Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Luo, Jinkun | He, Fazhi* | Gao, Xiaoxin
Affiliations: School of Computer Science, Wuhan University, Wuhan, China
Correspondence: [*] Corresponding author: Fazhi He, School of Computer Science, Wuhan University, Wuhan, China. E-mail: [email protected].
Abstract: Identifying photovoltaic (PV) parameters accurately and reliably can be conducive to the effective use of solar energy. The grey wolf optimizer (GWO) that was proposed recently is an effective nature-inspired method and has become an effective way to solve PV parameter identification. However, determining PV parameters is typically regarded as a multimodal optimization, which is a challenging optimization problem; thus, the original GWO still has the problem of insufficient accuracy and reliability when identifying PV parameters. In this study, an enhanced grey wolf optimizer with fusion strategies (EGWOFS) is proposed to overcome these shortcomings. First, a modified multiple learning backtracking search algorithm (MMLBSA) is designed to ameliorate the global exploration potential of the original GWO. Second, a dynamic spiral updating position strategy (DSUPS) is constructed to promote the performance of local exploitation. Finally, the proposed EGWOFS is verified by two groups of test data, which include three types of PV test models and experimental data extracted from the manufacturer’s data sheet. Experiments show that the overall performance of the proposed EGWOFS achieves competitive or better results in terms of accuracy and reliability for most test models.
Keywords: Grey wolf optimizer, solar cell, parameter identification, multimodal optimization, photovoltaic models, meta-heuristics
DOI: 10.3233/ICA-220693
Journal: Integrated Computer-Aided Engineering, vol. 30, no. 1, pp. 89-104, 2023
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]