matrix
values are greater than the determined values in this
research, the convergence speed could be improved, but
the state vector stability will decrease. Moreover, the Q
and R matrices are initial parameters determined by the
process noise and measurement noise, and they are one
of the critical parameters along with the Py matrix that
determine the state vector convergence. Accordingly,
the Py, Q, and R matrices were determined through
the customary trial and error method. The individual
optimization method of the initially set EKF parameters
can be found in the following reference [41].

Table 1 presents the identification results using the
EKF-LSTM and conventional EKF methods. To ex-
amine the impact of noise on the EKF-LSTM method,
results for the case of the signal noise ratio (SNR) or
the input and structural response being 20 dB was in-
cluded. The LSTM network for estimating the input
load when SNR = 20 dB was additionally composed,
and the training data having SNR = 20 dB and no noise
was applied. The learning data and max epoch for train-
ing was identical to the value set above. Additionally,
the error listed on the table was relative error, which
was indicative for the results of identification without
noise. The results of EKF-LSTM and conventional EKF
methods were obtained within the relative error of 1%.
No significant difference was presented between the
two methods, other than the EKF method using accurate
values obtained from numerical analysis of the input
load but the EKF-LSTM method using input load esti-
mated by the LSTM network not generating noticeable
error from the estimated results. Thereby, the accuracy
of the input load estimation by the LSTM network was
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demonstrated, which accentuates the advantages of the
use of the EKF-LSTM method for unknown inputs. Ad-
ditionally, the application of the LSTM method elimi-
nates computational time issues that may occur during
input load estimation. In the case of SNR = 20 dB noise
being included, the error rate of convergence results
tended to increase in all primary to tertiary modes. In
particular, the error of the third mode increased sig-
nificantly, which was attributed to the noise and high
uncertainty of the third mode response because the top
floor response was used. Further, the error of the EKF-
LSTM and conventional EKF methods increased. In this
study, noise was not included in the previously trained
LSTM network. Therefore, the LSTM network that was
trained without noise did not generate good results for
responses including noise. However, the LSTM network
that uses responses with and without noise as training
data was able to estimate the input load up to regression
scale of R square 93% both when SNR = 20 dB and
noise was absent. Further studies on the impact of noise
are required in detail for the application of this method
in real buildings because noise problems can occur due
to environmental impact. Specific analysis regarding
this issue is discussed in subsequent research on real
building application.

Furthermore, the EKF-LSTM method can estimate
the modal response because it is composed of state vari-
ables, as indicated in Eq. (19). Figure 7 presents the
modal displacement responses of the first through third
modes estimated on the third floor. Figure 7a shows
the first modal displacement response, which is already
similar to the system displacement response with only
the first mode. This indicates that the contribution of
the first modal response to the system response was
large. Because the sum of the first through third modal
displacement responses represents the system displace-
ment response, the RMS result of adding all the modal
responses obtained from the EKF-LSTM method was
estimated to be 3.3149e—06 m. The RMS result of the
system displacement response was 3.2834e—06 m, and
the relative error with the estimated result was identified
as being less than 0.96%. This result was smaller than
the 4.6% error of the input load estimated by using the
LSTM algorithm. Because the RMS error of the input
load was approximately 4.6%, the estimated response
could also have an error of approximately 4%, but the
correction effect obtained through the Kalman gain of
the EKF algorithm seemed to have led to a more ac-
curate estimation. Thus, the EKF-LSTM method pro-
posed in this study was also effective in system response
estimation.
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Fig. 8. Steel-frame structure model design: (a) Front view, (b) Side view, (c) Experiment model.

4. Experimental verification

4.1. Experiment verification using steel-frame
structure

In this section, the structural response was obtained
by performing excitation experiments on the steel frame
structure model, and the effectiveness of the EKF-
LSTM method was verified using this response. The
design information about the steel frame structure used
in the study is provided in Fig. 8. The accelerometer
used was a PCB333B50 sensor from PCB, which had
a sensitivity of 1000 mV/g and a full-scale range of +
5 g. The data logger was an IOtech 640u from NI Instru-
ments. The shaker was an APS400 from APS Dynamics
capable of long strokes and low-frequency excitations.
To verify the EKF-LSTM method, measurement data
were acquired at a sampling frequency of 256 Hz, and
the measurements were performed for approximately
300 s.

The responses for approximately 235 s were used as
the training data by selecting only the responses with
white noise from the measurement data for the initial
300 s. Figure 9 shows the acquired training data.

The obtained response was subjected to a fast Fourier
transform (FFT) to obtain the natural frequency and

mode vector of the steel frame structure model. When
the FFT was performed, the natural frequencies were
obtained as 4.48 Hz, 14.08 Hz, and 20.09 Hz for
the first, second, and third modes, corresponding to
28.148 rad/s, 88.467 rad/s, and 126.229 rad/s, respec-
tively. Because the mode vector result corresponding
to the natural frequency showed the first through third
eigen shapes in Fig. 10b, the measurements seemed to
have been performed accurately.

The modal assurance criterion (MAC) was calculated
based on the acquired mode vector to apply the FDD
method, and the modal damping ratio was identified
using a spectral bell function of MAC 0.9 or higher.
The modal damping ratios obtained through the FDD
method were 0.0113, 0.0055, and 0.0033 for the first,
second, and third modes, respectively. To use the train-
ing data in Fig. 9 for learning, the 60,000 data points
for the total time series were divided into groups of
400 data points, yielding 150 training data sets. Among
them, 30 data sets (20%) were used as test data. As for
the hyperparameter settings for learning, the learning
rate was set to 0.0001, batch size to 60, and maximum
epoch to 200,000. Figure 11 shows the loss function of
the trained LSTM network. As the learning progressed
400,000 times, the loss function curve gradually con-
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verged, suggesting that the learning had progressed nor-
mally.

There were 30 test datasets in total, and considering
that each dataset had 400 data points and the sampling
frequency was 256 Hz, each dataset corresponded to
approximately 1.56 s. Therefore, the test data had a time
series length of approximately 46 s, and Fig. 12a shows
the ground acceleration predicted by the LSTM network
for 46 s. In the R-squared result representing the regres-
sion scale of the scatter plot in Fig. 12b, approximately
93% of the curve fitting is shown.

SI was performed using the predicted ground accel-
eration in Fig. 12 for the EKF. To execute the EKF,
the initial modal responses up to the third mode were
set to zero, the natural angular frequencies and the
modal damping ratios were set to w; = 40 rad/s, wy =

¢
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Fig. 11. Loss function plot as a function of the number of iterations.
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100 rad/s, ws = 150 rad/s, and (; = (2 = (3 = 0.5.
The initial error covariance matrix P was set to diag{1,
1, 10%, 10, 106, 1, 1, 105, 106, 106, 1, 1, 105, 106,
106}, process noise covariance matrix Q to 10741,
and measurement noise covariance matrix R to 10~ 1.
Figure 13 shows the modal parameters estimated by the
EKF-LSTM method. As shown in Fig. 13a, the natural
angular frequency was calculated to be 28.148 rad/s,
88.467 rad/s, and 126.229 rad/s for the first, second,
and third modes, respectively. The predicted first natu-
ral angular frequency was 28.36 rad/s when the RMS
was averaged after 10 s, showing a relative error of
0.75% from the results obtained by FFT. In addition,
the predicted second natural angular frequency was
88.71 rad/s, indicating a relative error of approximately
0.2%. The predicted third natural angular frequency
showed a slower convergence rate than the first and
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Fig. 13. Modal parameters of steel frame structure (a) Estimated
natural frequencies, and (b) Modal damping ratio.

second modes, which may have been due to the low
contribution of the third mode to the top floor response,
as described in Section 2.2. The predicted third natural
angular frequency was 126.882 rad/s from the RMS
average at approximately 30 s, showing a relative error
of approximately 0.5%. Figure 13b depicts the modal
damping ratios, and the RMS results were identified as
being 0.0105 and 0.0051 for the first and second modes,
respectively, after approximately 10 s. These results in-
dicated a difference of approximately 7% between the
results identified by the FDD method and the maximum
relative error. Considering the uncertainty of the modal
damping ratio, the EKF-LSTM method seemed to show
effective performance in the identification of the modal
damping ratio. The third mode converged more slowly
than the other modes, showing an unstable convergence
curve, similar to the natural angular frequency result.
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Table 2
Modal parameters identified from each method

Mode Natural angular frequency (rad/s) Modal damping ratio

EKF-LSTM FDD Error (%) EKF-LSTM FDD Error (%)
1 28.360 28.148 0.75 0.0105 0.0113 7.1
2 88.710 88.467 0.2 0.0051 0.0055 72
3 126.882 126.229 0.5 0.0028 0.0033 15
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accelerations

This instability may have been due to the fact that the
third mode had a low contribution to the system re-
sponse. The RMS result from approximately 25 s after
convergence was identified to be 0.0028.

Figure 14 shows the modal acceleration response es-
timated by the EKF. In the modal responses in Fig. 14b—
d, the mode contribution to the system response changes
with increasing mode order. In Fig. 14a, the response
by adding all the first to third modal responses appears

in a shape similar to the system acceleration response.
The relative error between the average RMS result in
Fig. 14a, which is the sum of the estimated modal re-
sponses, and the system response was calculated to be
less than 1%. Table 2 summarizes the modal parameter
estimation results by comparing the EKF-LSTM and
FDD methods. To explain further, the modal response
should show the shape of a sinusoidal wave, where the
response scale becomes smaller for a higher mode. This
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tendency was not observed in Fig. 14b—d as the data
were shuffled when composing the training data.

Figure 15 compares the computational time accord-
ing to data length of the EKF-LSTM and FDD methods.
In the application of EKF-LSTM, data was accumulated
and the change in computational time had a parabolic
form. The FDD method showed a linear pattern in the
change in computational time, and this method could
be considered to be more efficient. However, the results
of the modal damping ratio of the FDD method shows
a continuous decrease which approximated to about
0.01 from 200 s and above. Therefore, data for 200 s
or above must be used for the application of the FDD
method. In the application of the EKF-LSTM method,
results of about 0.01 is obtained relatively constantly
from about 10 s data. Thus, the computation of EKF-
LSTM method was concluded to be more efficient. This
method based on the EKF algorithm is able to estimate
data real-time for each discrete time delta t. Meanwhile,
the FDD method uses all measurement data at once for
modal analysis, and identification is impossible until
the analysis is complete.

To summarize the results obtained for the steel frame
structure model using the EKF-LSTM method, the es-
timated natural angular frequency showed an error of
less than 1%; the modal damping ratio, which has a
relatively large error, shows an error within about 15%.
Furthermore, the sum of the modal response showed an
estimation result of less than 1% error compared with
the displacement response. Among the results of the
modal parameters, the modal damping ratio showed a
rather large error of 15%, but it was still judged to be re-
liable considering the uncertainty of the modal damping
ratio. Therefore, the effectiveness of the EKF-LSTM
method proposed in this study is demonstrated in actual
structural applications.

5. Conclusions

This research proposes the EKF-LSTM method that
discerns the modal parameters with unknown input and
without computational burden. This method was ver-
ified through the 3 DOF dynamic system model, and
all modal parameters were distinguished with less than
2% maximum relative error. Further, less than 1% iden-
tification of natural angular frequency was shown in
the validation through the steel frame structure model
with 3 floors. For the modal damping ratio, a some-
what large difference of 15% was shown in the third
mode. Only the top floor responses were used, which
is why the contribution of the third mode was low and
error had occurred. Considering the uncertainty of the
modal damping ratio and that the difference was at the
third decimal digit, the modal damping ratio results can
be identified as a valid result. Additionally, the EKF-
LSTM method shows that the modal damping ratio
converges to a certain value from 10 seconds of data
length from computational time according to the data
length. Therefore, it was found to be advantageous in
terms of the computational time in comparison to the
conventional identification method.

The EKF-LSTM method only uses the top floor re-
sponses, and the estimation results lose accuracy as it
approaches higher modes. If additional research could
complement this drawback, the method will be prac-
tically applicable in actual buildings. The input load
and structural response training data must be acquired
before LSTM training for EKF-LSTM application in
actual buildings. In actual buildings, input load and
structural response may be impossible to obtain because
ground loading is difficult. Therefore, to apply the EKF-
LSTM method to real buildings, additional research
must verify whether the input load and structural re-
sponse obtained from the model updated finite element
model that mocks the actual structural behavior can be
used as training data. Further, research on the applica-
bility of the input load as an alternative to the unobtain-
able ground acceleration is required by transforming
the input load into the load of each floor.
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