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Abstract. In this paper, we propose a novel image deblurring approach that utilizes a new mask
based on the Grünwald-Letnikov fractional derivative. We employ the first five terms of the
Grünwald-Letnikov fractional derivative to construct three masks corresponding to the horizon-
tal, vertical, and diagonal directions. Using these matrices, we generate eight additional matrices of
size 5 × 5 for eight different orientations: kπ

4 , where k = 0, 1, 2, . . . , 7. By combining these eight
matrices, we construct a 9 × 9 mask for image deblurring that relates to the order of the fractional
derivative. We then categorize images into three distinct regions: smooth areas, textured regions, and
edges, utilizing the Wakeby distribution for segmentation. Next, we determine an optimal fractional
derivative value tailored to each image category to effectively construct masks for image deblurring.
We applied the constructed mask to deblur eight brain images affected by blur. The effectiveness of
our approach is demonstrated through evaluations using several metrics, including PSNR, AMBE,
and Entropy. By comparing our results to those of other methods, we highlight the efficiency of our
technique in image restoration.
Key words: Grünwald-Letnikov fractional derivatives, gradient matrix, Wakeby distribution.

1. Introduction

In the realm of image processing and computer vision, the pursuit of enhancing image
quality has been an ongoing endeavour. From the restoration of blurred images to the re-
duction of noise interference, researchers continually strive to develop sophisticated tech-
niques that can preserve and enhance visual information effectively. One such approach
gaining attention is the utilization of fractional derivation in constructing masks for image
denoising and deblurring.

Traditionally, linear filtering techniques, such as Gaussian or bilateral filters, have been
extensively employed for image denoising and deblurring (Buades et al., 2005). However,
these techniques assume that the degradation process and noise follow Gaussian distri-
butions, which might not always reflect real-world scenarios. To address this limitation,
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researchers have turned their attention towards more advanced methods, such as fractional
derivation, to construct masks that facilitate the denoising and deblurring processes.

The concept of fractional calculus, an extension of traditional calculus, has gained
traction in various scientific disciplines due to its ability to capture complex, non-local
behaviours and characteristics (Podlubny, 1998). By leveraging fractional derivatives and
integrals, researchers have been able to tackle challenging problems that evade conven-
tional approaches. In the context of image denoising and deblurring, fractional derivation
provides a valuable tool for modelling and capturing intricate image structures and fea-
tures at different scales.

An image edge analysis method based on Riemann-Liouville fractional derivative was
introduced in Amoako-Yirenkyi et al. (2016) that utilizes a fractional derivative mask.
Chowdhury et al. (2020) employed fractional-order total variation to address non-blind
and blind deconvolution challenges in the presence of Poisson noise. A new image encryp-
tion system that combines fractional-order edge detection with generalized chaotic maps
has been presented in the referenced paper (Ismail et al., 2020). Ibrahim (2020) introduce a
novel image denoising model that utilizes conformable fractional calculus to address mul-
tiplicative noise. An adaptive approach to image restoration using fractional-order total
variation and the split Bregman iteration has been presented in Li et al. (2018). Wadhwa
and Bhardwaj’s research focuses on enhancing MRI images of brain tumours using the
Grünwald-Letnikov fractional differential mask (Wadhwa and Bhardwaj, 2020). Liu et al.
proposed a blind deblurring method that utilizes fractional-order calculus and a local min-
imal pixel prior (Liu et al., 2022). Yang et al. (2016) provided a comprehensive review of
the application of fractional calculus in image processing. A novel fractional-order mask
for image edge detection, utilizing the Caputo-Fabrizio fractional-order derivative without
a singular kernel, was introduced in Lavín-Delgado et al. (2020). We refer to (Aboutabit,
2021; Arora et al., 2022; Chandra and Bajpai, 2018; Gholami Bahador et al., 2022; Go-
lami Bahador et al., 2023; Hacini et al., 2020; Irandoust–pakchin et al., 2021; Li and
Wang, 2023; Nema et al., 2020) and references in them for more works done in the image
processing with fractional derivatives. There are several other methods for image deblur-
ring. For instance, Pooja et al. (2023) present a novel image deblurring algorithm that
utilizes region-specific priors and methodologies for enhanced image correction. Zhou et
al. (2023) used events to deblur low-light images. The authors introduce a robust unified
two-stage framework and a motion-aware neural network designed to reconstruct sharp
images by utilizing high-fidelity motion information derived from event data. The authors
in Ren et al. (2023) employed multiscale structure-guided diffusion techniques for the pur-
pose of image deblurring. Dong et al. (2023) implemented a Multi-Scale Residual Low-
Pass Filter Network to address image deblurring challenges. Li et al. (2023) introduced
a novel framework that leverages deep learning techniques to address ongoing challenges
in the field, including the limitations of existing methods in handling real-world blur and
the problems of over- and under-estimating blur.

In general, constructing masks and applying them for image processing is one of the
easiest methods requiring relatively few computations compared to other approaches.
However, it is important to note that constructing deblurring masks using Riemann-
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Liouville and Caputo fractional derivatives can be quite complex, whereas using Grün-
wald-Letnikov fractional derivatives is more straightforward.

In this paper, we developed an adaptive mask based on Grünwald-Letnikov fractional
derivatives and carefully selected the order of the fractional derivatives using the Wakeby
distribution. This approach leads to improved results, particularly when compared to other
mask construction methods utilizing Grünwald-Letnikov fractional derivatives.

This article is organized as follows: In the next section, we describe the definition of the
Grünwald-Letnikov (GL) fractional derivative. In Section 3, we delve into the construc-
tion of a mask using the GL fractional derivative and present our proposed method. In
Section 4, we present our experimental results and provide a detailed discussion of them.

2. Fundamental Definition of GL Fractional Derivative

The definition of fractional derivatives can vary depending on the context. Three com-
monly used definitions are the GL definition, the Riemann-Liouville (R-L) definition,
and the Caputo definition. Among these, the GL definition is often considered the most
appropriate for image processing applications (Frackiewicz and Palus, 2024; Mortazavi
et al., 2023; Zuffi et al., 2024). The Caputo fractional derivative is typically employed
in fields such as control theory (Moon, 2023; Frederico, 2008; Kamocki and Majew-
ski, 2015; Sweilam et al., 2021; Bergounioux and Bourdin, 2020), viscoelastic materials
(Freed and Diethelm, 2007; Li and Ma, 2023; Mahiuddin et al., 2020; Bhangale et al.,
2023), and biological systems (Yusuf et al., 2021; Qureshi, 2020; Rahman et al., 2022;
Uçar and Özdemir, 2021). In contrast, the Riemann-Liouville fractional derivative is pre-
dominantly utilized in the realms of physics and engineering (Ahmad et al., 2021; Gu et
al., 2019; Khan et al., 2024; Liu et al., 2011). Caputo Fractional Derivative usually used in
the field of control theory (Moon, 2023; Frederico, 2008; Kamocki and Majewski, 2015;
Sweilam et al., 2021; Bergounioux and Bourdin, 2020), Viscoelastic Materials (Freed and
Diethelm, 2007; Li and Ma, 2023; Mahiuddin et al., 2020; Bhangale et al., 2023), Biolog-
ical Systems (Yusuf et al., 2021; Qureshi, 2020; Rahman et al., 2022; Uçar and Özdemir,
2021).

For a function τ(t), where t ∈ R and τ(t) is differentiable n times, the derivatives of
different orders can be expressed as follows:

τ ′(t) = lim
h→0

τ(t) − τ(t − h)

h
,

τ ′′(t) = lim
h→0

τ(t) − 2τ(t − h) + τ(t − 2h)

h2 ,

τ ′′′(t) = lim
h→0

τ(t) − 3τ(t − h) + 3τ(t − 2h) − τ(t − 3h)

h3
,

and using the concept of mathematical induction, the formula for the nth order derivative
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is given as:

τ (n)(t) = lim
h→0

∑n
k=0(−1)kCkτ(t − kh)

hn
, k ∈ N,

where

Ck =
(

n

k

)
=

{
n!

k!(n−k)! = n(n−1)...(n−k+1)
k! , k = 0, 1, . . . n,

0, k > n.

The concept has the potential for extension to the widely used GL fractional deriva-
tive of order v, enabling the calculation of a non-integer number of derivatives. This is
expressed as Atici et al. (2021):

Dατ(t) = lim
h→0

∑∞
k=0(−1)k

(
α

k

)
τ(t − kh)

hα
, t ∈ R,

where(
α

k

)
= α(α − 1) . . . (α − k + 1)

k! , k ∈ N.

For the function τ(t) where t ∈ R+, the truncated GL fractional derivative of order α

is:

Dατ(t) = lim
h→0

∑m
k=0(−1)k

(
α

k

)
τ(t − kh)

hα
,

where m = [(t − t0)/h]. Also Dατ(t) can be represented as

Dατ(t) = lim
h→0

∑m
k=0

(−α

k

)
τ(t − kh)

hα
,

where(−α

k

)
= (−1)k

(
α

k

)
= −α(−α + 1) . . . (−α + k − 1)

k! , k ∈ N.

3. Novel Approach

In this section, we outline our approach for constructing a fractional differential mask
using the Grünwald-Letnikov fractional derivative, and we also present a method to choose
a suitable value for the order of the fractional derivative at different points in the images.
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3.1. Development of Fractional Differential Masks

Suppose τ(t) ∈ [t0, t], where t0 < t and t0, t ∈ R. The fractional differential operator of
order α can be expressed mathematically as:

Let’s consider τ(t) ∈ [t0, t], where t0 < t and t0, t ∈ R, as a one-dimensional signal.
The fractional differential operator of order α for a digital image can be mathematically
depicted as:

dατ(t)

dtα
≈ τ(t) + (−α)

1!h τ(t − h) + (−α)(−α + 1)

2!h2
τ(t − 2h)

+ · · · + (−α)(−α + 1) . . . (−α + m − 1)

m!hm
τ(t − mh).

In the realm of digital images, the D8 (or Chessboard) norm is defined as:

D8 = max
{|x2 − x1|, |y2 − y1|

}
,

where (x1, y1) and (x2, y2) are the coordinates of two pixels. In this metric, the dis-
tance between neighbouring pixels—whether they are adjacent vertically, horizontally, or
diagonally—is equivalent to 1. This particular distance is commonly denoted as h, where
h = 1. So

dατ(t)

dtα
≈ τ(t) + (−α)

1! τ(t − 1) + (−α)(−α + 1)

2! τ(t − 2)

+ · · · + (−α)(−α + 1) . . . (−α + m − 1)

m! τ(t − m),

or

dατ(t)

dtα
≈ τ(t) + (−α)

1! τ(t − 1) + (−α)(−α + 1)

2! τ(t − 2)

+ · · · + �(−α + m)

�(−α)�(m + 1)
τ (t − m),

where � denotes the Gamma function, defined as

�(z) =
∫ ∞

0
xz−1e−xdx, Re(z) > 0.

In a 2D digital image, the backward differences of fractional differentiation for x- and
y-directions can be found as:

∂ατ(x, y)

∂xα
≈ τ(x, y) + (−α)

1! τ(x − 1, y) + (−α)(−α + 1)

2! τ(x − 2, y)

+ · · · + �(−α + m)

�(−α)�(m + 1)
τ (x − m, y), (1)
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Table 1
5 × 5 masks in y, x and diagonal direction.

0 0 α(α−1)(α−2)(α−3)
4 0 0

0 0 − α(α−1)(α−2)
3 0 0

0 0 α(α−1)
2 0 0

0 0 −α 0 0
0 0 1 0 0

0 0 0 0 0
0 0 0 0 0
1 −α

α(α−1)
2 − α(α−1)(α−2)

3
α(α−1)(α−2)(α−3)

4

0 0 0 0 0
0 0 0 0 0

0 0 0 0 α(α−1)(α−2)(α−3)
4

0 0 0 − α(α−1)(α−2)
3 0

0 0 α(α−1)
2 0 0

0 −α 0 0 0
1 0 0 0 0

and

∂ατ(x, y)

∂yα
≈ τ(x, y) + (−α)

1! τ(x, y − 1) + (−α)(−α + 1)

2! τ(x, y − 2)

+ · · · + �(−α + m)

�(−α)�(m + 1)
τ (x, y − m). (2)

To create a mask of size m × m, the initial m coefficients from the Eqs. (1) and (2) are
considered. Table 1 presents the 5 × 5 templates for the x and y directions, as well as the
diagonal direction.

The pixel value in an image is influenced by its neighbouring pixels, with the influ-
ence decreasing as the distance from the pixel increases. The template in the x direction
is centred at the fifth row and third column in Table 1 (the first mask). There are 5 pixels
located at a distance of one pixel from the centre, and the weight −α is equally divided
among these neighbours, as the centre pixel’s value depends equally on all of them. Simi-
larly, there are 9 pixels at a distance of two pixels from the centre, and the weight α(α−1)

2 is
equally distributed among them. Finally, there are 5 pixels at a distance of three and four
pixels from the centre, and the weights −α(α−1)(α−2)

3 and α(α−1)(α−2)(α−3)
4 are equally

distributed among them, respectively.
In a similar manner, we apply the aforementioned approach to the second mask in the

y direction as presented in Table 1. For the last mask in Table 1, there are 3, 5, 7, and 9
pixels at distances of one, two, three, and four pixels from the centre. We extend the same
concept to this mask, resulting in the derivation of modified masks in the x, y, and diagonal
directions, as detailed in Table 2. In Table 2 we put αj = α(α−1) . . . (α−j), j = 1, 2, 3.
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Table 2
Modified mask of size 5 × 5 in x, y and diagonal direction.

α1
18

α1
18

α1
18 − α2

15
α3
20

− α
5 − α

5
α1
18 − α2

15
α3
20

1 − α
5

α1
18 − α2

15
α3
20

− α
5 − α

5
α1
18 − α2

15
α3
20

α1
18

α1
18

α1
18 − α2

15
α3
20

α3
20

α3
20

α3
20

α3
20

α3
20

− α2
15 − α2

15 − α2
15 − α2

15 − α2
15

α1
18

α1
18

α1
18

α1
18

α1
18

α1
18 − α

5 − α
5 − α

5
α1
18

α1
18 − α

5 1 − α
5

α1
18

α3
36

α3
36

α3
36

α3
36

α3
36

− α2
21 − α2

21 − α2
21 − α2

21
α3
36

α1
15

α1
15

α1
15 − α2

21
α3
36

− α
3 − α

3
α1
15 − α2

21
α3
36

1 − α
3

α1
15 − α2

21
α3
36

Table 3
Resultant mask of size 9 × 9.

α3
20

α3
36

α3
10

7α3
90

19α3
180

7α3
90

7α3
90

α3
36

α3
36

7α3
90 − α2

21 − 4α2
35 − 4α2

35 − 17α2
105 − 4α2

35 − 4α2
35 − α2

21
α3
36

7α3
90 − 4α2

35
α1
5 − α2

15
α1
5 − α

9
3α1
10 − 2α

9
α1
5 − α

9
3α1
10 − 4α2

35
7α3
90

7α3
90 − 4α2

35
α1
5 − α

9 − 5α
9 −α − 5α

9
2b2

5 − α
9 − 4α2

35
7α3
90

19α3
180 − 17α2

105 − 2α
9 + 3α1

10 −α 8 −α
3α1
10 − 2α

9 − 2α2
21 − α2

15
19α3
180

7α3
90 − 4α2

35
α1
5 − α

9 − 5α
9 −α − 5α

9
α1
5 − α

9 − 4α2
35

7α3
90

7α3
90 − 4α2

35
3α1
10

α1
5 − α

9 − 2α
9 + 3α1

10
α1
5 − α

9
3α1
10 − 4α2

35
7α3
90

α3
36 − α2

21 − 4α2
35 − 4α2

35 − 2α2
21 − α2

15 − 4α2
35 − 4α2

35 − α2
21

α3
36

α3
36

α3
36

7α3
90

7α3
90

19α3
180

7α3
90

7α3
90

α3
36

α3
36

Once the masks in the eight directions kπ
4 , k = 0, 1, 2, . . . , 7, have been acquired, we

combine them to create a 9 × 9 mask as shown in Table 3. Next, we divide each element
by the total sum of the coefficients (8 − 12α + 4α2) to create a 9 × 9 differential mask,
ensuring that the resulting image’s intensity values fall within the range of [0,255].

3.2. Choosing the Appropriate Fractional Order

The fractional order of derivatives in different parts of an image should be chosen in such a
way that enhances the edges, preserves smooth areas and highlights the textural features.
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To achieve these objectives, the desired image is initially segmented into three distinct
regions: edges, smooth areas, and textures. Subsequently, specific fractional derivative
orders are selected for each region in order to tailor their effects accordingly. For edge en-
hancement, a higher value of the fractional derivative parameter (represented as α) close
to 1 is chosen. This helps in enhancing the edges and capturing fine details in the im-
age gradient. In the case of textured areas, a smaller value of the fractional derivative
parameter α is considered. This allows for a more nuanced differentiation and highlight
of textural features present in the image. Finally, for smooth areas, a value of α close to
zero is utilized. This choice ensures that the smooth regions are preserved without in-
troducing unnecessary high-frequency components. By carefully selecting suitable frac-
tional derivative orders for different image regions, it becomes possible to effectively
construct masks that optimize edge enhancement, maintain smooth areas, and highlight
textural features, contributing to the overall quality and interpretability of the processed
image.

Using statistical analysis, we can examine the data from the image matrix and identify
that it conforms to the Wakeby distribution. The Wakeby distribution is characterized by
its quantile function:

W(p) = ξ + θ

β

(
1 − (1 − p)β

) − η

ν

(
1 − (1 − p)−ν

)
and its density function:

d

dp
W(p) = w(p) = θ(1 − p)β−1 + η(1 − p)−ν−1.

In these equations, 0 � p � 1 represents the probability, ξ is the location parameter,
θ and η are scale parameters, and β and ν are shape parameters.

To utilize this distribution, we can employ the fifth and ninety-fifth percentiles in the
following manner: let X be the values of the pixels in our image, arranged in a vector and
sorted from least to greatest. Let n be the size of vector X and let q represent the percentile
quantile. To find the qth quantile, we use the formula:

s = n.q.

Let’s assume

s1 = [s],

and

s2 = s − s1.

Then the qth quantile can be found as:

Q(q) = Xs1 + s2(Xs1+1 − Xs1).



Deblurring Medical Images Using a New Grünwald-Letnikov Fractional Mask 825

Table 4
3 × 3 filter for gradient image.

− 1
8 − 1

8 − 1
8

− 1
8 1 − 1

8

− 1
8 − 1

8 − 1
8

Table 5
5 × 5 filter for gradient image.

− 1
24 − 1

24 − 1
24 − 1

24 − 1
24

− 1
24 − 1

24 − 1
24 − 1

24 − 1
24

− 1
24 − 1

24 1 − 1
24 − 1

24

− 1
24 − 1

24 − 1
24 − 1

24 − 1
24

− 1
24 − 1

24 − 1
24 − 1

24 − 1
24

Table 6
7 × 7 filter for gradient image.

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

− 1
48 − 1

48 − 1
48 1 − 1

48 − 1
48 − 1

48

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

− 1
48 − 1

48 − 1
48 − 1

48 − 1
48 − 1

48 − 1
48

So the fifth and ninety-fifth percentiles can be obtained by setting q = 0.05 and q = 0.95
respectively.

The categorization of pixels into edge, texture, or smooth classes relies on the compu-
tation of a gradient image. For this purpose, the image I is convolved with an averaging
mask, such as the masks in Tables 4, 5 and 6 to obtain the gradient matrix G. Then, based
on specific threshold values, pixels are divided into these three categories. Here we put

t1 = Q(0.05),

t2 = Q(0.95)
(3)

as thresholding values to categorize the pixels. Pixels with a gradient value less than or
equal to t1 are categorized as smooth pixels, and pixels with a gradient value exceeding or
equal to t2 are classified as edge pixels. The pixels falling within the range of t1 to t2 are
classified as texture pixels.

Smooth pixels receive a low fractional order to ensure preservation of smooth regions.
The fractional order κ is applied to process the texture region in order to preserve weaker
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textures and enhance strong texture pixels. The value of κ is determined by the gradient
value, with larger values assigned to pixels with high gradients in the range (t1, t2) and
smaller values assigned to weak texture pixels (Wadhwa and Bhardwaj, 2020; Saadia and
Rashdi, 2016). The equation used to determine the fractional differential mask order is as
follows:

α =

⎧⎪⎪⎨
⎪⎪⎩

0.1, G(i, j) � t1,

κ, t1 < G(i, j) < t2,

0.9, G(i, j) � t2,

(4)

where

κ =
[

G(i, j) − min(G)

max(G) − min(G)
× λ

]
+ 0.1. (5)

Figure 1 shows the values of PSNR, SD, Entropy, ENL, BRISQE, AG, PIQE and CV
criteria for 8 test images with different values of λ. Based on the information provided,
we see that different values of λ yield the best results for different criteria. Finding the
optimal value of λ may be a challenging problem. Nevertheless, we choose λ = 0.5 in
relation (5).

By applying an appropriate fractional order differential mask, every pixel in the image
undergoes convolution, resulting in an improved image that enhances edges and highlights
texture while maintaining the integrity of smooth areas.

The following algorithm illustrates the necessary steps for image deblurring.

1. Start with a grayscale image I .
2. Calculate the gradient image G using one of the masks presented in Tables 4, 5 or 6.
3. Determine the thresholds t1 and t2 using (3).
4. Assign a fractional order using the relation (4) for each pixel.
5. Convolve the 9 × 9 mask presented in Table 3 to image I .

4. Empirical Findings and Discussions

The efficiency of the proposed algorithm was evaluated using eight brain images, as shown
in Fig. 2. These images were blurred, as depicted in Fig. 3, and subsequently deblurred
using the presented method, illustrated in Fig. 4. To demonstrate the efficiency of the
presented method, we use different criteria and compare our results to other methods. We
also provide brief definitions of these criteria below.

4.1. PSNR

Peak Signal-to-Noise Ratio (PSNR) is a metric to measure the quality of a reconstructed or
processed image compared to the original image. It is calculated by comparing the peak
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Fig. 1. The values of PSNR, SD, Entropy, ENL, BRISQE, AG, PIQE and CV for λ = 0.1, 0.2, . . . , 0.9 for 8 test
images.
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Fig. 2. Original brain images.

Fig. 3. Blurred brain images.

signal strength to the noise level in the image, providing a quantitative measure of the
fidelity of the reconstructed image. The higher values of PSNR indicate a higher level of
similarity between the original and modified images. The formula for calculating PSNR
is:

PSNR = 10 · log10

(MAX2

MSE

)
,

where MAX is the maximum pixel value (for example, 255 for an 8-bit grayscale image)
and MSE is the mean squared error between the original and modified images defined as:

MSE = 1

N

∑
j

∑
k

∣∣I (j, k) − Ī (j, k)
∣∣2

,
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Fig. 4. Deblurred brain images.

Table 7
Comparing PSNR rate for test images.

Proposed method MGL (Hemalatha and
Anouncia, 2018)

Image Blurred
image

Deblurred
image

Adaptive (Wadhwa
and Bhardwaj, 2020)

ADFA (Li and
Xie, 2015)

α = 0.5 α = 0.9

a 22.5824 39.1837 31.0507 17.7232 28.5643 15.3211
b 19.5427 37.7322 30.8592 16.916 24.5577 12.6556
c 22.5329 36.3296 38.3346 20.6807 33.2279 17.1651
d 22.6419 40.2910 35.9398 19.7146 28.2865 13.9391
e 21.5470 37.6767 33.9197 19.5176 29.3097 16.7414
f 21.6181 38.6181 35.3671 19.847 30.7506 17.3028
g 20.8060 39.6382 32.5681 18.4106 27.6775 13.783
h 20.1791 38.7736 31.9848 16.9364 24.5164 12.6009

where N is the number of pixels in the image and I (j, k) and Ī (j, k) represent the gray
levels of the original and enhanced images, respectively, at position (j, k).

Table 7 shows the PSNR values of deblurred test images and compares the results to
other methods in the literature.

4.2. AMBE

The Average Mean Brightness Error (AMBE) is a metric used to quantify the average
difference in brightness between a reference image and a processed image. It is calculated
by taking the mean of the absolute differences in brightness values for corresponding
pixels in the two images. AMBE provides a measure of the overall brightness distortion
introduced during image processing or restoration. The best result is a zero AMBE value.

Table 8 presents the AMBE values for the deblurred test images and contrasts these
results with those from other methods found in the literature. Meanwhile, Table 9 offers
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Table 8
Comparing AMBE rate for test images.

Proposed method MGL (Hemalatha
and Anouncia, 2018)

Image Deblurred
image

Adaptive (Wadhwa
and Bhardwaj, 2020)

ADFA (Li and
Xie, 2015)

α = 0.5 α = 0.9

a 0.0184 0.3521 5.0795 0.6157 8.0261
b 0.0380 0.5516 6.9137 1.7944 15.881
c 0.1048 0.1595 2.6175 0.4138 4.0873
d 0.0268 0.205 3.8883 0.7204 11.3506
e 0.0357 0.2615 2.9863 0.5015 4.3518
f 0.0338 0.1754 2.6159 0.3969 4.155
g 0.0342 0.4024 5.5945 1.031 12.9937
h 0.0366 0.3983 6.5385 1.6116 14.7137

Table 9
Assessment of average values and standard deviations of performance metrics for

advanced methods.

METHODS PSNR AMBE

Proposed 38.31 ± 1.98 0.062 ± 0.04
Fuzzy (Wadhwa and Bhardwaj, 2024) 37.03 ± 2.25 1.91 ± 0.57
Morphology (Wadhwa and Bhardwaj, 2021) 20.78 ± 2.72 8.03 ± 3.95
Chaira (Ensafi and Tizhoosh, 2005) 30.04 ± 1.82 4.7 ± 1.24
CLAHE (Li and Xie, 2015) 17.07 ± 1.73 31.29 ± 5.97
HE (Li and Xie, 2015) 4.80 ± 0.59 146.15 ± 9.42
GC (Li and Xie, 2015) 20.17 ± 1.46 11.40 ± 1.26
ADFA (Li and Xie, 2015) 18.99 ± 1.49 4.21 ± 1.67
MGL (Hemalatha and Anouncia, 2018) 22.75 ± 2.50 7.31 ± 5.26

an in-depth comparison of the PSNR and AMBE metrics, detailing their average values
and standard deviations. The findings indicate that the average scores for both PSNR and
AMBE notably surpass those of existing state-of-the-art methods in nearly all cases. This
highlights the effectiveness of the proposed approach in enhancing the quality of medical
images.

4.3. Entropy

Entropy refers to a measure of the amount of information or uncertainty present in an im-
age. It quantifies the randomness or disorder in the distribution of pixel values within the
image. Images with higher entropy contain more diverse and unpredictable pixel values,
while images with lower entropy have more uniform pixel distributions. Entropy is com-
monly used in image analysis to assess the complexity or texture of an image, as well as
to evaluate the quality of compression and encoding algorithms. The entropy of an image
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Table 10
Comparing Entropy rate for test images.

Proposed method MGL (Hemalatha
and Anouncia, 2018)

Image Blurred Deblurred
image

Adaptive (Wadhwa
and Bhardwaj, 2020)

ADFA (Li and
Xie, 2015)

α = 0.5 α = 0.9

a 3.9288 4.3115 3.2035 2.8469 3.0903 2.4986
b 4.7521 5.0517 3.8652 3.295 3.5492 2.4328
c 4.1223 4.3227 3.3237 3.1764 3.2533 3.0656
d 5.1789 5.5790 4.5531 4.299 4.4412 3.7025
e 4.4722 4.7190 3.6527 3.2962 3.5781 3.2188
f 4.0355 4.3960 3.2814 2.9551 3.2641 2.9198
g 4.7184 5.1486 4.1601 3.8553 4.005 3.2697
h 4.7142 5.0675 4.0502 3.5105 3.7824 2.6725

Table 11
SD rate for test images.

Image Blurred image Deblurred image

a 0.1763 0.2561
b 0.1616 0.2480
c 0.2249 0.3378
d 0.1643 0.2327
e 0.2045 0.2909
f 0.2024 0.2817
g 0.1358 0.1847
h 0.1608 0.2077

can be calculated as:

H(I) = −
n∑

k=1

P(xk) log2 P(xk),

where H(I) represents the entropy of the image I , P(xk) denotes the probability of oc-
currence of each pixel value xk in the image and n is the total number of unique pixel
values in the image.

Table 10 displays the Entropy values for deblurred test images and contrasts the find-
ings with those from other methods documented in the literature.

4.4. Standard Deviation (SD)

The standard deviation (SD) is the square root of the noise variance and is commonly
used to analyse the contrast-level of an image. It finds applications in various fields of
image processing, such as image denoising and image fusion. A higher SD value typically
corresponds to better perceptual image quality.

Table 11 displays the SD values for deblurred test images.
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Table 12
ENL rate for test images.

Image Blurred image Deblurred image

a 0.2094 0.1179
b 0.2463 0.1052
c 0.2264 0.3234
d 0.3129 0.1717
e 0.2711 0.1372
f 0.2396 0.1234
g 0.2703 0.1342
h 0.2665 0.1398

Table 13
BRISQUE rate for test images.

Image Blurred image Deblurred image

a 45.2041 42.0564
b 43.3720 48.9763
c 47.766 48.5174
d 48.0237 57.7018
e 48.1939 42.1618
f 47.5052 43.9963
g 43.0546 50.1664
h 43.8537 43.7832

4.5. Equivalent Number of Look (ENL)

This metric is used to evaluate the level of smoothing in an image, especially in its homo-
geneous areas. It is computed by taking the ratio of the mean squared value to the variance.
This measure is commonly applied in the context of reducing speckle noise in images.

Table 12 displays the ENL values for deblurred test images.

4.6. Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE)

BRISQUE utilizes a probabilistic analysis of local normalized luminance signals to eval-
uate the naturalness of an image. A lower BRISQUE value indicates better perceptual
image quality.

Table 13 displays the BRISQUE values for deblurred test images.

4.7. Perceptual Image Quality Evaluator (PIQE)

PIQE criteria in image processing refers to a set of objective measures used to assess the
quality of an image based on human perception. These criteria take into account various
factors such as contrast, sharpness, colour accuracy, and noise levels to determine the
overall visual quality of an image. PIQE criteria are used to evaluate and compare the
performance of different image processing algorithms and to ensure that the processed
images meet certain quality standards.
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Table 14
PIQE rate for test images.

Image Blurred image Deblurred image

a 84.9719 72.9859
b 76.0481 60.5201
c 88.0273 82.8545
d 84.5569 67.5805
e 88.9995 67.0446
f 84.3896 73.2536
g 76.9363 65.1521
h 77.1744 63.1113

Table 15
CV rate for tests images.

Image Blurred image Deblurred image

a 91.7516 147.3695
b 81.0006 153.5259
c 99.6732 102.2095
d 72.4598 116.4223
e 86.8636 145.5926
f 91.9231 151.0815
g 70.8944 117.2971
h 77.6679 121.8731

Table 14 displays the PIQE values for deblurred test images.

4.8. Coefficient of Variation (CV)

This metric assesses the preservation of texture in non-uniform image areas, often used in
the context of reducing speckle noise. It is computed as the ratio of the standard deviation
to the mean value, expressed as a percentage.

Table 15 displays the CV values for deblurred test images.

4.9. Average Gradient (AG)

The Average Gradient (AG) is used to evaluate image sharpness, especially in image fusion
applications. It assesses changes in texture and contrast features resulting from the fusion
process. A higher AG value suggests enhanced perceptual image quality.

Table 16 displays the AG values for deblurred test images.

5. Conclusion

In conclusion, our proposed method for image deblurring, based on Grünwald-Letnikov
fractional derivation and image segmentation using the Wakeby distribution, has shown
promising results. By selecting optimal fractional derivative values for different image
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Table 16
AG rate for test images.

Image Blurred image Deblurred image

a 0.0897 0.2294
b 0.1247 0.3292
c 0.0791 0.1360
d 0.1024 0.2584
e 0.1188 0.2788
f 0.1099 0.2554
g 0.0881 0.2330
h 0.1019 0.2734

categories, we have effectively improved image quality and reduced blurring. The evalu-
ation of our method using criteria such as PSNR, AMBE, Entropy, SD, ENL, BRISQUE
etc. has demonstrated its efficiency in image restoration. This approach has the potential
to contribute to advancements in image processing and restoration techniques.
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