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Abstract. Focusing on the problems of failing to make full use of spatial context information and
limited local receptive field when U-Net is utilized to solve MRI brain tumour segmentation, a novel
3D multi-scale attention U-Net method, i.e. MAU-Net, is proposed in this paper. Firstly, a Mixed
Depth-wise Convolution (MDConv) module is introduced in the encoder and decoder, which lever-
ages various convolution kernels to extract the multi-scale features of brain tumour images, and
effectively strengthens the feature expression of the brain tumour lesion region in the up and down
sampling. Secondly, a Context Pyramid Module (CPM) combining multi-scale and attention is em-
bedded in the skip connection position to achieve the combination of local feature enhancement
at multi-scale with global feature correlation. Finally, MAU-Net adopts Self-ensemble in the de-
coding process to achieve complementary detailed features of sampled brain tumour images at dif-
ferent scales, thereby further improving segmentation performance. Ablation and comparison ex-
periment results on the publicly available BraTS 2019/2020 datasets well validate its effectiveness.
It respectively achieves the Dice Similarity Coefficients (DSC) of 90.6%/90.2%, 82.7%/82.8%, and
77.9%/78.5% on the whole tumour (WT), tumour core (TC) and enhanced tumour (ET) segmen-
tation. Additionally, on the BraTS 2021 training set, the DSC for WT, TC, and ET reached 93.7%,
93.2%, and 88.9%, respectively.
Key words: brain tumour segmentation, deep learning, 3D U-Net, multi-scale feature, attention
mechanism.

1. Introduction

Gliomas are the most common primary intracranial tumours and are also a class of tu-
mours refractory to neurosurgical treatment (Herholz, 2017). Since the tumour area is
located in the cranial cavity and cannot be observed directly, magnetic resonance imaging
(MRI), with its ability to produce high-quality and non-invasive brain images, has become
a major technique for doctors to clinically diagnose and treat brain tumours (van Dijken et
al., 2017). For the precise execution of brain tumour surgeries, the necessity often arises
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for radiologists to manually delineate the tumour region, thereby affording clinicians with
diagnostic benchmarks. However, this technology is afflicted by substantial subjectivity
and diminished efficiency, making it challenging to fulfill the demands of extensive tu-
mour image segmentation (Işın et al., 2016). Therefore, automatic segmentation of lesion
regions from magnetic resonance images of brain tumours, aimed at aiding medical prac-
titioners in treatment, emerges as a prominent research area within the realm of medical
imaging (Hussain et al., 2018).

In recent years, owing to the remarkable success of Convolutional Neural Networks
(CNNs) in various computer vision tasks, the community of brain tumour segmentation
has witnessed a gradual shift towards CNN-based approaches as the prevailing method-
ology. During its early stages, this approach predominantly embraced the concept of clas-
sifying small-scale image blocks, initially partitioning brain tumour MRI images into
smaller segments. Subsequently, these small image blocks were channeled into the CNN
classification network, and the resultant classifications of all image blocks were amal-
gamated to achieve comprehensive tumour segmentation (Zikic et al., 2014; Urban et
al., 2014; Kamnitsas et al., 2017). Despite the substantial performance enhancements
achieved by the CNN method compared to traditional brain tumour segmentation tech-
niques, it grapples with challenges such as extensive computational requirements and di-
minished operational efficiency (Rao et al., 2015).

The introduction of the Fully Convolutional Network (FCN) by Long et al. (2015)
marked a pivotal advancement in addressing the brain tumour segmentation challenge,
enabling end-to-end semantic segmentation of brain tumour images. Subsequently, Ron-
neberger et al. (2015) presented U-Net, a significant variant of FCN that has progressively
established itself as the predominant method for numerous medical image segmentation
tasks, owing to its benefits of minimal sample requirements, high segmentation preci-
sion and speed. Concurrently, the remarkable progress in computer hardware capabilities
has given rise to 3D segmentation networks, which excels in capturing the contextual in-
formation of brain tumours, thereby gradually exhibiting heightened performance advan-
tages. Leveraging the 3D U-Net (Çiçek et al., 2016) segmentation model as a foundation,
researchers have introduced advanced modelling techniques, including residual models
(Russakovsky et al., 2015; Chen et al., 2018), attention mechanisms (Hu et al., 2018; Wang
et al., 2018), multi-scale fusion (Kirillov et al., 2019; Bao and Chung, 2018), and Trans-
formers (Dosovitskiy et al., 2020; Liu et al., 2021b). These augmentations enhance the ca-
pability to express coded features and fuse coded features, thereby improving brain tumour
segmentation precision further. Consequently, they make a valuable contribution to the
evolution of the 3D U-Net brain tumour segmentation model, solidifying its position as the
predominant method for brain tumour segmentation tasks. Although these methods have
achieved satisfactory results, they do not specifically target small-sized brain tumours, so
there is still potential for improvement in the accurate segmentation of brain tumours.

Therefore, this paper employs the 3D U-Net as the base model, and focuses on en-
hancing the multi-scale features and feature attention expression in MRI brain tumour
images to extract small-scale tumour spatial information. We introduce the multi-scale
approach at three levels, including network coding and decoding feature extraction, cod-
ing and decoding feature skip connections, and decoding and segmentation result output.
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Simultaneously, within the coding and decoding feature skip connections, we integrate
the attention mechanism to emphasize the segmentation of small-scale tumours. Conse-
quently, a novel method is proposed, termed the Multiple Attention U-Net (MAU-Net), to
address the MRI brain tumour segmentation task. The contributions of this paper can be
summarized as follows:

(1) In this paper, we propose a novel brain tumour segmentation method called MAU-Net,
which effectively captures spatial contextual information by employing convolutional
kernels of varying scales with attention mechanism, thereby improving small size
tumour location details and tumour segmentation accuracy.

(2) MAU-Net introduces Mixed Depth-wise Convolutions in the encoder and decoder
to extract multi-scale brain tumour features, and leverage Context Pyramid Modules
combining multi-scale with attention embedded in the skip connection position to
combine local features and global features. Besides, it also adopts Self-ensemble in
the decoding process to further improve segmentation performance.

(3) We comprehensively evaluated MAU-Net on the publicly available BraTS 2019,
BraTS2020 and BraTS 2021 brain tumour image datasets. Ablation experiments,
visualization results alongside comparisons with representative methods effec-
tively demonstrate the effectiveness of MAU-Net for MRI brain tumour segmenta-
tion.

The rest of the paper is organized as follows. Section 2 reviews the theoretical foun-
dation and recent studies. Section 3 describes the methodology. Section 4 describes the
dataset processing and experimental configuration. Section 5 discusses the experimental
results. Section 6 concludes the paper.

2. Related Work

2.1. Brain Tumour Segmentation

In the realm of medical image segmentation tasks, the continual advancement of deep
learning has given rise to numerous methods for brain tumour segmentation. These seg-
mentation approaches, rooted in deep learning, autonomously acquire image features,
yielding commendable segmentation outcomes. Notably, U-Net variant methods, founded
upon the U-Net architecture, have gained considerable attention and prominence. Zhou
et al. (2019) introduced Unet++, a U-Net variant incorporating multi-scale feature fu-
sion and more efficient skip connections. This modification aims to augment the model’s
capacity for extracting and fusing features at varied scales, thereby diminishing redun-
dant features in the skip connections and enhancing the model’s efficiency and perfor-
mance. Milletari et al. (2016) proposed V-Net, which fine-tunes the U-Net structure on
3D MRI data. The model employs the Dice coefficient as a loss function, calculating the
similarity between predicted images and the Ground Truth. Subsequently, the Dice loss
has become a prevalent choice for loss functions in medical image segmentation tasks.
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Akbar et al. (2022) presented a shallow 3D U-Net model featuring a distinctive down-
sampling strategy. This streamlined architecture utilizes a multipath convolutional block,
incorporating residual modules and atrous convolution to mitigate gradient instability.
Attention gates are integrated into the skip connections, amplifying the segmentation tar-
get features. González et al. (2021) employed an asymmetric U-Net, enhancing feature
extraction and reconstruction capabilities for improved brain tumour segmentation re-
sults. Moreover, Guo et al. (2020) cascaded multiple segmentation networks using U-Nets
within a single network. This approach segments different regions of brain tumours se-
quentially, with each U-Net incorporating a global context block to capture long-range
dependencies, inter-channel dependencies, and depth supervision. This enables the net-
work to finely segment brain tumours in a stage-wise manner. Cirillo et al. (2021) pro-
posed a GAN-based brain tumour segmentation method employing a U-Net generative
model and the same discriminative model as the encoder in the U-Net. This configura-
tion enables the network to generate realistic segmentation results from MRIs through a
zero-sum game.

2.2. Attention Mechanism

In vision tasks, attention mechanisms play a pivotal role in the selection of key informa-
tion and the deliberate exclusion of extraneous details. SENet (Hu et al., 2018) places
emphasis on channels with noteworthy contributions to optimize the selection of feature
maps. Concurrently, CBAM (Woo et al., 2018) attains superior results by incorporating
considerations for both channels and spatial dimensions. The Non-Local (Wang et al.,
2018) method introduces a global receptive field into the network by computing inter-
actions between any two positions in the feature map. This facilitates the direct capture
of long-range dependencies, effectively substantiating the visual task importance of such
dependencies.

In the brain tumour segmentation task, the attention mechanism is similarly able to
assign different weights to the input information, effectively suppressing uninteresting
features and focusing the network on more discriminative features. For example, Jun et al.
(2021) introduced attention gates into the skip connections of U-Net to suppress features
irrelevant to the task, enhancing the performance of brain tumour segmentation. Liu et
al. (2021a) introduced a context-guided attention network proficient in capturing high-
dimensional and high-temporal resolution features by leveraging contextual information
within the convolutional space and the feature interaction graph. This approach adeptly
discriminates brain tumour features. Moreover, they introduced a context-guided condi-
tional random field for selective feature aggregation, refining the segmentation of brain
tumours. Wang et al. (2020) proposed a global aggregation block serving as an encoder
and decoder based on self-attention, enabling the network to aggregate global informa-
tion without necessitating a deep encoder. Additionally, Wang et al. (2021) introduced the
self-attention-based Transformer into the bottleneck layer in U-Net, presenting TransBTS.
This model exhibits exceptional brain tumour segmentation performance attributed to the
potent remote modelling capabilities of the Transformer.
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3. Proposed Model: MAU-Net

3.1. Overall Structure

MAU-Net adopts the 3D brain tumour segmentation U-Net as the base network, primar-
ily incorporating a down-sampled coding layer module, an up-sampled decoding layer
module, a skip connection module interconnecting coding and decoding layers, and a de-
coder feature map integration module within its structure. Notably, both the number of
encoders and decoders is established at four, as depicted in Fig. 1. To facilitate the un-
derstanding of MAU-Net, the network structure table is given Table 1. Figure 1 illustrates
the specific structure of the MAU-Net. Each encoder incorporating one Mixed Depth-wise
Convolution (MDConv) Block and one max pooling. Within this context, MDConv Block
comprises one regular convolutional unit and one MDConv unit connected sequentially.
The regular convolutional unit serves the initial extraction of network features, while the
mixed convolutional unit is employed for capturing feature maps with differing receptive
field sizes. The max pooling is utilized for size reduction in the feature maps, thereby low-
ering computational resource consumption and mitigating network overfitting. After four
layers of encoding, the feature map dimensions of the brain tumour image are ultimately
reduced from 128×128×128 to 8×8×8, and the number of channels increases from 4 to
256. Each decoder employs a structure identical to that of the encoder, with the exception
that MPL is substituted with Trilinear Interpolation to restore the feature map dimensions.
After four decoders, a feature map matching the size of the input image is achieved.

The skip connections merge the shallow features, imbued with valuable location in-
formation in the encoder, with the corresponding deep features in the decoder, within
the channel dimension. Nevertheless, it is relevant to note that the shallow features also
incorporate redundant original information. To address this concern, a Context Pyramid
Module (CPM) has been introduced to mitigate feature responses in irrelevant regions and
enhance overall performance. Considering the computational resources needed for net-

Fig. 1. Structure of the proposed MAU-Net.
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Table 1
MAU-Net network structure table. Square brackets indicate the MDConv structure.

Output size Encoder Decoder

128 × 128 × 128 Conv3d, 3 × 3 × 3, 16 Conv3d, 3 × 3 × 3, 64
⎡
⎣

DWConv3d, 3 × 3 × 3, 16/G

DWConv3d, 5 × 5 × 5, 16/G

DWConv3d, k × k × k, 16/G

⎤
⎦

Trilinear Interpolation
Conv3d, 3 × 3 × 3, 32⎡

⎣
DWConv3d, 3 × 3 × 3, 32/G

DWConv3d, 5 × 5 × 5, 32/G

DWConv3d, k × k × k, 32/G

⎤
⎦

Conv3d, 1 × 1 × 1, 32

64 × 64 × 64 Max Pooling Conv3d, 3 × 3 × 3, 32
Conv3d, 3 × 3 × 3, 32 Trilinear Interpolation⎡

⎣
DWConv3d, 3 × 3 × 3, 32/G

DWConv3d, 5 × 5 × 5, 32/G

DWConv3d, k × k × k, 32/G

⎤
⎦

Conv3d, 3 × 3 × 3, 64⎡
⎣

DWConv3d, 3 × 3 × 3, 64/G

DWConv3d, 5 × 5 × 5, 64/G

DWConv3d, k × k × k, 64/G

⎤
⎦

Conv3d, 1 × 1 × 1, 64

32 × 32 × 32 Max Pooling Conv3d, 3 × 3 × 3, 256
Conv3d, 3 × 3 × 3, 64 Trilinear Interpolation⎡

⎣
DWConv3d, 3 × 3 × 3, 64/G

DWConv3d, 5 × 5 × 5, 64/G

DWConv3d, k × k × k, 64/G

⎤
⎦

Conv3d, 3 × 3 × 3, 128⎡
⎣

DWConv3d, 3 × 3 × 3, 128/G

DWConv3d, 5 × 5 × 5, 128/G

DWConv3d, k × k × k, 128/G

⎤
⎦

Conv3d, 1 × 1 × 1, 128

16 × 16 × 16 Max Pooling Trilinear Interpolation
Conv3d, 3 × 3 × 3, 128 Conv3d, 3 × 3 × 3, 256⎡

⎣
DWConv3d, 3 × 3 × 3, 128/G

DWConv3d, 5 × 5 × 5, 128/G

DWConv3d, k × k × k, 128/G

⎤
⎦

⎡
⎣

DWConv3d, 3 × 3 × 3, 256/G

DWConv3d, 5 × 5 × 5, 256/G

DWConv3d, k × k × k, 256/G

⎤
⎦

Context Pyramid Module (CPM)

8 × 8 × 8 Max Pooling
Conv3d, 3 × 3 × 3, 256⎡

⎣
DWConv3d, 3 × 3 × 3, 256/G

DWConv3d, 5 × 5 × 5, 256/G

DWConv3d, k × k × k, 256/G

⎤
⎦

work training, the CPM is exclusively integrated within the fourth skip connection, while
the remaining layers 1–3 utilize basic skip connections. Finally, a self-ensemble operation
is included to facilitate the gradual fusion of feature maps from the upper three levels of
the decoder, which enhances the robustness of the model for brain tumour segmentation.

3.2. Mixed Depth-Wise Convolution (MDConv)

In recent convolutional neural networks, Depth-wise Convolution (DConv) is often used
instead of conventional convolution to reduce the amount of computation and the number
of parameters, e.g. MobileNets (Sandler et al., 2018), ShuffleNets (Zhang et al., 2018),
and MnasNet (Tan et al., 2019), but this type of DConv also extracts features using a
fixed-size convolution kernel similarly to the conventional convolution, which results in
a fixed convolutional sensory field and makes it difficult to capture spatial information
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Fig. 2. Differences among (a) Convolution, (b) Depth-wise Convolution and (c) Mixed Depth-wise Convolution.

of different sizes. To this end, Tan and Le (2019) combined different sized convolution
kernels to construct a new Mixed Depth-wise Convolution (MDConv), which can use a
large convolution kernel to capture high-resolution information, and a small convolution
kernel to capture low-resolution information, which effectively improves the performance
of convolution to extract spatial features.

In the context of specific implementation, MDConv differs somewhat from conven-
tional convolution and DConv. The number of channels within each convolution kernel in
the standard convolution aligns with the number of channels in the input feature map, while
the count of channels in the output feature map corresponds to the quantity of convolution
kernels used. In DConv, each convolution kernel possesses a channel count of 1 with each
kernel responsible for computing a single channel in the feature map. Consequently, the
number of convolution kernels aligns with the number of channels in both the input and
output feature maps. Based on DConv, MDConv organizes convolution kernels of diverse
sizes into groups for each channel. Different groups employ convolution kernels with a
channel count of 1 and it should be noted that MDConv is equivalent to DConv when the
grouping is set to 1. Since the number of output channels in both DConv and MDConv
matches the number of input channels, a modification of channel count is implemented
using a 1×1×1 convolution to facilitate insertion at various positions within the network.
The specific structure of MDConv and its distinction from conventional convolution and
DConv is depicted in Fig. 2. Given that brain tumour MRI involves three-dimensional
imaging, we initially extended MDConv from a 2D context to its 3D counterpart. Sub-
sequently, we integrated this extended MDConv into the 3D U-Net framework. To mit-
igate the substantial increase in computation arising from the fusion of 3D convolution
with large-sized convolution kernels, the feature map channels entering MDConv were
equally partitioned into two groups. One group employed convolution kernels of dimen-
sions 3×3×3 while the other utilized convolution kernels sized 5×5×5. These kernels
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were introduced in place of the second convolution in the coding and decoding layers.
The incorporation of MDConv into brain tumour segmentation facilitates the capture of
spatial features of varying scales, leading to an enhancement in the performance of brain
tumour segmentation.

3.3. Context Pyramid Module (CPM)

Global information plays a pivotal role in image analysis and comprehension. The in-
corporation of non-local attention mechanisms to capture long-range dependencies and
acquire global information represents a typical approach. To overcome the limitations of
calculating non-local attention solely at a single scale, Zhang et al. (2021) introduced
an Attention-Guided Context Block (AGCB). This AGCB amalgamates both local and
non-local attention and integrates it with the original feature maps in a multi-scale config-
uration, constituting a Context Pyramid Module (CPM). This approach has demonstrated
robust performance in the detection of small infrared targets. Given the distinct morpho-
logical variations in brain tumour images and the presence of numerous small tumour
regions that pose challenges for accurate segmentation, this paper endeavours to extend
the CPM module from 2D to its 3D counterpart. The aim is to improve network segmen-
tation performance by introducing this extension module within the framework of a 3D
brain tumour segmentation.

The AGCB module primarily comprises two branches. In the upper branch, global con-
text module attention is employed to compute global correlations, enabling the network
to differentiate small targets through the utilization of global information. In the lower
branch, the input feature map is partitioned into non-overlapping segments, facilitating
the computation of voxel correlations within each segment. This process enhances local
feature extraction capabilities, as depicted in Fig. 3. The top branch applies adaptive av-
erage pooling to the input feature map X ∈ R

C×D×H×W to derive the sparse feature map
G ∈ R

C×s×s×s Subsequently, the feature map G is subjected to three parallel 1 × 1 × 1
convolutions to produce three distinct feature maps, denoted as q (query), k (key), and

Fig. 3. Structure of Attention-Guided Context Block.
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v (value). Autocorrelations between voxels are computed through the multiplication of the
q and k values and are further processed using Softmax to derive attention weight coeffi-
cients. These coefficients are then multiplied with the v values, resulting in the non-local
correlation. Subsequently, a 1 × 1 × 1 convolution is applied to enhance and combine
these correlations with the input feature maps, yielding the non-local attention. Finally,
the global features are passed through the Sigmoid function to generate the weight coeffi-
cients G′ ∈ R

C×s×s×s . The lower branch divides the input feature map X ∈ R
C×D×H×W

into i smaller feature map parcels, denoted as P ∈ R
C×d×h×w, where i ∈ s × s × s,

d = D/s, w = W/s, and h = H/s. Within each parcel of feature maps, voxel cor-
relations are computed using non-local attention. Subsequently, each non-local attention
parcel is integrated into a newly formed locally correlated feature map, represented as
Pi ∈ R

C×D×H×W . This process restricts the perceptual field of the network to a local-
ized region and exploits the correlation between voxels in the local range to aggregate
like voxels. To merge the feature maps from the upper and lower branches, the weights
in the global correlation feature map are multiplied by the corresponding parcels in the
local correlation feature map to identify the salient parcels. Finally, all the small parcels
are concatenated to form a complete block. Simultaneously, the original input feature map
is summed to restore inter-block edge information, and the ReLU activation function is
applied to introduce nonlinearity. This results in the output of an AGCB module, as de-
picted in equation (1), where δ signifies the ReLU activation function and β represents
the adaptive learning parameters.

Ap = β × δ
(
W

[
P1G

′
1, P2G

′
2, . . . , P(s2)G

′
(s2)

]) + X. (1)

The AGCB module employs non-local attention based on G′ and Pi . The computation of
non-local attention in the upper branch of the AGCB module amounts to s3 × C2, while
the computation of non-local attention in the lower branch is i/2 × d2 × w2 × h2 × C2.
The computational load of the AGCB module, following the merging of the upper and
lower branches, can be expressed as equation (2):

MAGCB = s3 × C2 + i/2 × d2 × w2 × h2 × C2 + s3, (2)

MNon-local = 2 × D2 × W 2 × H 2 × C2 + s3. (3)

The computational load of applying non-local attention directly to the input feature map
can be described by equation (3), and as a result, the AGCB module mitigates the supple-
mentary computational burden linked to the integration of non-local attention.

The CPM module comprises multiple AGCB modules of varying scales, thereby amal-
gamating multi-scale features to augment network performance. The CPM structure is vi-
sually depicted in Fig. 4. The feature map X ∈ R

C×D×H×W is subjected to downsizing
through a 1 × 1 × 1 convolution, following which it is concurrently input into multi-
ple AGCB modules of distinct scales. The result is denoted as A = {As1, As2, As3, . . .},
where s signifies the scale vector. Subsequently, multiple feature maps A = {Ai} are fused
with the original feature maps. Then, the number of channels is reduced using 1 × 1 × 1
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Fig. 4. Structure of context pyramid module.

convolution to dimension c, culminating in the output of the CPM module, and thereby
establishing a context pyramid encompassing various AGCB scales.

The computational load of the CPM module escalates as it is required to compute non-
local attention on the 3D feature maps multiple times, causing a size difference of 2×2×2
for each layer of feature maps. Furthermore, considering hardware constraints, this paper
exclusively incorporates the CPM module within the fourth layer of the transversal con-
nection. The AGCB module employed in this context utilizes only two scales, specifically
s = 1 and s = 2. Despite the augmented computational demand on the model, it yields a
substantial enhancement in brain tumour segmentation.

3.4. Self-Ensemble

Although U-Net uses skip connection to enhance the decoder ability to recover high-
resolution spatial information, it falls short for fine segmentation of brain tumours with
blurred edges. For this reason, Zhao et al. (2020) fused features from different layers in a
serial structure to form a Self-ensemble (S.E) module, which reduces the loss of spatial
information during up-sampling and enables the network to segment finer tumour edges.
In the specific implementation, the decoders of the first to the third layers in the 3D U-Net
are reduced to the number of channels to the number of categories using 1 × 1 × 1 con-
volution, respectively, and the three dimensionality-reduced feature maps are cascaded to
the final brain tumour segmentation result, which is structured as in Fig. 1.

4. Experiments

4.1. Experimental Environment

In our study, the experiments were conducted using a single Nvidia RTX 3090 GPU with
24 GB of memory, and the PyTorch deep learning framework was employed. The model
was trained using the Adam optimizer, with a momentum value of 0.95 and a weight decay
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factor of 1 × 10−5. The learning rate decayed exponentially, starting with an initial rate
of 0.001, and the batch size was set to 4. A total of 500 training epochs were completed.

4.2. Datasets and Data Processing

4.2.1. Datasets
Three publicly available datasets were used for the experiments, namely BraTS 2019,
BraTS 2020 and BraTS 2021 (Bakas et al., 2017; Menze et al., 2014; Baid et al., 2021).
The BraTS 2019 dataset consists of 335 glioma patient cases for training and 125 sam-
ples of unknown tumour types for validation. The BraTS 2020 dataset training set con-
sists of 369 glioma patient cases and the validation set consists of 125 cases of unknown
tumour types. Due to the closure of the official validation process for BraTS 2021, we
conducted a five-fold cross-validation using the BraTS 2021 training set, which includes
1251 glioma patient cases. Each sample in the dataset consists of four modalities: T1-
weight (T1), post-contrast T1-weighted (T1ce), T2-weighted (T2), and T2 Fluid Attenu-
ated Inversion Recovery (FLARE), as depicted in Fig. 5. The image size for each modality
is 240 × 240 × 155. Furthermore, the training set includes manually annotated ground
truth labels by an expert, encompassing background (label 0), Non-Enhancing tumour
(label 1), Peritumoural Edema (label 2), and Enhancing Tumour (label 4). To maintain
the fairness of the experimental results, the validation set does not disclose the ground
truth, and its segmentation results must be evaluated through an online server available
at https://ipp.cbica.upenn.edu/. The MRI brain tumour segmentation objectives comprise
three distinct regions: Enhancing Tumour (ET), Tumour Core (TC), and Whole Tumour
(WT). Each tumour region corresponds to different labels: ET contains label 4, TC con-
tains labels 1 and 4, and WT contains labels 1, 2, and 4.

Fig. 5. MRI in different modes and ground truth.

https://ipp.cbica.upenn.edu/
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4.2.2. Data Preprocessing
Given that the BraTS dataset includes four modalities per case, resulting in varying image
contrasts, we employed z-score normalization independently for each case. The mean and
standard deviation were calculated based on the non-zero voxels within the brain region
defined by the corresponding segmentation mask. This approach ensures that the normal-
ization process closely aligns with the unique characteristics of each case while maintain-
ing consistency across modalities within the same case, thereby improving the focus on
relevant brain tissue regions. During the training phase, each case was randomly cropped
to dimensions of 128×128×128, a size large enough to cover most brain tumour regions
while retaining sufficient contextual information. Subsequently, the training set samples
were augmented through random flipping in the axial, coronal, and sagittal directions with
a probability of 0.5. Additionally, random rotations were applied along each axis within a
range of [−10◦,+10◦], ensuring that rotational invariance was achieved while preserving
the original image structure. Finally, sample diversity was further increased by scaling
each voxel using a uniform random factor between [0.9, 1.1] and adding a constant sam-
pled from a uniform distribution in the range of [−0.1,+0.1]. Care was taken to select
scaling factors that would avoid excessive noise or blurring effects.

4.2.3. Data Postprocessing
In the prediction stage, to prevent downsampling dimension mismatches, the original im-
age is padded with zeros. Consequently, the original image size of 240 × 240 × 155 be-
comes 240 × 240 × 160 after padding. To enhance the robustness of the segmentation
results, Test-Time Augmentation (TTA) (Wang et al., 2019) was applied. Furthermore,
a post-processing step was implemented, where voxels with counts less than 500 were
reclassified as Whole Tumour (WT) instead of Enhancing Tumour (ET). This step was in-
troduced to avoid misclassification of brain tumours that lack Enhancing Tumour regions
as having ET, as such false-positive ETs significantly impact segmentation results.

4.3. Evaluation Metrics

In our study, we employed two key metrics, namely the Dice Similarity Coefficient (DSC)
and the Hausdorff Distance (HD), for the evaluation of brain tumour segmentation across
the regions of WT, TC, and ET. The DSC quantifies the degree of similarity between two
samples, with values ranging from 0 to 1. A value closer to 1 indicates a higher degree
of similarity. Meanwhile, the HD measures the maximum distance between any two sets
within an array in the spatial domain. To mitigate the impact of potential outliers within the
dataset, the final result is adjusted by a factor of 95%. Smaller Hausdorff95 values corre-
spond to reduced spatial distances between subsets, indicative of improved segmentation
outcomes.

4.4. Loss Function

To address the substantial class imbalance issue inherent in brain tumour segmentation, we
employ a hybrid loss function represented as L. This function combines the Cross Entropy
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(CE) loss, represented as LCE , and the Dice similarity coefficient loss, represented as
LDice. These components can be formulated as equations (4), (5), and (6), respectively:

L = (1 − α)LCE + αLDice, (4)

LCE = − 1

N

N∑
i=1

L∑
j=1

gij log(pij ), (5)

LDice = 1 − 2
(∑N

i=1
∑L

j=1 gijpij

) + ξ
∑N

i=1
∑L

j=1 gij + ∑N
i=1

∑L
j=1 pij + ξ

. (6)

In the above equation, the parameter α serves as a balancing factor, taking values in the
range from 0 to 1, and was fixed at 0.25 in our experiments. Here, N represents the set
of voxel points in the prediction results, while L denotes the set of pixel points in the
ground truth. Additionally, gij represents the true class, and pij corresponds to the pre-
dicted value. The symbol ξ represents the smoothing operator, which was set to 0.00001
in our experiments to prevent the denominator from reaching zero.

5. Results

In this study, we aim to demonstrate the effectiveness and competitiveness of the proposed
MAU-Net. We conducted experiments using the BraTS2019 and BraTS2020 datasets to
validate the performance of the model. First, a 5-fold cross-validation experiment was
performed on the BraTS2019 and BraTS2020 training set, and the segmentation results
were visualized. Second, ablation experiments were carried out on the BraTS2019 and
BraTS2020 validation sets to demonstrate the effectiveness of the proposed method. Fi-
nally, comparisons were made with other representative methods on the BraTS 2019 and
BraTS 2020 validation sets. Additionally, five-fold cross-validation experiments were con-
ducted on the BraTS 2021 training set. The extensive comparative experiments demon-
strate the advanced performance and competitiveness of the proposed method.

5.1. Ablation Experiment

To comprehensively assess the effectiveness of the incorporated modules, we conducted
ablation experiments on the BraTS 2019 dataset and BraTS 2020 dataset. These experi-
ments involved using the 3D U-Net as the baseline method and separately adding MDConv
and CPM to the 3D U-Net. We initially examined the performance of incorporating both
the MDConv and CPM modules. Subsequently, we verified the validity of the final method,
MAU-Net, by introducing the self-ensemble module. To facilitate comparisons, we use
“Mix”, “CPM” to denote the experimental results when incorporating MDConv and CPM,
respectively.

First, we implemented a five-fold cross-validation strategy on the BraTS 2019 and
BraTS 2020 training sets. The datasets were randomly divided into five subsets, with each
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Table 2
Ablation experiments on BraTS training set.

Dataset Methods DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

BraTS2019 U-Net (baseline) 77.3 90.0 82.3 6.48 5.34 8.54
U-Net+Mix 78.1* 90.3 83.1* 4.39* 4.32* 7.35
U-Net+CPM 78.3* 90.5 83.5* 4.51* 4.51 6.78*
U-Net+Mix+CPM 78.9* 90.7* 84.0* 3.78* 4.01* 6.03*
MAU-Net 79.5* 90.8* 84.3* 3.45* 3.79* 5.43*

BraTS2020 U-Net (baseline) 79.4 90.5 82.6 26.60 5.14 8.73
U-Net+Mix 79.6 91.1* 84.0* 25.48* 4.97 10.47
U-Net+CPM 79.5 91.5* 83.2* 26.61 4.64 6.84*
U-Net+Mix+CPM 80.4* 91.1* 84.4* 28.01 4.48* 8.48
MAU-Net 80.7* 91.3* 85.1* 26.31 4.35* 6.16*

* Denotes comparison with U-Net by Wilcoxon signed rank test (p-value < 0.05).

iteration reserving one subset as the validation set and using the remaining subsets for
training. This approach ensured comprehensive and stable evaluation. The results of the
ablation experiments, averaged over the five iterations, are presented in Table 2. The ex-
periments demonstrated that the MAU-Net model, which integrates MixConv, CPM, and
S.E modules within a 3D U-Net architecture, achieved optimal performance across both
datasets. Compared to the baseline U-Net model, MAU-Net showed significant improve-
ments in DSC and reductions in Hausdorff95 distance. Specifically, in BraTS 2019, DSC
improvements were observed for ET, WT, and TC, with increases of 2.2%, 0.8%, and
2%, respectively, while Hausdorff95 was reduced by 3.03 mm, 1.55 mm, and 3.11 mm. In
BraTS 2020, DSC improvements were 1.3% for ET, 0.8% for WT, and 2.5% for TC, with
corresponding reductions in Hausdorff95 by 0.29 mm, 0.79 mm, and 2.57 mm.

To further validate the effectiveness of the individual modules, we conducted addi-
tional ablation experiments on the validation sets of BraTS 2019 and BraTS 2020. The
segmentation models trained on the training sets were used to predict the validation sets,
with the results submitted to an online evaluation platform to enhance the reliability and
impartiality of the findings. The results are shown in Table 3. In the BraTS 2019 validation
set, incremental introduction of the MixConv and CPM modules into the 3D U-Net re-
sulted in notable increases in DSC values for ET, WT, and TC, particularly for TC, where
the inclusion of MixConv and CPM led to a 1.5% improvement. This highlights their
effectiveness in segmenting small-volume targets. When both modules were integrated
into U-Net, further improvements of 0.7% for ET and 1.8% for TC were observed. To
further optimize brain tumour segmentation performance, MAU-Net incorporated a self-
assembly module, achieving DSC values of 77.9%, 90.6%, and 82.7% for ET, WT, and
TC, respectively. Compared to U-Net, MAU-Net demonstrated substantial performance
advantages, with DSC improvements of 1.4% for ET and 2.4% for TC, validating the pos-
itive impact of the embedded modules in brain tumour segmentation tasks. Additionally,
MAU-Net significantly reduced Hausdorff95 distance, with reductions of 0.89 mm for
ET, 0.61 mm for WT, and 1.42 mm for TC, further confirming the effectiveness of Mix-
Conv, CPM, and the self-assembly mechanism in enhancing segmentation accuracy. In the
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Table 3
Ablation experiments on BraTS validation set.

Dataset Methods DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

BraTS2019 U-Net (baseline) 76.5 90.6 80.3 3.94 4.68 6.82
U-Net+Mix 76.8 90.8 81.8* 2.81* 4.40 5.95 *
U-Net+CPM 76.7 90.5 81.8* 3.97 4.56 6.55
U-Net+Mix+CPM 77.2* 90.6 82.1* 3.14* 4.30* 6.14
MAU-Net 77.9* 90.6 82.7* 3.05* 4.07* 5.40*

BraTS2020 U-Net(baseline) 76.9 89.3 79.9 32.56 7.70 12.11
U-Net+Mix 77.4* 90.0* 81.5* 33.00 8.26 15.61
U-Net+CPM 77.4* 89.9 81.4* 31.08* 7.41 12.28
U-Net+Mix+CPM 77.4* 90.0* 82.3* 32.11 7.09* 11.49
MAU-Net 78.5* 90.2* 82.8* 26.96* 7.61 8.61*

* Denotes comparison with U-Net by Wilcoxon signed rank test (p-value < 0.05).

Table 4
Ablation experiments on MAU-Net training hyper-parameters on BraTS 2020 training set.

MAU-Net DSC (%)↑ Hausdorff95 (mm)↓
Batch size Learning rate ET WT TC ET WT TC

2 0.005 79.7 90.9 84.4 27.04 4.87 6.91
0.001 80.3 91.2 84.9 26.24 4.55 6.71
0.0005 78.1 90.4 83.4 29.33 5.84 7.32
0.0001 77.4 89.9 83.5 29.97 6.32 7.94

4 0.005 79.3 90.7 84.6 27.51 4.79 6.94
0.001 80.7 91.3 85.1 26.31 4.35 6.16
0.0005 78.3 90.1 83.9 28.77 5.32 6.47
0.0001 77.6 90.2 84.2 30.21 6.33 7.56

BraTS 2020 validation set, MAU-Net achieved outstanding DSC values of 78.5% for ET,
90.2% for WT, and 82.8% for TC, surpassing the 3D U-Net by 1.6%, 0.9%, and 2.9%, re-
spectively, thus affirming the efficacy of the MAU-Net model. Similarly, in terms of Haus-
dorff95 distance, MAU-Net exhibited significant advantages, with values of 26.96 mm for
ET, 7.61 mm for WT, and 8.61 mm for TC, representing reductions of 5.6 mm, 0.09 mm,
and 3.5 mm compared to U-Net. The superior performance of MAU-Net, particularly for
ET and TC, further underscores its excellence in brain tumour segmentation tasks.

To validate the reasonableness of the training hyper-parameter settings, we systemat-
ically conducted ablation experiments on learning rate (LR) and batch size. The results
of these experiments are summarized in Table 4, and visually represented by the train-
ing loss curves (Fig. 6). First, under the condition of a consistent learning rate, we ex-
plored the effect of different batch sizes on brain tumour segmentation accuracy. Through
detailed comparative analysis, we found that moderately increasing the batch size can
slightly improve segmentation accuracy. This finding suggests that, when resources per-
mit, increasing the batch size helps the model better capture statistical characteristics of
the data, thereby optimizing segmentation outcomes. Next, with the batch size fixed, we
thoroughly examined the effect of learning rate on segmentation accuracy. Specifically,
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Fig. 6. Training loss for the BraTS2020 training set.

Table 5
Ablation experiments on loss function hyper-parameter on BraTS 2020 training set.

Hyper-parameter DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

α = 0 79.3 90.8 84.2 27.48 5.09 7.33
α = 0.25 80.7* 91.3* 85.1* 26.31 4.35* 6.16*
α = 0.50 80.1* 90.4 84.5 25.47* 4.55 6.74
α = 0.75 80.4* 91.1 84.7 26.11 4.78 6.14*
α = 1 78.8 91.0 83.9 27.14 5.51 7.07

* Denotes comparison with the loss function hyper-parameter (α = 0) of MAU-Net by
Wilcoxon signed rank test (p-value < 0.05).

we tested several learning rates, including 0.005, 0.001, 0.0005, and 0.0001, to compre-
hensively evaluate their impact on the training process and final performance. The results
indicated that a learning rate of 0.001 yielded the best segmentation performance, a con-
clusion visually supported by Fig. 6, which shows a smooth decline in training loss and
successful convergence before 500 epochs at this learning rate. In contrast, when the learn-
ing rate was set to 0.0001, the training process was slower and failed to fully converge.
This observation is clearly reflected in the loss curve in Fig. 6, and the quantitative data in
Table 4 further confirm that the model’s segmentation performance was suboptimal with
a lower learning rate.

As shown in Table 5, we conducted a series of experiments on the BraTS 2020 training
set to determine the optimal value of the hyper-parameter α in the loss function. Notably,
α = 0 corresponds to using only cross-entropy loss, and α = 1 corresponds to using
only Dice loss. The results indicated that the combination of cross-entropy and Dice loss
with α = 0.25 yields the best segmentation performance. This may be attributable to
the complementary nature of these two losses, with the Dice loss effectively solving the
category imbalance problem, while the cross-entropy improves the segmentation results
in terms of target similarity.

To evaluate the impact of different padding methods on segmentation performance,
we compared Zero Padding, Reflection Padding, and Replication Padding. Our results,
as summarized in the Table 6, reveal that zero padding tends to introduce edge artifacts,
which negatively affect performance, especially in the Hausdorff95 metric. In contrast,
reflection padding offers a more natural treatment of image edges, leading to a signifi-
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Table 6
Ablation experiments on the BraTS 2020 validation set for MAU-Net’s padding method and different noises.

MAU-Net DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

Padding methods Zero padding 78.5 90.2 82.8 26.96 7.61 8.61
Reflection padding 78.7 90.4 83.0 25.31* 6.45* 7.44*
Replication padding 78.5 90.3 82.7 26.23 7.34 7.96

Noise type – 78.5 90.2 82.8 26.96 7.61 8.61
Gaussian noise 78.5 90.1 82.6 27.14 8.10 8.94
Salt-and-pepper noise 78.3 89.5 82.3 27.54 7.94 9.01
Rayleigh noise 78.0 90.2 82.4 28.04* 7.84 8.73

* Denotes comparison with zero padding methods by Wilcoxon signed rank test (p-value < 0.05).

cant improvement in Hausdorff95. While replication padding also prevents edge artifacts,
it was slightly outperformed by reflection padding, likely due to the latter’s better ability
to preserve edge information. Therefore, we decided to use MAU-Net with added reflec-
tion padding in subsequent comparison experiments with other methods. Additionally, we
validated the robustness of the model by introducing different types of noise, as shown in
Table 6. We added three common types of noise to the data, Gaussian noise, Pretzel noise,
and Rayleigh noise. The experimental results indicate that while MAU-Net exhibited a
significant increase in the Hausdorff95 metric for ET under Rayleigh noise, no significant
differences were observed in any other evaluation metrics. This further demonstrates the
stability and reliability of the MAU-Net model across different noisy.

5.2. Visualization

To better demonstrate the results of the method, Fig. 7 provides visual representations of
select samples within the BraTS 2020 training set. Distinct colours correspond to varying
label, with red signifying areas of necrotic and non-enhanced regions (label 1), green
signifying areas of edema (label 2), and yellow signifying areas of enhancing tumour
(label 4). The images describe the segmentation results of Flair, Ground Truth, 3D U-Net,
and MAU-Net, respectively. In contrast to the 3D U-Net model, the figure underscores
that MAU-Net excels in the segmentation of whole tumour (WT), tumour core (TC) and
enhancing tumuor (ET) region.

5.3. Comparison with Representative Methods

To validate the effectiveness and competitiveness of the proposed method, we conducted
comparisons with representative brain tumour segmentation approaches using the BraTS
2019 and BraTS 2020 validation sets, with results uploaded to the online platform. Addi-
tionally, we performed five-fold cross-validation on the BraTS 2021 training set to further
confirm its performance.

The comparative experiments on the BraTS2019 and BraTS2020 validation sets are
presented in Table 7 and Table 8. To demonstrate the superiority of MAU-Net among
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Fig. 7. Visualization of segmentation results on the BraTS 2020 training set. WT contains red (labels 1), green
(labels 2) and yellow (labels 4); TC contains red (labels 1) and yellow (labels 4); ET contains yellow (labels 4).

Table 7
Comparisons with typical methods on the BraTS 2019 validation set.

Methods DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

Jun et al. (2021) 76.0* 88.8* 77.2* 5.20* 7.76* 8.26*
Milletari et al. (2016) 70.9* 87.4* 81.2* 5.06* 9.43* 8.72*
Akbar et al. (2022) 74.2* 88.5* 81.0* 6.67* 10.83* 10.25*
Liu et al. (2021a) 75.9* 88.5* 85.1 4.80* 5.89* 6.56*
Zhao et al. (2020) 75.4* 91.0 83.5 3.84* 4.57 5.58
Guo et al. (2020) 77.3* 90.3 83.3 4.44* 7.10* 7.68*
Wang et al. (2021) 73.7* 89.4* 80.7* 5.99* 5.68* 7.36*
Chang et al. (2023) 78.2 89.0* 81.2* 3.82* 8.53* 7.43*
MAU-Net (Ours) 78.0 90.6 82.8 3.04 4.05 5.37

* Represent the significance of other methods compared to MAU-Net by Wilcoxon signed rank test (p-value <

0.05).

similar methods, we first compared it with various 3D U-Net variants, including V-Net
(Milletari et al., 2016), Attention U-Net (Jun et al., 2021; Zhao et al., 2020), CANet (Liu
et al., 2021a; Akbar et al., 2022; González et al., 2021), and (Vu et al., 2021). The ex-
perimental results clearly show that MAU-Net outperforms these methods, particularly in
segmenting small tumours like the ET, with significant improvements. Additionally, we
compared MAU-Net with the more recent dual-path attention fusion network proposed by
Chang et al. (2023), which also employs attention mechanisms. MAU-Net demonstrated
a marked advantage over this method across multiple brain tumour regions, further under-
scoring its effectiveness and competitiveness.
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Table 8
Comparisons with typical methods on the BraTS 2020 validation set.

Methods DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

Jun et al. (2021) 75.2* 87.8* 77.9* 30.65* 6.30 11.02*
Milletari et al. (2016) 68.8* 84.1* 79.1* 50.98* 13.37* 13.61*
Akbar et al. (2022) 72.9* 88.9* 80.2* 31.97* 10.26* 13.58 *
González et al. (2021) 77.3* 90.2 81.5* 21.80 6.16 7.55
Vu et al. (2021) 77.2* 90.6 82.7 27.04* 4.99 8.63
Cirillo et al. (2021) 75.0* 89.3* 79.2* 36.00* 6.39 14.07*
Jiang et al. (2022) 77.4* 89.1* 80.3* 26.84 8.56* 15.78 *
Wang et al. (2021) 78.7 90.1 81.7* 17.95 4.96 9.77*
Li et al. (2024b) 75.4* 89.9 83.0 22.07 6.64 6.09
MAU-Net (Ours) 78.7 90.4 83.0 25.31 6.45 7.44

* Represent the significance of other methods compared to MAU-Net by Wilcoxon signed rank test (p-value <

0.05).

Additionally, we compared MAU-Net with brain tumour segmentation networks based
on different architectures to further establish its competitiveness. Guo et al. (2020) intro-
duced a cascaded global semantic convolutional network, which uses multiple U-Nets to
sequentially segment WT, TC, and ET. Compared to this method, MAU-Net significantly
reduced the Hausdorff95 distance for ET, WT, and TC by 1.39 mm, 3.03 mm, and 2.28 mm,
respectively, demonstrating superior performance. MAU-Net also shows strong competi-
tiveness compared to the 3D CNN proposed by González et al. (2021), the multi-encoder
network with multiple denoising inputs proposed by Vu et al. (2021), and the GAN-based
method proposed by Cirillo et al. (2021). We further evaluated MAU-Net against U-Net
models incorporating Transformers, such as TransBTS (Wang et al., 2021) and SwinBTS
(Jiang et al., 2022). While TransBTS and SwinBTS expand the receptive field at a single
scale by replacing the bottleneck layer with transformers, MAU-Net effectively enhances
segmentation accuracy by extracting features with different receptive fields across mul-
tiple scales, highlighting its advanced capabilities. Finally, Li et al. (2024b) proposed a
multi-level fusion brain tumour segmentation method within a hybrid architecture, where
MAU-Net demonstrated a clear advantage in DSC, further validating the competitiveness
of our approach.

In the BraTS 2021 training set, we employed five-fold cross-validation, with the results
presented in Table 9. The rationale for selecting comparative methods is consistent with
that used in BraTS 2019 and BraTS 2020. Compared to the dual-branch network proposed
by Jia et al. (2023)., which integrates attention mechanisms with super-resolution recon-
struction techniques, MAU-Net achieved significant improvements in the DSC evaluation
metric, particularly with a 3.8% lead in the ET region, a 1.6% lead in the WT region,
and a 3.1% lead in the TC region. Furthermore, when compared to the residual spatial
pyramid pooling-enhanced 3D U-Net employed by Vijay et al. (2023), MAU-Net demon-
strated clear advantages across all metrics, validating the superiority of the MAU-Net ar-
chitecture. Additionally, in comparison to Transformer-based architectures like UNETR
(Hatamizadeh et al., 2022) and VTU-Net (Peiris et al., 2022), MAU-Net also exhibited
superior performance, further proving its advanced capabilities. Finally, compared to the
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Table 9
Comparisons with typical methods on the BraTS 2021 training set.

Methods DSC (%)↑ Hausdorff95 (mm)↓
ET WT TC ET WT TC

Jia et al. (2023) 85.1* 92.1* 90.1* – – –
Vijay et al. (2023) 85.0* 90.0* 90.0* 6.30* 9.43* 7.78*
Hatamizadeh et al. (2022) 86.2* 92.5* 91.8* 11.28* 7.74* 7.85*
Peiris et al. (2022) 85.3* 93.1 90.2* 10.78* 6.76* 7.56*
Li et al. (2024a) 89.7 92.8* 92.9 2.29 5.12 4.16
MAU-Net (Ours) 88.9 93.7 93.2 3.75 4.68 4.03

* Represent the significance of other methods compared to MAU-Net by Wilcoxon signed rank test (p-value <

0.05).

multi-scale residual U-Net proposed by Li et al. (2024a), MAU-Net maintained a lead in
segmentation accuracy for both the WT and TC regions, further confirming its effective-
ness and competitiveness.

6. Conclusions

This paper introduces a novel MAU-Net method for MRI brain tumour segmentation,
which intricately integrates mixed depth-wise convolution, context pyramid module, and
self-ensemble module into the 3D U-Net architecture. The primary objective is to enhance
brain tumour segmentation accuracy by bolstering the multi-scale features of tumour im-
ages with local feature expression. Extensive ablation and comparative experiments con-
ducted on three public brain tumour datasets have validated the effectiveness and compet-
itiveness of the proposed segmentation method. Among them, on the three regions of ET,
WT and TC, the DSC is 78.0%, 90.6% and 82.8% in the BraTS 2019 validation set, and
3.04 mm, 4.05 mm and 5.37 mm in Hausdorff95; in the BraTS 2020 validation set, the
DSC is 78.7%, 90.4% and 83.0%, and the 25.31 mm, 6.45 mm and 7.44 mm for Haus-
dorff95; and 88.9%, 93.7% and 93.2% for DSC and 3.75 mm, 4.68 mm and 4.03 mm for
Hausdorff95 in the BraTS2021 training set. Although MAU-Net has achieved promising
segmentation results, certain limitations remain. In future work, we will explore the use
of CPM across different semantic levels to maximize the interaction of multi-scale se-
mantic information. Additionally, we will investigate the impact of larger convolutional
kernels on brain tumour segmentation and explore more advanced structures for feature
extraction. Finally, we will experiment with graph-based or Conditional Random Fields
strategies to enhance the post-processing phase.
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