
INFORMATICA, 2024, Vol. 35, No. 4, 721–750 721
© 2024 Vilnius University
DOI: https://doi.org/10.15388/24-INFOR571

A Novel Radial Basis Function Description of a
Smooth Implicit Surface for Musculoskeletal
Modelling

Martin CERVENKA1,∗, Josef KOHOUT1, Bogdan LIPUS2

1 Department of Computer Science and Engineering, Faculty of Applied Sciences,
Technicka 8, 301 00 Pilsen, University of West Bohemia, Czech Republic

2 Faculty of Electrical Engineering and Computer Science, Koroska Cesta 46, SI-2000 Maribor,
University of Maribor, Slovenia

e-mail: cervemar@kiv.zcu.cz

Received: June 2024; accepted: September 2024

Abstract. As musculoskeletal illnesses continue to increase, practical computerised muscle mod-
elling is crucial. This paper addresses this concern by proposing a mathematical model for a dynamic
3D geometrical surface representation of muscles using a Radial Basis Function (RBF) approxima-
tion technique. The objective is to obtain a smoother surface while minimising data use, contrasting
it from classical polygonal (e.g. triangular) surface mesh models or volumetric (e.g. tetrahedral)
mesh models. The paper uses RBF implicit surface description to describe static surface generation
and dynamic surface deformations based on its spatial curvature preservation during the deforma-
tion. The novel method is tested on multiple data sets, and the experiments show promising results
according to the introduced metrics.
Key words: radial basis function, muscle model, gradient descent, curvature, mean curvature,
Gaussian RBF.

1. Introduction

Computerised muscle modelling garners increasing attention with the rising prevalence
of musculoskeletal illnesses (Cieza et al., 2020). As of the latest Scopus index, 31 papers
on “musculoskeletal illnesses” out of 102 were published after 2020. On the term “muscu-
loskeletal modelling”, there are over one-third of papers published after 2020 compared
to the total. This fast development in the field signifies that musculoskeletal modelling
approaches play a significant role in musculoskeletal illness treatment. This paper aims to
contribute significantly to the field by proposing a new mathematical muscle description.
To provide context, we begin with a brief overview of the evolution of critical contribu-
tions.

Muscle modelling has a rich history, with Hill (1938) presenting the first formal mathe-
matical representation, a three-element model for muscle fibre. As technology advanced,
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the need for precision led to the development of more intricate models. Initially, fibres
were individually represented, as seen, e.g. in the alpine skiing context (Heinrich et al.,
2023). Subsequently, a “Via-points approach” emerged, linking multiple fibres in series,
e.g. in shoulder muscle modelling (Abderrazak and Benabid, 2022).

While these methods often operate in one dimension, moving to higher dimensions,
especially in 2D space, evolved crucial because the 1D model cannot accurately define the
original shape, producing errors up to 75% (Valente et al., 2012). Employing 2D space
allows the description of muscles using surfaces, a more intuitive technique for reflecting
external structures. This paper focuses mainly on 2D models, as detailed in Section 2.

The open, ultimate problem is developing an accurate, simple, fast, and smooth mus-
culoskeletal model using the least possible parameters. All of the state-of-the-art methods
lack one or the other or give some compromises.

The paper primarily emphasises a detailed description of two-dimensional techniques,
allowing faster calculations while keeping the ability to infer internal muscle composi-
tion. Two main objectives include achieving more immediate model deformation with
fewer updated parameters and data reduction. The goal is achieved using a mathemati-
cally described RBF implicit surface geometric model, providing infinitely differentiable
smooth surfaces and using fewer parameters than the “traditional” triangular mesh ap-
proaches.

The contribution of this paper lies not just in the overall RBF model but also in a
novel metric to determine the approximation accuracy presented. This metric can also be
used in different research fields where two surfaces must be compared. The RBF solver
is another contribution, and its usage can also be extended to applications where some
smooth objects (without sharp edges) need to be approximated, such as fluid dynamics,
aerodynamics, computer graphics and more.

Section 2 describes various models already used for muscle modelling, followed by
Section 3, including the description of RBF in general and muscle modelling. Section 4
then describes the paper’s contribution to static and dynamic models. Finally, in Section 5,
experiments prove the model works as expected in theory.

2. Related Methods

Having established the theoretical background, we now advance to a detailed investigation
of some techniques relative to muscle modelling.

The origin of a musculoskeletal model is deeply rooted in empirical data. The primary
raw materials for these models are medical scans, such as Magnetic Resonance Imaging
and Computed Tomography screenings, originating from living subjects and cadavers.
Recently, the processing has evolved, transitioning from semi-automatic to fully automatic
techniques. This progression involves the segmentation of images, a critical step where the
relevant structures, such as bones, joints and muscles, are isolated and extracted from the
rest of the image.
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2.1. Bones and Joints

Following segmentation, surface models of bones are created. This process is not just
about assembling a skeletal structure; it involves the intricate specification of joints, setting
constraints on the degrees of freedom within these joints. Here, e.g. the STAPLE algorithm
by Modenese and Renault (2021) can significantly automate and streamline the process.

Triangular meshes are the most common way to approximate bone surfaces by con-
necting triangles to define the object’s overall shape. The methodology for obtaining a
triangular muscle model from a person entails a comprehensive process that begins with
acquiring high-resolution, segmented medical images, commonly from MRI or CT scans.
These images provide a detailed view of the bones (and surrounding tissues). The next step
involves the extraction of a triangular mesh from these segmented images, a task typically
accomplished using algorithms such as Marching Cubes (Lorensen and Cline, 1987) or
Marching Triangles (Hilton et al., 1996). These algorithms traverse the voxel grid of the
images, forming vertices, edges, and faces that approximate the bone surface, effectively
converting the 2D segmented images into a 3D surface representation.

Following the initial mesh extraction, the mesh undergoes a series of refinement pro-
cedures to enhance its quality and anatomical accuracy. These procedures include the
removal of non-manifold vertices and edges to eliminate anomalies that do not adhere
to the criteria of a well-defined surface. Concurrently, any gaps or holes in the mesh are
meticulously filled to ensure continuity of the bone surface, a critical step for maintaining
anatomical fidelity. The mesh is further refined by optimising the shapes of the triangles
to more accurately align with the bone’s contours and by reducing the mesh to lower its
complexity while keeping the model’s overall shape and intricate details.

Additionally, Laplacian smoothing is applied to the mesh. This process adjusts the po-
sition of each vertex based on the average of its neighbouring vertices, effectively smooth-
ing out irregularities and noise, resulting in a uniform and more realistic representation of
the bone. The refined mesh is then rigorously reviewed and compared against the original
segmented images by medical professionals to validate its accuracy, ensuring the model
precisely mirrors the anatomical structure.

While the forces used on bones during the movement can induce deformations, these
deformations are generally so minute that, for practical purposes, they can be disregarded.
This assumption yields the bones as rigid bodies in motion. This assumption is in contrast
to the muscle-tendon units.

2.2. Muscles and Tendons

Joint data about the muscles and tendons (together form muscle-tendon units – MTU) is
acquired because it is difficult to distinguish the muscle and the tendon apart from the
imaging; otherwise, the data can be obtained in the same fashion as in the case of bones.
However, the problem is that these tissues are less visible in the imaging. Fortunately,
the segmentation can also be automated, but more complex strategies are required, with
machine learning methods emerging as promising approaches (Goyanes et al., 2024). De-
spite their potential, these techniques have yet to become a staple in routine practice, and
semi-automatic approaches are used instead.
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If the deformation is discussed, muscles behave differently than bone structures; they
exhibit elastic deformations, presenting a significant challenge in modelling their be-
haviour accurately to the known movement of bones. Various models attempt to address
this, often employing many oversimplifications.

Also, in the real-world scenario, muscle deformation results from the contraction or
relaxation of muscle fibres, driven by the sliding of actin and myosin filaments within
muscle fibres. This contraction leads to changes in muscle shape, causing deformation.
In inverse kinematics, muscle deformation is pretended to be caused by adjacent bone
movement, posing the challenge of figuring out the shape of unknown parts of the muscle
model. If we do not consider measurements of the physiological signals (e.g. electromyo-
graphy), it is required to perform the inverse kinematics because the bone displacements
are known; however, the shape of the muscles during the movement is not (due to the
problematic data acquisition).

The first models created were one-dimensional and were formed by a straight line,
polyline, or curve and their multiples.

2.2.1. 1D Models
The simplest models might represent a muscle as a straight line connecting two points
on different bones, blatantly ignoring any potential intersection with the bone itself. This
approach relies heavily on the assumption that the attachment points are accurately cho-
sen (Kohout and Cervenka, 2022). A slight improvement to this model is to replace the
straight line with a polyline or a curve that either passes through predetermined points
relative to a bone or traces the surface of a parametric body, aiming to minimise the curve
length. However, fine-tuning these models to mirror reality is arduous (Hájková and Ko-
hout, 2014).

It’s also imperative to represent muscles not just as mere lines or curves but as sub-
stantial higher-dimensional models (Kedadria et al., 2023) to enhance the realism of mus-
culoskeletal models.

2.2.2. 3D Models
Geometrical 3D models have been explored, utilising the fact that a large set of muscle
fibres creates the muscle. Modelling approaches using mass-spring systems (Janák and
Kohout, 2014) and the finite element (FE) method are currently gaining prominence (Delp
and Blemker, 2005). The FE method, utilising a template of internal structure projected
onto the surface shape, proves superior accuracy. The main issue of those methods is their
large number of parameters, which need to be figured out, and their computational com-
plexity. Therefore, this paper concentrates more on the two-dimensional (surface) models
instead, which is a reasonable compromise between a simple but inaccurate 1D modelling
and 3D accurate but too complex 3D modelling (Macklin et al., 2016).

2.2.3. Discrete 2D Models
Despite muscles lying in the 3D space, modelling them in lower dimensions is viable.
Straight lines or polylines can be employed in one dimension but inaccurately. In two di-
mensions, already obtained triangular surfaces are limited in the original object descrip-
tion but can be accurate enough. Each “well-behaved” 3D surface model constructed by a
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single component manifold can be parameterised in two dimensions or described utilising
a 2D representation.

In the case of model dynamics, numerous approaches have been developed, primar-
ily working directly on the triangular meshes that have already been obtained. Here, we
provide a brief overview of the most significant ones.

Position-Based Dynamics. Position-based dynamics, introduced by Müller et al. (2007),
is a rapid technique widely utilised in the animation industry for simulating deformations
of elastic objects. Initially created for generic shapes, the method inputs a smooth manifold
surface mesh and generates its deformed counterpart.

An extended version, XPBD (Macklin et al., 2016), introduces the concept of elastic
potential energy, removing the need to determine time steps and iteration counts. XPBD
has been applied to muscle modelling challenges by Romeo et al. (2018), who addressed
limitations regarding convergence speed, setup simplicity, intuitive controls, and artistic
control. They constructed an internal structure inside the surface mesh, accounting for
muscle anisotropy. However, the approach lacked attention to collision detection and res-
olution, later addressed by Cervenka et al. (2023).

In 2019, Angles et al. (2019) introduced an XPBD-based method for muscle mod-
elling, virtually decomposing the muscle into flexible “rods” approximating muscle fi-
bres. These rods adjust their diameter to maintain volume, enabling real-time simulation.
The main issue is the same: the problem of muscle-bone penetration is not adequately
addressed or apparent in the paper or its supplementary material.

As-Rigid-as-Possible Surface Modelling. The as-rigid-as-possible approach (ARAP),
developed by Sorkine and Alexa (2007), is a technique for determining minimal non-rigid
transformations in a surface mesh. Unlike the method by Kellnhofer and Kohout (2012),
which involves volume constraints and an internal skeleton, “it distinguishes itself by not
requiring an internal structure”. Fasser et al. (2021) applied ARAP in a medical context to
morph the template of a pelvic bone onto subject-specific landmarks, though overlooking
certain critical features like volume preservation. Wang et al. (2021) investigated ARAP
but chose not to use it due to non-smooth shapes and spikes in results. ARAP has also
found application in time-varying meshes by Dvořák et al. (2021).

ARAP minimises shape deformation by discouraging non-rigid transformation via a
cost function. Mathematically, this is characterised as the search for a solution to a non-
homogeneous system of linear equations. The matrix corresponds to the discrete Laplace
operator of the mesh, while the right-hand side vector encompasses the second differences
of each vertex concerning its neighbours.

The main drawback of ARAP and similar approaches lies in recalculating each mesh
parameter in every iteration, proving time-consuming for fine triangular meshes. Also, the
triangular mesh has the smoothness issue mentioned before. Therefore, a continuous 2D
model better approximates smoothness and is better suited for the deformation approaches.

2.2.4. Continuous 2D Models
The Non-Uniform Rational Basis Spline (NURBS) is an interpolation and approximation
method (Nie et al., 2022) describing a surface via a set of B-spline curves. NURBS is
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useful for interactive applications, offering higher smoothness than triangular meshes, al-
lowing intuitive deformation of specific parts of the geometrical model (see, e.g. Clapés et
al., 2008 or Sánchez-Reyes and Chacón, 2020). For muscle modelling, the NURBS is not
required to form a structure as triangular meshes when creating the data and then approx-
imate those data, meaning that after applying the Marching Cubes or Triangles step, the
vertices will not be connected by triangles but rather by individual NURBS patches and
the smoothness is accomplished automatically. Also, if a part of the segmentation is miss-
ing, the NURBS techniques can restore those parts more precisely than in the triangular
mesh case.

D-NURBS (Terzopoulos and Qin, 1994) (Dynamic-NURBS) can be used for dynam-
ics. It extends the NURBS approach by incorporating physical phenomena for more in-
tuitive interactive shape deformation relevant to various purposes such as high-resolution
digital terrain (Ye et al., 2020), virtual reality (Lavoie et al., 2006), or CAD applications
(Zhang and Qin, 2001).

Ni et al. (2023) used D-NURBS for muscle shape parametrisation and deformation.
They achieved satisfactory results by defining muscle shape with a set of neighbouring
2D NURBS plates, reaching a mean square difference of approximately 1.5 mm and a
maximum volume error of 0.75%.

While these approaches offer valuable insights, a common challenge is recalculating
every parameter in each iteration, which can be time-consuming. Also, the neighbourhood
of vertices needs to be defined for all the techniques mentioned.

3. Radial Basis Functions

Even the previously described NURBS techniques require some relations between the
vertices (neighbourhood), but Radial Basis Function (RBF) techniques do not require that
knowledge. The task of estimating and fitting scattered data is widespread across vari-
ous fields of engineering and scientific research. To list only a limited subset of the RBF
usage possibilities, Zhang et al. (2022) shows its usability for better predicting the sub-
cellular location of long non-coding RNA. Oliver and Webster (1990) demonstrates this
by applying the kriging method for interpolating geographical data, while Kaymaz (2005)
demonstrate its effectiveness in solving issues related to structural reliability. The pro-
cess has further applications in simulation, e.g. in Sakata et al. (2004)’s study on wing
structures or Joseph et al. (2008)’s development of metamodels. RBF techniques address
partial differential equations, especially in engineering.

The RBF method was presented by Hardy (1971) and improved by him (Hardy, 1990)
later. Majdisova and Skala (2017) have offered different strategies for RBF position-
ing. Significant studies have been conducted in terms of ‘shape parameters’ in RBF ap-
proaches, including, e.g. search for optimal settings by Wang et al. (2021), investigations
by Afiatdoust and Esmaeilbeigi (2015), and research into varying local shape parameters
methods by Cohen et al., Sarra et al., and Skala et al. (2020).

The radial basis function approach uses “centre points” instead of surface vertices,
serving as descriptors for spatial function locations. Unlike NURBS, modifying a single
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RBF centre location can affect the entire surface because of its “blending” behaviour with
other RBFs nearby, propagating recursively throughout the volume. To address the RBF
placement possibilities, Majdisova and Skala (2017) conducted a comparative study of
various RBF placement strategies, showing that uniformly sampled input functions tend
to lead to ill-conditioned RBF equation systems. They seek the solution by proposing a
quasi-random sampling, such as the Halton distribution. Alternative methods have also
been suggested, such as regularisation by Orr (1995) and enhancements close to function
boundaries by Wright (2003).

The RBF approach offers advantages over triangular mesh representations of muscle
surfaces, including:

• There is no need to define the connectivity between control points.
• RBFs can generate Cn-smooth surfaces, with the user-defined required degree of

smoothness denoted by n.
• RBF may use fewer parameters compared to triangular meshes in general.
• Deforming a muscle may involve changing only a portion of the parametric space while

maintaining smoothness.

For each application, the correct RBF must be chosen first to reach desirable prop-
erties and satisfactory results. Two global RBFs are commonly considered: the Gaus-
sian RBF or thin-plate spline (TPS). The Gaussian RBF is defined as e−αr , and TPS as
r2 log r = 1

2 r2 log r2. The decision of which one to use cannot be made by the differ-
entiability criterion (because both are infinitely differentiable). The Gaussian can also be
adjusted using the shape parameter; however, TPS (in its original form) cannot. There are
also other options for global RBFs (such as in Skala and Cervenka, 2019) to consider;
however, Gaussian RBF and TPS provide stability and a good understanding of their be-
haviour and are already the most analysed by others.

3.1. Mathematical Description

A single RBF is a mathematical function defined solely by the distance from a designated
point, denoted as the centre. Mathematically, it can be expressed as ϕ(‖xi − ξ j‖), where
ξ j represents the centre point’s coordinates, and xi is an arbitrary independent point.

The expression of RBF approximation, defining the function value at any specific input
points, is as follows:

h(xi ) =
N∑

j=1

λjϕ(rij ). (1)

Here, the approximation h at the location of xi is described by rij = ‖xi − ξ j‖ the dis-
tance between the input point xi and the centre point ξ j ; and λj is the weight of a single
RBF ϕ, which can be, e.g. already discussed Gaussian RBF or TPS. The equation (1) can
be formulated in a matrix form, resulting in a square matrix A within the system of linear
equations. A simple example of RBF approximating a function can be seen in Zhao and
San (2011).
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The idea can be extended using polynomial conditions, which can improve accuracy.
The extended system of equations, considering these conditions, is expressed as:

[
A P

PT 0

] [
λ

a

]
=

[
h
0

]
. (2)

Here, P are the polynomial conditions, λ represents RBF weights, Big A is the RBF matrix
without the polynomial constraints, small a contains resulting coefficients of the polyno-
mial, and h encompasses values at the input points.

Suppose we disregard the polynomial conditions for a while. In that case, RBF ap-
proximation involves solving the equation (1). The equation can also be described as an
overdetermined system of linear equations Ax = b, where A is a rectangular matrix, b and
x are vectors, and the number of rows N is greater than the number of columns M .

The Ordinary Least Squares (OLS) method can choose weights λj , minimising mean
square error (MSE). This involves computing weights utilising the inverse or pseudoin-
verse: λ = (AT A)−1AT h. Although typically satisfactory, OLS can encounter stabil-
ity problems, as noted by Skala (2017), which needs to be kept in mind while solving.
It is often beneficial to even choose another solver instead. Furthermore, an issue when
combining values of different units in the OLS method to solve the equation system with
polynomial conditions emerges, which needs to be properly addressed (Skala, 2017). The
different units can be found in matrices A and P, see equation (2).

3.2. RBF for Muscle Modelling

Due to the often intricate shape of muscles/bones (e.g. with many triangles, quadrilaterals,
etc.), approximating the muscle/bone rather than interpolating, is advantageous for subse-
quent calculations. When approximating, spatial placement of individual RBF is critical.
A naive approach involves uniformly sampling the input shape (scalar distance field of
the volumetric data or triangular mesh in the case of muscle modelling), but this may not
adequately capture the muscle/bone underlying properties.

Even though utilising the polynomial conditions improves the outcomes and enhances
the matrix conditionality in some cases, the presumption is that the input data behaves
like the selected polynomial. However, this is not the case in muscle modelling, where
the data’s overall shape resembles somewhat an ellipsoidal shape rather than a polyno-
mial form, further diminishes the relevance of polynomial constraints, which will not be
discussed further.

4. Novel RBF Mathematical Model

The number of parameters of the triangular mesh is often large. To address the issue of
reducing parameters during deformation, a new mathematical model is proposed, encom-
passing both static muscle shape and its dynamic configuration during bone movement.
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Fig. 1. The geometrical static model depicts a gluteus maximus muscle. The red represents the original triangular
mesh, while the blue represents its RBF approximation.

4.1. Geometrical Static Model

Even though the number of parameters will be reduced, many will still be present. There-
fore, the extensive emerging RBF linear equation system would be ill-conditioned. The
static model is constructed using a greedy approach, adding one RBF after another to
solve the issue. In each iteration, the algorithm identifies the position and shape of a sin-
gle RBF to minimise the approximation error effectively.

The objective is to minimise the squared error of the approximation to the original
triangle mesh across all vertices throughout the bounded space � ⊆ R

d :

∫
x∈�

k∑
j=1

∣∣∣∣
∣∣∣∣

N∑
i=1

λiφ
(‖x − ξ i‖

) − vj

∣∣∣∣
∣∣∣∣
2

2

dx. (3)

Here, N denotes the current number of employed RBFs, k is the number of vertices in
the triangular meshes, d is the number of dimensions, and vj is the respective vertex. The
notation ‖x‖2 represents the L2 norm of a vector x.

Creating the geometrical static model initiates the generation of a scalar distance field
(SDF) on the triangular mesh. This field is later sampled using a (quasi-)random sam-
pling method. Throughout the research, various distributions, including uniform, random
uniform, Gaussian, and Halton, were tested. The findings indicated that the Halton dis-
tribution emerged as the most effective option, which is following other research (see,
e.g. Majdisova and Skala, 2017; Cervenka et al., 2019). The overall result of the model
generation can be seen in Fig. 1.

4.1.1. RBF Placement
In this study, we followed the placement of each RBF by Carr et al. (2001), placing centres
at the three level-sets of the isosurface. However, in the case of muscle modelling, only a
subset of the proposed set is required. This subset is determined through a straightforward
trial-and-error method. It involves evaluating an objective function and dynamically min-
imising it. Therefore, this placement approach can be described as greedy. The process
involves checking the objective function of each RBF for every vertex across all samples
within the input space (the bounding box of a mesh), as well as for each predefined shape
parameter (refer to Section 4.1.2 for more details).
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Greedy placement is a sub-optimal approach because two independently and subse-
quently placed centres independently select a shape parameter for each RBF compared
to two “cooperating” centres, which are not required to be optimal at the time of their
selection. However, this approach avoids the stability issue by using an extensive system
of linear equations as a solution.

The optimal position is for each centre selected, and the RBF function is subtracted
from the volume bounded by, e.g. the AABB box and the process is iterated until either
the allotted number of RBFs is utilised or the predetermined level of accuracy is achieved.
This centre point distribution approach was designed to avoid the OLS stability issue al-
together.

4.1.2. Shape Parameter Selection
Choosing the radius of action, also called a shape parameter, is pivotal in achieving pre-
cise interpolation or approximation. While one option is to independently select a shape
parameter for each RBF, this can lead to many stored parameters. On the other hand, de-
termining an optimal global shape parameter for all RBFs leads to inaccuracies and using
it as a compromise remains an open question. Different approaches have been suggested,
such as those by Wang et al. (2021), Afiatdoust and Esmaeilbeigi (2015), and Sarra and
Sturgill (2009). Still, they may not always identify the optimal shape parameter for each
RBF. During testing, we discovered that the single global shape parameter is not exhaus-
tive. Search from a limited list of possible shape parameters is suitable because the number
of parameters is low. The condensed set of parameters reduces the storage capacity and
computational complexity while searching for the most suitable one.

4.1.3. Objective Functions
The task at hand for evaluating the placement of individual RBFs is to assess how accu-
rately the placement represents the original shape. One possible metric for this assessment
is the Jaccard index; the second is the mean square error.

Jaccard Index. The Jaccard index quantifies the disparity in volume1 between two ob-
jects: the original mesh and the surface formed by RBF. It is mathematically defined as
follows:

Ji = i

u
= i

i + d
. (4)

In this context, i represents the intersection volume, u symbolises the union of both
meshes and d represents the difference between both meshes. Calculating the exact volume
of intersections can be complex so that a rough approximation might be a more practical
choice. Rather than using volumes, the number of samples (using the already described
Halton distribution) in each group can be used. A higher number of samples leads to more
significant computational accuracy. It is worth noting that while the Jaccard index helps

1Strictly speaking, it is a disparity between the area inside and outside both objects and the areas inside one
object but outside the other.
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specify the difference between two shapes, it does not provide an understanding of how
much is “inside” or “outside” something, which is a feature to consider.

Mean Square Error. The Mean Square Error (MSE) provides a more detailed insight
into both muscles’ interior and exterior rather than a binary assessment. Calculating MSE
requires knowledge of interior information. Interestingly, no additional information is nec-
essary for the RBF representation, as it can be evaluated at any point within the volume.
For the original surface mesh, interior information can be acquired using a scalar distance
field (SDF) already obtained for its creation, allowing us to determine the distance of each
vertex from the surface mesh.

The computation of the MSE objective function entails integrating the squared L2
norm across the subset � of the original space Rd and can be expressed as:

Mse =
∫

�

∥∥s(x) − h(xi )
∥∥2

2dx. (5)

Here, the function s represents the Scalar Distance Field (SDF) constructed over the
mesh, while h represents the sum of all currently utilised RBFs. When computed, a more
efficient approach is subtracting each RBF from the function s and then calculating the
updated s norm.

It’s important to note that these objective functions may encounter challenges when
dealing with the translational motion of the shape. This paper assumes that the muscle
movement occurs only in part of the muscle while the rest remains static (for instance, the
muscle is attached to two bones, but only one moves). This assumption holds as long as
the deformation of a muscle is done in the local scope, with one static and one moving
bone (meaning both bones cannot translate together during deformation).

Delving further into the challenge of selecting the appropriate objective function, opt-
ing for the MSE tends to yield a smoother surface. At the same time, the Jaccard index
aligns more closely with the original model at the expense of introducing a less smooth
surface. Hence, a combination of both proves to be a favourable approach.

4.2. Metrics

The metric used to compare the original surface with a new one is a weighted sum between
the Jaccard index and MSE. This metric is proposed because the smooth surface provided
by MSE and the surface location accuracy provided by the Jaccard index are required. The
weight σ is called a smoothness factor:

Cm = (1 − σ)(1 − Ji) + σ
Mse

maxMse

. (6)

The equation calculates the final metric Cm using the smoothness factor σ , Jaccard
index Ji , and MSE value denoted as Mse. The Jaccard index is expressed as 1 − Ji to
penalise the lower Jaccard index more than the higher one. The MSE variable Mse must
also be normalised into zero to one interval, which is accomplished by dividing the MSE
total value by the maximum one possible.
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4.2.1. Regularisation
Regularisation optimises how the RBFs are placed, increasing the likelihood of placing
RBF centres in a predefined position or formation. When forming the RBF surface, it may
be advantageous to position RBFs within the muscle volume and less outside, resulting in
a more accurate curvature field, including fewer local extrema near the surface. The central
concept involves penalising the RBFs placed significantly outside the desired region more
heavily than the others.

When utilising the Signed Distance Field (SDF), the sign indicates whether the target
vertex is inside or outside. Let’s denote the signed distance as dvi

. To obtain relative values
rather than absolute distances, we can divide dv by the maximum possible distance dmax.
This yields rd = dvi

dmax
, which falls within the interval (−∞, 1).

Additionally, to enable the use of wider RBFs (avoiding the potential replacement by
less advantageous numerous RBFs with minimal overall influence), a similar penalisation
for the RBF shape parameters can be implemented: rs = αi

αmax
. Since ∀i, αi > 0, the rs

value will fall within the interval of (0, 1). The wider RBFs are then useful in forcing
fewer parameters to move to deform the overall shape.

To summarise, the parameters for the following need to be determined. The regulari-
sation factor γ represents the ratio of how much of the original cost function is employed.

Cr = γCm + (1 − γ )
dvi

dmax

αi

αmax
. (7)

4.3. Mathematical Dynamic Model

In our studied scenario, the bones undergo a rigid transformation in inverse kinematics,
typically following the desired real-world movement. Subsequently, in an inverse manner,
the shape of all the muscles related to the bone needs to be reconstructed. The portions of
the muscle attached to the bones are mandated to move in conjunction with these bones,
while the remaining parts of all muscles require reconstruction. In the following text,
the muscle is meant to be the whole muscle-tendon unit to ensure that the “muscle” is
correctly attached to a set of bones. Also, for the simplicity of the following text, just a
singular muscle involved in deformation is considered.

The main idea of the novel dynamic model is to find a new shape according to the
curvature of the original one, preserving its initial shape as much as possible. The math-
ematical description to maintain the initial shape as much as possible can be described in
many ways. In the case of muscle modelling, the muscle’s initial curvature throughout the
whole volume is a suitable shape descriptor. Mathematically speaking, we define the cost
function as the total difference of the original (κμfi ) and current curvature (κμf ) over the
bounded space � ⊆ R

d , and we are looking to obtain its gradient:

Cf =
∫

. . .

∫
‖κμf − κμfi‖2

2dx1 . . . dxd =
∫

�

‖κμf − κμfi‖2
2dx. (8)
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Then we use the definition of the 3D RBF approximation (and for the sake of simplicity,
use gi as the individual weighted RBF):

f (x) =
N∑

i=1

λiφ
(‖x − ξ i‖

) =
N∑

i=1

gi(x). (9)

To calculate the curvature, we need to find the eigenvalues of the Hessian matrix of f ,
also the calculation of second partial derivatives of f is needed. From the Hessian matrix,
all of the eigenvalues can be obtained.

For this paper, only global RBFs were considered at first due to their influence over
the entire space, allowing the change of the whole model by altering fewer parameters.
Moreover, for that purpose, the global Gaussian RBF is chosen for this paper due to its
simplicity if differentiation is considered, which is beneficial when creating this dynamical
model. If the Gaussian RBF is considered, then the mean of all of the eigenvalues can be
calculated as:

κμf = κμ

(
H

(
f (x)

)) = 2

d

N∑
i=1

αigi(x)
(
2αi‖x − ξ i‖2

2 − d
)
. (10)

Combining (10) and the gradient of (8), the complete cost function can be expressed
as:

∇Cf kj = 8

d

∫
Rd

(κμf − κμfi)α
2
kgk(x)(xj − ξkj )

(
2αk‖x − ξk‖2

2 − 2 − d
)
dx. (11)

The calculation, including all the computational steps, can be found in Appendix C.
The result implies that the direction of the gradient depends on the following factors:

1. (κμf − κμfi) – the direction of the gradient is influenced by the disparity between
the original and new curvature across the entire interval. The more significant this
difference, the larger the magnitude of the gradient.

2. α2
i – the shape parameter plays a crucial role. A broader function exerts a more signif-

icant influence on the gradient of the respective centre point ξkj .
3. gi(x) – naturally, the RBF itself plays a significant role.
4. (xj − ξkj ) – as we integrate further from the centre point, its impact diminishes.
5. (2αi‖x − ξ i‖2

2 − 2 − d) – the distance of the current RBF to the integration variable
is not just significant exponentially in gi (expressed in third point) but also linearly
(subject to specific constant manipulations).

The new mathematical model for the RBF shape deformation defines where all centre
points should be translated (in the direction specified by its gradient). At this point, we
can, according to the broader shape parameters and larger weights, decide which RBFs
are more significant and calculate the deformation more often. In contrast, the less critical
parameters can be recalculated only a few times, which may reduce the computational
complexity significantly.
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It’s crucial to re-emphasise the centrality of our mathematical model in this study. Even
though this paper does not adequately address any collision detection and response (CD/R)
issues, similar techniques to Cani-Gascuel and Desbrun (1997) hierarchical CD/R can be
used in the future. This section has encapsulated the theoretical and practical applications
of radial basis functions in muscle modelling and illuminated the robustness and versa-
tility of our mathematical approach. Through rigid exploration of complex mathematical
concepts and their biomechanical applications, this research emphasises the potential for
advanced modelling techniques in future studies, paving the way for groundbreaking in-
novations in biomechanics and beyond.

5. Experiments

The proposed approach has been tested to ensure its usefulness for musculoskeletal mod-
elling. Here, we detail the critical experiments conducted to test the relevance and efficacy
of the radial basis function approach in muscle modelling, concentrating on processes and
their implications for our theoretical description.

The mathematical model of the curvatures can be evaluated using actual data from the
gluteus maximus, gluteus medius, iliacus and adductor brevis muscles. The initial exper-
iment will be conducted without regularisation, solely relying on the greedy placement
approach.

5.1. Geometrical Static Model

Before we dive deeper into the muscle dynamics experiments, the first experiment shows
the results of the static model. These experiments prove the correct centre placements.

5.1.1. Greedy Centre Placement
Using a greedy approach, we employ a naive RBF placement strategy in the initial ex-
periment. The results of such placement can be seen in Figs. 2, 3, 4 and 5. While this
approach is straightforward to implement and relatively fast in execution, as depicted in
Fig. 11, it exhibits issues with numerous small (but still different in size) RBFs distributed

Fig. 2. The original gluteus maximus muscle in red and its RBF counterpart in blue.
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Fig. 3. The original gluteus medius muscle in red and its RBF counterpart in blue.

Fig. 4. The original iliacus muscle in red and its RBF counterpart in blue.

Fig. 5. The original adductor brevis muscle in red and its RBF counterpart in blue.

across the entire space. The approach forms a complex curvature field with numerous po-
tential local extrema. Additionally, the curvature outside the muscle boundaries (though
barely visible in the image) is cluttered with unneeded curvature differences, further ex-
acerbating the proliferation of local extrema. The problem is solved with regularisation,
and the next section describes the experiment.

5.1.2. Regularisation
By including the regularisation term, higher curvatures will be concentrated at the borders
of the original triangular mesh. The regularisation creates more promising conditions for
the gradient descent method to achieve a superior approximation of the muscle in motion,
mitigating the problem of numerous local minima in the field. Three examples are pre-
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Fig. 6. The metrics evaluation on gluteus maximus muscle up to 100 RBF centres, with different sampling
density and smoothness weight.

sented here: one with a regularisation factor of 0.7, another with a factor of 0.3, and the
last with a regularisation factor of 0.05. The outcomes can be observed in the Appendix A
in Figs. 12, 13, and 14, respectively.

5.1.3. Metrics
The weighted metrics (between the MSE and JI) have been tested with two weights (0.15
and 0.85) and on two different sample resolutions (10k and 100k vertices). The evaluation
for the first hundred RBF centres is shown in Fig. 6, which describes the initial part of the
metrics convergence.

One may tell from the results that both metrics converge similarly, and in the end,
they tend to go to a fixed value. However, if you continue further, it will be evident that
this is not the case because the penalisation of the Jaccard index holds near a fixed value.
Still, after a while, it goes faster towards zero (on a non-logarithmic scale). The results
for more (7000) centres are visualised in Fig. 7. The other takeaway is that the finer the
sampling (green and black dotted curves), the longer it takes to lower the penalisation of
the Jaccard index (red and blue). Also, the lower the smoothing factor (red and green), the
higher the MSE (dashed lines), confirming that both metrics describe the shape difference
significantly differently.

5.1.4. Limitation
A well-known problem with the static surface RBF approximation is its ineffectiveness in
accurately approximating sharp edges. This drawback is less critical in muscle modelling,
as most soft tissues are relatively smooth and do not possess sharp edges, often resembling
spherical shapes. However, this issue can be demonstrated using a simple 3D volumetric
shape like a tetrahedron. A tetrahedron has six sharp edges (each with a dihedral angle
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Fig. 7. The metrics evaluation on gluteus maximus muscle, with different sampling density and smoothness
weight.

Fig. 8. An attempt to create an RBF surface for a tetrahedron demonstrates the unsuitability of RBF for approxi-
mating sharp edges. RBF is ineffective for shapes like a tetrahedron due to its inability to model the sharp edges
accurately.

exceeding 70 degrees) and four corners, which present significant challenges for RBF
approximation.

The fundamental issue with RBFs is that each RBF inherently forms a spherical iso-
surface at a given value. To create a sharp corner would theoretically require an infinite
number of infinitesimal RBFs. An example of attempting to develop an RBF static surface
for a tetrahedron is shown in Fig. 8. Let’s also note that in the case of the tetrahedron and
similar shapes, often no data reduction is achieved, but rather the opposite.

5.2. Deformation

Both options involving and neglecting the regularisation factor were tested. For testing,
the centre points were shifted randomly, with a magnitude of 5% of the AABB box diag-
onal, and the expectation is that the centre points return to/near their initial positions. The
successful experiment with regularisation is shown in Figs. 9 and 10 and the full results
are visualised in the Appendix B in the respective figures. The experiments supported the
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Fig. 9. The initialisation, where the randomly deformed green muscle should return to its initial shape in blue.

Fig. 10. The restoration copies the original blue shape with the green one, despite minor differences on the right
side.

idea of using regularisation to lower the number of local extrema for the gradient descent
because it converges much closer to the original shape. The first experiment without the
regularisation factor was only about 0.7% faster on the standard PC than the second one,
which cannot be considered a statistical difference.

6. Conclusion & Future Work

This paper shows a novel approach for modelling a surface with the radial basis func-
tion approach. The proposed method offers a way to model a static and dynamic muscle
surface, altogether avoiding recalculating the geometrical model’s parameters to deform
it. Even though there are some examples where the approach is not applicable (e.g. the
tetrahedron), the suitability for the muscle reconstruction is apparent. Regularisation helps
reduce the number of local extrema. However, it also reduces the resulting precision; luck-
ily, a compromise can be reached using a suitable regularisation term selection.

A deformation methodology respecting muscle properties (muscle volume, shape
preservation, and bone avoidance) is the most obvious candidate for future work. A good
starting point seems to be the work from Cani-Gascuel and Desbrun (1997) describing the
geometrical model deformation in general. However, their method uses the model gener-
ated by a skeleton, which is not reasonable for modelling a muscle shape, which would
need an overcomplicated skeleton to be able to work. The following work and a great re-
view from Lee et al. (2012) describe the possibilities of modelling muscle deformation
using skeleton-generated implicit surfaces.

It is not just the novelty but also the oversight of the approach that is apparent; the
metric discussed in the article extends beyond its use in muscle modelling or general
modelling applications. It is versatile enough to be applied in any situation that requires
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the comparison of two surfaces. Similarly, the concept of regularisation, with its math-
ematical underpinnings suitable for RBF surface modelling, can be adapted for broader
applications. Its fundamental principle of constraining centres to remain inside applies to
more general contexts, such as clustering methodologies.

A. Curvature Visualisations

Fig. 11. The curvature of the RBF surface of the gluteus maximus muscle is depicted in the image. The prominent
centres of the RBFs are represented by green spheres in the space. The curvature values are displayed in a
logarithmic scale, as the differences in curvature are not linear but rather exponential. This result stems from the
same experiment shown in Fig. 1; it has been included here for easy comparison.
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Fig. 12. On the left, we have the curvature field, while on the right, we see the approximation result with a
regularisation factor of 0.7. Although there is a preference for curvature fluctuation within the muscle, there
is also substantial fluctuation outside. Decreasing the local minima outside the muscle volume results in a less
precise approximation of the original red muscle to the blue one.
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Fig. 13. On the left, we have the curvature field, while on the right, we see the approximation result with a
regularisation factor of 0.3. The fluctuation in the curvature field has been further reduced, but as a consequence,
the resulting geometrical surface model has become more rough in texture.
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Fig. 14. The curvature field (on the left) and approximation result (on the right) with the regularisation factor of
0.05. While the fluctuation in the curvature field has been nearly eliminated, the roughness of the muscle surface
has become quite pronounced.
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B. Dynamic Restoration Visualisations

Fig. 15. The initialisation of the simulation without the regularisation factor, where the randomly deformed green
muscle should return to its initial shape in blue.

Fig. 16. The progress of the shape restoration. The green surface seems to diverge from the blue one due to
omitting the regularisation factor.

Fig. 17. The final part of the shape restoration. The green shape found other local minima than the muscle’s blue
(original) shape.
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Fig. 18. The initialisation of the simulation with the regularisation factor, where the randomly deformed green
muscle should return to its initial shape in blue.

Fig. 19. The green shape seems to converge to the blue shape. The main difference is the restored top part of the
green shape.

Fig. 20. The final restoration. Excluding the minor differences in the right part of the muscle, the green shape
quite accurately approximates the original blue one.
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C. Mathematical Dynamic Model

Let us assume the function f to be a 3D radial basis function approximation:

f (x) =
N∑

i=1

λiφ
(‖x − ξ i‖

)
. (12)

Let’s assume that Gaussian Radial Basis Functions (RBFs) are utilised exclusively. Ad-
ditionally, we can define gi(x) as a replacement for the ith RBF to streamline subsequent
derivations.

f (x) =
N∑

i=1

λie
−α‖x−ξ i‖2

2 =
N∑

i=1

gi(x). (13)

The shape of the geometrical model can be well described using its curvature. To
compute the curvature, we need to determine the Hessian matrix, consisting of the second
partial derivatives with respect to the function f . Therefore, the initial step involves finding
the gradient of the function f in an n-dimensional space:

∇f (x) =
[

∂f

∂x1
,

∂f

∂x2
,

∂f

∂x3
, . . .

]
. (14)

By employing the chain rule, where the expression (xj − ξij ) originates from the
exponent of the exponential function f , along with the shape parameter α and the constant
value of −2, the resultant gradient takes the following form:

∇f (x) = −2
N∑

i=1

αigi(x)[x1 − ξi1, x2 − ξi2, x3 − ξi3, . . .]. (15)

We will now construct the Hessian matrix, which will be used to calculate the cur-
vature. As previously mentioned, its computation relies on knowing the second partial
derivatives. In an nD space, it is defined as follows:

H
(
f (x)

) =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2f

∂x2
1

∂2f
∂x1∂x2

∂2f
∂x1∂x3

. . .

∂2f
∂x2∂x1

∂2f

∂x2
2

∂2f
∂x2∂x3

. . .

∂2f
∂x3∂x1

∂2f
∂x3∂x2

∂2f

∂x2
3

. . .

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎦

. (16)

To compute the second partial derivatives, we rely on the gradient of a function f . For
instance, the second partial derivatives with respect to x2 can be expressed as follows:

∂2f

∂x2
j

= ∂f

∂xj

(
−2

N∑
i=1

αigi(x)(xj − ξij )

)
. (17)
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Applying the product and chain rules, the second partial derivative with respect to x2

takes the form of the following expression. The derivation is performed similarly to the
first derivative, which has already been carried out above in (15).

∂2f

∂x2
j

= 2
N∑

i=1

αi

[
2αi(xj − ξij )

2 − 1
]
gi(x). (18)

The calculation of the mixed second partial derivatives is performed similarly to be-
fore. Upon examining the outcome in (19), it becomes apparent that there is a resemblance
between the mixed partial derivatives and those involving the same variables. The mixed
ones are not scaled by 2αi and do not undergo a subtraction of 1 from them; otherwise,
the remaining operations are identical in both cases.

∂2f

∂xj ∂xk

= 2
N∑

i=1

2α2
i (xj − ξij )(xk − ξik)gi(x). (19)

The Hessian matrix can be populated with the second partial derivatives. Both sets of
second partial derivatives involve multiplication by the distances from the centre point in
their respective directions. This process can be encapsulated using an outer product. The
value of −1 from the pure partial derivatives will transform into the identity matrix with
dimensions d ×d , where d denotes the problem’s dimensionality (which is 3 in our case).

H
(
f (x)

) = 2
N∑

i=1

αigi(x)
(
2αi(x − ξ i)(x − ξ i)

T − Id
)
. (20)

C.1. Mean Curvature

For curvature calculation, one option is to employ the mean curvature, which is defined
as the average of all the eigenvalues λi of a Hessian matrix:

κμ(H) = 1

d

d∑
i=1

λi. (21)

There are zero eigenvalues with the multiplicity of d − 1 and one with a value of
‖x − ξ i‖2. The result aligns with the intuition, as zero eigenvalues correspond to eigen-
vectors perpendicular to the hypersphere isosurface at each point. In contrast, the sole
non-zero eigenvalue pertains to the eigenvector tangent to them, pointing from the RBF
centre outward. When calculated over the outer product of a vector with itself, the coef-
ficient 2α and identity matrix Id transform the eigenvalues to −1, with a multiplicity of
d − 1, and the final eigenvalue becomes 2α‖x − ξ i‖2 − 1.

κμ

(
H

(
f (x)

)) = κμf = 2

d

N∑
i=1

αigi(x)
(
2αi‖x − ξ i‖2

2 − d
)
. (22)
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The subsequent step involves specifying the cost function, which is essentially the
squared L2 norm between the new and original curvatures across the subspace � ⊆ R

d :

Cf =
∫

. . .

∫
‖κμf − κμfi‖2

2dx1 . . . dxd =
∫

�

‖κμf − κμfi‖2
2dx. (23)

One may employ the gradient descent method to discover the optimal values of ξ i .
Initially, we must compute the gradient of the curvature with respect to ξ i :

∇κμf =
[
∂κμf

∂ξi1

∂κμf

∂ξi2

∂κμf

∂ξi3
. . .

]
. (24)

The resulting gradient takes the following form:

∂κμf

∂ξkj

= 4

d
α2

kgk(x)(xj − ξkj )
(
2αk‖x − ξk‖2

2 − 2 − d
)
. (25)

Now, we need to compute the gradient of the cost function C, which is expressed as
follows:

∇Cf = ∇
(∫

Rd

‖κμf − κμfi‖2
2dx

)
. (26)

Given the definition of the partial derivatives of κ , the complete cost function can be
expressed as:

∇Cf kj = 8

d

∫
Rd

(κμf − κμfi)α
2
kgk(x)(xj − ξkj )

(
2αk‖x − ξk‖2

2 − 2 − d
)
dx. (27)
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