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Abstract. Frequent gradual pattern extraction is an important problem in computer science widely
studied by the data mining community. Such a pattern reflects a co-variation between attributes of a
database. The applications of the extraction of the gradual patterns concern several fields, in particu-
lar, biology, finances, health and metrology. The algorithms for extracting these patterns are greedy
in terms of memory and computational resources. This clearly poses the problem of improving their
performance. This paper proposes a new approach for the extraction of gradual and frequent patterns
based on the reduction of candidate generation and processing costs by exploiting frequent itemsets
whose size is a power of two to generate all candidates. The analysis of the complexity, in terms of
CPU time and memory usage, and the experiments show that the obtained algorithm outperforms
the previous ones and confirms the interest of the proposed approach. It is sometimes at least 5 times
faster than previous algorithms and requires at most half the memory.
Key words: gradual pattern, frequent pattern, candidate, binary matrix, mining.

1. Introduction

The technological development in the last decades has allowed the creation of many elec-
tronic devices used to solve the current problems of humanity. These devices are present
in many aspects of human life such as health, agriculture, economy and education. They
produce and store huge amounts of digital data, which in turn contain a certain amount
of hidden knowledge. Knowledge extraction (Di-Jorio et al., 2009a; Vera et al., 2020;
Al-Jammali, 2023) aims to extract useful and understandable hidden knowledge, such as
correlation, dependence or co-variation of attributes, from large databases.

A well known data mining task is frequent itemset mining, widely studied by the data
mining community. It consists of analysing data to discover frequently co-occurring item-
sets (Agrawal and Srikant, 1994; Kenmogne, 2018). It has many applications in many
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areas such as market basket analysis, e-learning, image classification, activity monitor-
ing, community discovery, malware detection, web mining, chemical and biological anal-
ysis, and software bug analysis. Over the past decades, many studies have been devoted
to frequent sequence mining (Kenmogne, 2016; Belise et al., 2017, 2018; Kenmogne et
al., 2022), which generalizes frequent itemset mining by taking the sequential ordering
of itemsets in transactions into account to find frequently co-occurring subsequences in a
set of transactions. Recently, gradual patterns that model frequent co-variations between
numerical attributes aroused great interest in a multitude of areas. They convey knowl-
edge of the form «the more A, the more B». Examples of gradual patterns extracted from
a salary database and a medical database are «the higher the age, the higher the salary»
and « patients with high insulin levels, high body mass index and high age have a high
probability of having diabetes», respectively. Previous studies have developed two basic
algorithms for extracting frequent gradual patterns, namely Graank and Grite. Both al-
gorithms are based on the Apriori principle, which consists in generating candidates and
selecting those that are frequent. The difference between them comes from how to calcu-
late the gradual supports. In the Grite algorithm, gradual support is based on the so-called
precedence graph approach. In the Graank algorithm, it relies instead on the so-called
concordant pairs approach.

Even though the problem of knowledge extraction has been addressed for many years
(Frawley et al., 1992; Agrawal and Srikant, 1994; Hüllermeier, 2002; Berzal et al., 2007;
Di-Jorio et al., 2009a; Kononenko and Bevk, 2009; Ayouni et al., 2010; Negrevergne et
al., 2014; Kenmogne, 2016; Jabbour et al., 2019; Chicco and Jurman, 2020; Lonlac et
al., 2020; Lonlac and Nguifo, 2020; Vera et al., 2020; Clémentin et al., 2021; Li and Liu,
2021; Ham et al., 2022), knowledge mining algorithms are well known to be both time
and memory intensive for large databases, and the improvements are driven by the need
to process more data at faster speed with less cost. This paper follows this trend for the
extraction of frequent gradual patterns.

Interesting gradual pattern mining algorithms can be classified into four categories.
The first category focuses on the extraction of frequent gradual patterns (Di-Jorio et al.,
2009a, 2009b, 2009c; Laurent et al., 2009; Clémentin et al., 2021). The second category
focuses on reducing the number of frequent gradual patterns by considering only closed or
maximal patterns (Ayouni et al., 2010; Côme and Lonlac, 2021; Belise et al., 2023). The
third category focuses on leveraging parallel architectures to speed up the mining process
(Laurent et al., 2010, 2012; Negrevergne et al., 2014; Belise et al., 2018). The fourth
category concerns the integration of constraints, related to the application context, in the
mining process (Belise, 2011; Kenmogne, 2016; Belise et al., 2017; Kenmogne, 2018;
Ser et al., 2018; Lonlac et al., 2020). Many algorithms of the four categories are based
on the Apriori principle, also known as the test-generation principle, which consists in
generating candidate itemsets, calculating their gradual supports and retaining only those
candidates whose support is above the minimum threshold. In these algorithms, frequent
gradual patterns of size k are used to generate candidates of size (k + 1).

The work presented in this paper is related to the first category of algorithms. In this
category, performance optimization involves reducing the search space and reducing the
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costs of fundamental operations used in the mining process, namely support calculation,
candidate generation and binary matrix multiplication. In mining algorithms, the search
space could be reduced to the lattice of positive gradual patterns, i.e. patterns whose first
term is positive. This halves the search space, which in turn results in a halving of the com-
putational load. The reduction of support calculation costs has been studied in the litera-
ture in the particular case where the gradual support is based on the so-called precedence
graph approach. This paper focuses on reducing the costs of generating and processing
candidates, assuming that gradual support relies on the so-called concordant pairs ap-
proach. This results in a new approach for extracting frequent gradual patterns. Compared
to previous approaches, the cost of candidate generation is significantly reduced by using
only frequent gradual itemsets whose size is a power of two to generate all candidates.
More precisely, frequent gradual patterns of size 2k are used to generate all candidates
whose size is between 2k + 1 and 2(k+1). Experiments carried out on real and synthetic
datasets show a significant gain obtained with the proposed approach compared to the
Graank reference approach.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
presents a new approach for the extraction of frequent gradual patterns. Section 4 presents
the experimental results. Section 5 concludes the paper.

2. State of the Art

This section presents the fundamental concepts of the extraction of the gradual patterns
and the methods of extraction of the said patterns.

2.1. Concepts and Definitions

The database described in Table 1 is used to illustrate the concepts and methods for ex-
tracting gradual patterns.

Definition 1 (Item). An item is an attribute of the database.

For example, in Table 1, A, S and C are items.

Definition 2 (Gradual Item). A gradual item is of the form A∗ where A is an attribute
of the database and *∈ {>,<,�,�} is the variation operator of the values of attribute A.

Table 1
Example of a numerical database D.

Id Age (A) Salary (S) Car (C)

p1 22 1200 0
p2 28 1850 2
p3 24 1200 3
p4 35 2200 1
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In database D in Table 1, A> is linguistically expressed as “increasing age” and A<

as “decreasing age”.

Definition 3 (Gradual pattern or gradual itemset). A gradual pattern M , also called
gradual itemset, is a concatenation of several gradual items, denoted M = I ∗i

i , i = 1..k,
where I ∗i

i is a gradual item.

M is linguistically interpreted as a conjunction of gradual items. A k-gradual item-
sets is an gradual itemset containing k gradual items. For example, the 2-gradual itemset
A�S� means “the more the age increases, the more the salary increases”.

Definition 4 (Complementary gradual itemset). Let M = (i
∗1
1 , . . . , i

∗k

k ) be a gradual
itemset and c the function defined by c(<) ⇒ and c(>) =<. The gradual itemset c(M) =
(i

c(∗1)
1 , . . . , i

c(∗k)
k ) is defined as the complement of M .

In the literature, it is often assumed that c(�) =�, c(�) =�, c(<) ⇒ and c(>) =<.
However, as in the work of Berzal et al. (2007), in this work, we will only consider strict
inequalities. For example, the gradual itemset A>S< is the complement of the gradual
itemset A<S>.

Definition 5 (Gradual rule). A gradual rule, denoted R: M1 → M2, is a causal relation-
ship between two gradual patterns M1 and M2. M1 is called the antecedent or premise of
the rule and M2 the consequent.

The rule A� → S� means “if the age increases, the salary increases”. The fundamen-
tal difference between a gradual rule and a gradual pattern is that the gradual rules reflect
the causal trends observed in the dataset while the gradual patterns reflect the co-variation
trends.

Definition 6 (Concordant pairs). A concordant pair with respect to a gradual itemset is
a pair of objects in the database that satisfies the order induced by the said itemset.

For example, {(p1, p2), (p1, p3), (p1, p4), (p2, p4), (p3, p2), (p3, p4)} is the set of
concordant pairs with respect to item A>. In contrast to the concordant pairs, we distin-
guish the discordant pairs.

Definition 7 (Binary matrix of an itemset, Di-Jorio et al., 2009a). Let D be a database
made up of m attributes and n objects, Mk a gradual itemset of size k. The binary matrix
of gradual itemset Mk is the square binary matrix of order n such that the inputs are the n
objects of the database and for any pair of objects (o, o′) ∈ DXD, the entry (o, o′) of the
matrix is 1 if the pair is concordant and 0 otherwise.

Table 2 illustrates the notion of binary matrix of a gradual itemset and the calcula-
tion of the binary matrix of a concatenation of itemsets. If LM ′ and LM ′′ are respec-
tively the binary matrices of the itemsets M ′ and M ′′, the matrix LM ′M ′′ of the itemset
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Table 2
Binary matrices of some itemsets from database D in Table 1.

LA> LS> LC>

� p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

p1 0 1 1 1 0 1 0 1 0 1 1 1
p2 0 0 0 1 0 0 0 1 0 0 1 0
p3 0 1 0 1 0 1 0 1 0 0 0 0
p4 0 0 0 0 0 0 0 0 0 1 1 0

LA>S> LA>C> LA>S>C>

� p1 p2 p3 p4 p1 p2 p3 p4 p1 p2 p3 p4

p1 0 1 0 1 0 1 1 1 0 1 0 1
p2 0 0 0 1 0 0 0 0 0 0 0 0
p3 0 1 0 1 0 0 0 0 0 0 0 0
p4 0 0 0 0 0 0 0 0 0 0 0 0

M ′M ′′ is LM ′M ′′ = LM ′ AND LM ′′ , where AND is the logical conjunction operator, i.e.
LM ′M ′′ [i, j ] = LM ′ [i, j ] AND LM ′′ [i, j ] for any pair of indexes (i, j).

Proposition 1 (Binary matrix of a complementary itemset). If LM is the binary matrix of
the gradual itemset M , the binary matrix of the complementary gradual itemset Mc can
be deduced from that of M by transposing LM , i.e. LMc = tLM

.

The extraction of the relevant gradual patterns and rules is based on quality criteria that
are based on the concept of support and the concept of trust. The definition of the support
concept varies depending on the extraction method. This paper considers the definition
based on the notion of concordant pairs.

Definition 8 (Support of a gradual pattern, Berzal et al., 2007). The support Supp(M)

of a gradual pattern M = {(A∗
j∗j ), j = 1..k} is the ratio of the number of concordant

pairs with respect to M on the half of the total number of pairs of the database:

Supp(M) = |{(o, o′) ∈ DxD | o <M o′}|
|D|(|D| − 1)/2

. (1)

Table 3 illustrates the notion of gradual support.

Proposition 2 (Equality of support, Berzal et al., 2007). Supp(M) = Supp(c(M)).

Proposition 3. If a gradual pattern is frequent then its complementary is also frequent.

Proposition 3 is a consequence of Proposition 2.

Definition 9 (Confidence of a gradual rule). The confidence con(R) of a gradual rule
R : M1 → M2 is the proportion of concordant pairs with respect to M2 in the set of
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Table 3
Gradual supports of some itemsets from database D in Table 1.

Itemset Complementary
itemset

List of concordant pairs Support

A> A< {(p1, p2), (p1, p3), (p1, p4), (p2, p4), (p3, p2), (p3, p4)} 6/6
S> S< {(p1, p2), (p1, p4), (p2, p4), (p3, p2), (p3, p4)} 5/6
C> C< {(p1, p2), (p1, p3), (p1, p4), (p2, p3), (p4, p2), (p4, p3)} 6/6
A>S> A<S< {(p1, p2), (p1, p4), (p2, p4), (p3, p2), (p3, p4)} 5/6
A>C> A<C< {(p1, p2), (p1, p3), (p1, p4)} 3/6
A>S>C> A<S<C< {(p1, p2), (p1, p4)} 2/6

concordant pairs with respect to M1:

con(R) = supp(M1 ∩ M2)

supp(M1)
. (2)

Definition 10 (Frequent gradual pattern). A gradual pattern M is said to be frequent
if its support is greater than or equal to the minimum support threshold minSupp, i.e.
supp(M) � minSupp.

Definition 11 (Valid gradual rule). A gradual rule R is said to be valid if its confidence
is greater than or equal to the minimum confidence threshold minCon, i.e. con(R) �
minCon.

2.2. Some Approaches to Extracting Gradual Itemsets

The first approach is based on the notion of linear regression (Hüllermeier, 2002). It only
considers fuzzy data and rules whose premise and conclusion have a size less than or equal
to two. However, the notion of T-norm makes it possible to overcome the size limitation
of the premises and conclusions of the gradual rules. This approach makes it possible to
extract the gradual rules.

The second approach evaluates the support of a gradual pattern as a function of the
number of concordant pairs and the total number of pairs in the database. The support cal-
culation formula proposed in Berzal et al. (2007), corresponds to that of Definition 1. This
definition is implemented in the Graank algorithm (Laurent et al., 2009), which extracts
frequent gradual patterns. However, in some works, instead of considering half of the total
number of pairs in the database, the total number of pairs in the database is considered
instead and the support formula becomes:

Supp(M) = |{(o, o′) ∈ DxD | o <M o′}|
|D|(|D| − 1)

. (3)

The Graank algorithm is based on the Apriori principle, also known as the generate-test
principle, which consists of generating candidate itemsets, calculating the gradual support
of said candidates and retaining only those candidates whose support is greater than the
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minimum support threshold. This algorithm performs a breadth-first search of the search
space. During the first iteration, it generates candidates of size 1 and retains only those
that are frequent. More generally, in the (k − 1)-th iteration, it generates the candidates of
size k and selects those that are frequent. The algorithm stops if none of the candidates of
an iteration is frequent.

The third approach evaluates the support of a gradual pattern based on the longest path
of its precedence graph. The nodes of the graph are the objects of the database and the
arcs translate variations which are in adequacy with the set of comparison operators of
the pattern. The graph of precedence of a gradual pattern is a graphic representation of
its binary matrix. The Grite algorithm (Di-Jorio et al., 2009c), which extracts frequent
gradual patterns, is based on this approach. Like Graank, Grite is based on the Apriori
principle. Its weakness comes from the relatively high cost of calculating the longest path
of a precedence graph. Therefore, the computational cost of gradual support is high com-
pared to that of Graank. On the other hand, Graank takes into account the magnitude of
the distortion for data that do not satisfy the gradual itemsets. Indeed, the deletion of an
object can considerably reduce the value of the support and lead to additional calculations
in the Grite algorithm.

3. An Improved Algorithm

3.1. Presentation of Two Versions of the Proposed Algorithms

Like most pattern discovery algorithms following the Apriori principle, the Graank al-
gorithm performs a breadth-first traversal of the search space to identify frequent gradual
itemsets. In this algorithm, the generation of candidate itemsets of size (k+1) is performed
by exploiting only gradual and frequent itemsets of size k. To do this, two frequent item-
sets of size k are concatenated to form a candidate of size (k + 1) if they have (k − 1)

items in common. The size of a candidate determines his level. For example, if A+S+ and
A+C+ are frequent, we concatenate them to obtain the candidate A+S+C+ of size 3, i.e.
of level 3. At the k-th iteration, the algorithm generates all candidates of size k from the
frequent itemsets of size k−1, then searches for candidates that are frequent. If k = 1, the
set of candidates is equal to the set of items. The algorithm stops as soon as no frequent
itemset is found in an iteration. When k � 2, the k-th iteration requires a memory area to
store all frequent itemsets of level k − 1 with their binary matrix and frequent candidates
of level k with their binary matrix. The cost of this storage can be important. The binary
matrix of a candidate of size k is obtained as a product of two matrices from two frequent
itemsets of size k − 1. Thus, the binary matrix of a candidate of size k is obtained from
(k−1) matrix products. Because of this, the total cost of matrix products can significantly
increase the running time of Graank.

The new algorithm presented here attempts to correct Graank’s weaknesses. Compared
to Graank, at iteration k � 3, it reduces the memory space needed to store the itemsets
used to generate the candidates and the frequent itemsets discovered at iteration k that will
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Fig. 1. General principle of the new algorithm. In this figure C(i) is the set of all candidates itemsets of size i

and CF(i) the set of all frequents itemsets of size i.

be used at iteration (k + 1) to generate the candidates. Moreover, it significantly reduces
the number of matrix products needed to determine the binary matrix of a candidate. The
first difference between Graank and the proposed algorithm concerns the way candidates
are generated. All candidates from size (k + 1) up to size 2k are generated only from
gradual and frequent itemsets of size k. In this candidate generation approach, two frequent
itemsets of size k and having p items in common make it possible to generate a candidate
of size (2k−p), between 2k+1 and 2k. The second difference comes from the processing
carried out at each iteration as illustrated in Fig. 1. However, we start by searching for
all the frequent items before entering the iteration phase. As in Graank, the iterations
are numbered starting from 1. However, during iteration k � 1, instead of searching for
all the frequent itemsets of level k as in Graank, we rather search for all the frequent
itemsets of the levels 2k−1 + 1 up to 2k . In the first version of the algorithm, at the k-th
iteration, the algorithm generates all candidates whose size is between (2k−1 + 1) to 2k

only from the frequent itemsets of sizes 2k−1 obtained at the k − 1 iteration. Then, it
goes through all the candidates in ascending order of their level, from level (2k−1 + 1)

to 2k , to select those who are frequent. Like Graank, the proposed algorithm performs a
breadth-first traversal of the search space and stops as soon as it encounters the first level
which does not contain a frequent candidate. In the second version of the algorithm, at the
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k-th iteration, the algorithm does not simultaneously store all the candidates whose level
varies from (2k−1+1) to 2k . It performs an internal iteration which at each step generates a
candidate, calculates its binary matrix and determines if it is frequent. The second version
of the algorithm stops at the beginning of iteration k if there is no frequent itemset of size
2k−1.

Algorithm 1 First version of the improved algorithm
Require: D, threshold
Ensure: F+

1: Search for frequent items;

a. For each attribute A, generate the binary matrix of the item A+, compute its sup-
port by the equation 1, and insert it in F+

1 if it is frequent.

2: Search for frequent itemsets of size 2;

a. For each pair of items A+ and B+ of F+
1 , generate the candidates A+B+ and

A+B−, compute their binary matrix, compute their support and insert a candidate
into F+

2 if it is frequent.

3: For any integer k such that 2 � k � �log2(m)	
a. For any pair of itemsets of F+

2k−1 , generate a candidate and insert the candidate into
C+

2k−p
, where p is the number of common items in the pair of itemsets.

b. For niv such that (2k−1 + 1) � niv � 2k

– For any candidate of C+
niv, compute its binary matrix and support, and insert it

into F+
niv if it is frequent.

– Free the memory space occupied by C+
niv.

– If F+
niv is empty then exit loop 3.

4: return (F+ = ⋃m
i=1 F+

i );

Algorithms 1 and 2 describe two versions of the improved algorithm. They take as
input a database and a minimal support provided by the user, and return the set of fre-
quent gradual patterns. Table 4 describes the list of symbols used in the algorithms. As
in Graank, both versions of the proposed algorithm exploit the notion of complementar-
ity to reduce the search space by half. To do this, only itemsets with a positive first term
are handled. Both versions search and store all frequent itemsets in main memory. Both
versions of the algorithm can be modified in the following way to display each frequent
itemset immediately after its discovery and in such a way as to reduce the consumption of
main memory:

– Display each frequent itemset after its discovery.
– Store each new frequent itemset whose size is a power of 2, i.e. of the form 2k , in F+

2k .
– Free the memory space occupied by F+

2k−1 as soon as the construction of F+
2k is finished.
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Algorithm 2 Second version of the improved algorithm
Require: D, threshold
Ensure: F+

1: Search for frequent items;

a. For each attribute A, generate the binary matrix of the item A+, compute its sup-
port by the equation 1, and insert it in F+

1 if it is frequent.

2: Search for frequent itemsets of size 2;

a. For each pair of items A+ and B+ of F+
1 , generate the candidates A+B+ and

A+B−, compute their binary matrix, compute their support and insert a candidate
into F+

2 if it is frequent.

3: For any integer k such that 2 � k � �log2(m)	;

a. If F+
2k−1 is empty then exit the loop 3;

b. For any pair of itemsets of F+
2k−1 , generate a candidate, compute its binary matrix

and then its support and insert the candidate into F+
2k−p

if it is frequent, where p

is the number of common items of the pair of itemsets.

4: return (F+ = ⋃m
i=1 F+

i );

Table 4
List of symbols.

Notation Signification

D Database
F+

k
Set of frequent itemsets of sizes k whose first term is positive

C+
k

Set of candidate itemsets of size k whose first term is positive
m Number of database attributes
Threshold Minimal support given by the user

There are two main differences between Algorithms 1 and 2. The first difference comes
from the management of the memory space used to store the candidates of an iteration.
During an iteration, Algorithm 1 generates the set of all candidates and selects the frequent
ones while Algorithm 2 generates the first candidate and keeps it if it is frequent, then
generates the second candidate and retains it if it is frequent, and so on. Thus Algorithm 1
requires an additional memory space to store all the candidates of each iteration while
Algorithm 2 does not need such memory space. The key idea of Algorithm 2 is to save
memory. The second difference comes from their termination criteria. Algorithm 1 could
terminate during one iteration without computing the supports of all candidates in said
iteration while Algorithm 2 cannot do this because it calculates the supports of all the
candidates of an iteration. As a result, Algorithm 1 generally finishes before Algorithm 2.
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3.2. Complexity Analysis

This section studies the time and memory complexities of Graank and the proposed algo-
rithms.

Consider a candidate c of level l = 2k−1 +p for some p and some k, corresponding to
the k-th iteration of the new algorithm, such that 1 � p � 2k−1. In Graank, c is derived
from the concatenation of two frequent itemsets of size (l − 1), which in turn are each
derived from the concatenation of two frequent itemsets of size (l − 2). By transitivity,
c comes from the concatenation of 2p frequent itemsets of size 2k−1. The matrix of c

comes from a product of two matrices of level (l − 1), and each of them comes in turn
from two matrices of level (l − 2) and so on. On the other hand, in both versions of
the proposed algorithm, c is derived from the concatenation of two frequent itemsets of
size 2k−1. Moreover, the matrix of c is issued from the product of two matrices of frequent
itemsets of level 2k−1. The number of matrix products performed between the first and the
k-th iteration for the computation of the matrix of c is k. Therefore, generating candidate
c requires (l − 1) itemset concatenations and (l − 1) matrix products in Graank, while k

itemset concatenations and k matrix products are needed in the proposed algorithms. This
leads to Lemma 1.

Lemma 1. The generation of a candidate of level l = 2k + p, for some p and k, with its
matrix requires (l−1) itemset concatenations and (l−1) matrix products in Graank, while
k itemset concatenations and k matrix products are needed in the proposed algorithms.

Lemma 1 shows that the CPU cost of generating a candidate and computing its binary
matrix is significantly improved.

Lemma 2. Denote T C, T C1 the time complexity of Graank and Algorithm 1 and 2 re-
spectively. We have

T C =
m∑

l=1

∣∣F+
l−1

∣∣(∣∣F+
l−1

∣∣ − 1
)
2(l − 1) +

m∑
l=1

∣∣Cg
l

∣∣n2 (4)

and

T C1 =
�log2(m)	∑

k=1

∣∣F+
2k−1

∣∣(∣∣F+
2k−1

∣∣ − 1
)
2k +

�log2(m)	∑
k=1

∣∣∣ ⋃
2k−1+1�l�2k

Cl

∣∣∣n2, (5)

where C
g
l (resp. Cl) is the set of candidates of size l generated by Graank (resp. the pro-

posed algorithms).

Proof. In (4) and (5), the first expression is the time complexity of the generation of can-
didates. The second expression is time complexity of the computation of binary matrices
of candidates.
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Lemma 2 shows that, compared to Graank, the overall candidate generation runtime in
the proposed algorithms is significantly improved. The overall runtime of the calculation
of matrix multiplications is not improved although the execution time for the calculation
of the matrix of a single itemset is significantly improved according to Lemma 1.

Denote by MS(k), MS1(k) and MS2(k) the memory space required by the k-th iter-
ation respectively in Graank, in the first and second versions of the proposed algorithm.
MS(k), MS1(k) and MS2(k) depend on the storage space of candidate itemsets and fre-
quent itemsets. Here, we evaluate MS(k), MS1(k) and MS2(k). In Graank, at iteration k,
after generating a candidate of size k, its gradual support is calculated to know if it is
frequent or not before generating the next candidate. Any frequent candidate discovered
at iteration k is stored in F+

k . Thus, in Graank, we have:

MS(k) =
k−2∑
l=1

(∣∣F+
l

∣∣l) + ∣∣F+
k−1

∣∣((k − 1) + n2) + (
k + n2) + ∣∣F+

k

∣∣(k + n2). (6)

This is equivalent to:

MS(k) =
k∑

l=1

(
∣∣F+

l

∣∣l) + ∣∣F+
k−1

∣∣n2 + (k + n2) + ∣∣F+
k

∣∣n2. (7)

In (6), the first expression is the memory space required to store all frequent item-
sets discovered between levels 1 and (k − 2), without storing their matrices. The second
expression is the memory space required to store all the frequent itemsets discovered at
level (k − 1), with their matrices. All frequent itemsets of size (k − 1) and their matrices
are used to generate all the candidates of size k and their matrices respectively. The third
expression is the memory space required to store the current candidate and its matrix, i.e.
the one being processed. The fourth expression is the memory space required to store all
frequent itemsets of size k and their matrices.

In the first version of the proposed algorithm, iteration k starts by generating and stor-
ing all candidates whose size is between 2k−1 + 1 and 2k . Then, it performs a breadth-
search of all candidates, i.e. level by level. The gradual support of the current candidate,
i.e. the one being processed, is calculated to know if it is frequent or not. A frequent can-
didate of size l is stored in F+

l without its matrix if l < 2k and with its matrix otherwise.
Once all the candidates of the same level have been processed, their memory space is freed
and used to store frequent itemsets. Thus, in the first version of the proposed algorithm,
we have:

MS1(k) =
l=2k−1−1∑

l=1

(∣∣F+
l

∣∣l) + ∣∣F+
2k−1

∣∣(2k−1 + n2) + (
2k + n2)

+
( 2k∑

l=2k−1+1

(∣∣C+
l

∣∣l) + 2k

max
l=2k−1+1

(∣∣F+
l

∣∣l)
)

+ ∣∣F+
2k

∣∣n2. (8)
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This is equivalent to:

MS1(k) =
l=2k−1∑

l=1

(∣∣F+
l

∣∣l) + ∣∣F+
2k−1

∣∣n2 + (
2k + n2)

+
( 2k∑

l=2k−1+1

(∣∣C+
l

∣∣l) + 2k

max
l=2k−1+1

(∣∣F+
l

∣∣l)
)

+ ∣∣F+
2k

∣∣n2. (9)

In (8), the first expression is the memory space required to store all frequent itemsets
discovered between levels 1 and 2k−1 − 1, without storing their matrices. The second ex-
pression is the memory space required to store all the frequent itemsets discovered at level
2k−1 with their matrices. All frequent itemsets of size 2k−1 and their matrices are used to
generate all candidates whose size is between 2k−1 + 1 and 2k with their matrices respec-
tively. The third expression is the memory space required to store the current candidate
and its matrix, i.e. the one being processed. The fourth expression is the memory space
needed to store all candidates of unprocessed levels and all frequent itemsets whose size
is between 2k−1 + 1 and 2k without their matrices. The fifth expression is the memory
space required to store all the matrices of frequent itemsets of size 2k .

In the second version of the proposed algorithm, at iteration k, after generating a can-
didate whose size is between 2k−1 + 1 and 2k , its support is calculated to know if it is
frequent or not before generating the next candidate. If the current candidate, i.e. the one
being processed, is frequent and of size l, it is stored in F+

l without its matrix if l < 2k

and with its matrix otherwise. Thus, in the second version of the proposed algorithm, we
have:

MS2(k) =
l=2k−1−1∑

l=1

(∣∣F+
l

∣∣l) + ∣∣F+
2k−1

∣∣(2k−1 + n2) + (
2k + n2)

+
l=2k−1∑

l=2k−1+1

(∣∣F+
l

∣∣l) + ∣∣F+
2k

∣∣(2k + n2). (10)

This is equivalent to:

MS2(k) =
l=2k−1∑

l=1

(∣∣F+
l

∣∣l) + ∣∣F+
2k−1

∣∣n2 + (
2k + n2)

+
l=2k∑

l=2k−1+1

(∣∣F+
l

∣∣l) + ∣∣F+
2k

∣∣n2. (11)

This is equivalent to:

MS2(k) =
l=2k∑
l=1

(∣∣F+
l

∣∣l) + ∣∣F+
2k−1

∣∣n2 + (
2k + n2) + ∣∣F+

2k

∣∣n2. (12)



590 E. Kenmogne et al.

In formula (10), the first, second and third expressions have the same meaning as their
counterpart in formula (8). The fourth expression is the memory space needed to store all
frequent itemsets whose size is between 2k−1 + 1 and 2k − 1 without their matrices. The
fifth expression is the memory space required to store all frequent itemsets of size 2k and
their matrices.

Lemma 3. We have MS2(k) < MS1(k) and MS(2k) = MS2(k)+ (|F+
2k−1

|−|F+
2k−1 |)n2.

Proof. The first, second, third and fifth expression of formula (9) are respectively equal
to their counterpart in formula (11). The fourth expression of formula (11) is less than
its counterpart in formula (9). Thus, we have MS2(k) < MS1(k). The calculation of
MS(2k) − MS(k) using formulas (12) and (7) leads to MS(2k) = MS2(k) + (|F+

2k−1
| −

|F+
2k−1 |)n2.

Lemma 4. Denote by k2, kg1 and kg2, respectively, the iterations for which SM2(k),
SM(k)and SM(2k) reach their maximum value. Denote by SMC, SMC1 and SMC2 the
spaces memory complexity required by Graank, Algorithm 1 and 2, respectively. We have:

SMC = m
max
k=1

(
MS(k)

)
(13)

SMC1 = �log2(m)	
max
k=1

(
MS1(k)

)
, (14)

SMC2 = �log2(m)	
max
k=1

(
MS2(k)

)
, (15)

SMC2 < SMC1, (16)
If

∣∣F+
2k2−1

∣∣ >
∣∣F+

2k2−1

∣∣, then SMC2 < SMC, (17)

If
∣∣F+

2kg2−1

∣∣ <
∣∣F+

2kg2−1

∣∣ and kg1 = kg2, then SMC < SMC2. (18)

Proof. (14) and (15) are straightforward from the respective definitions of SM(k),
SM1(k) and SM2(k). (16) is straightforward from equation MS2(k) < MS1(k) es-
tablished in Lemma 3. (17) and (18) are straightforward from equation MS(2k) =
MS2(k) + (|F+

2k−1
| − |F+

2k−1 |)n2 established in Lemma 3.

Lemma 4 shows that the first version of the proposed algorithm consumes more mem-
ory space than the second one which in turn can consume less or more memory space than
Graank under certain constraints. However, the first version may stop one iteration before
the second. Thus, the first version stops faster than the second. The second version stops
at the start of an iteration that has no candidate. Such an iteration k implies that there is no
frequent itemset of size 2k−1. The first version stop during an iteration whose some level
has no frequent itemset. Such iteration k implies that there is no frequent itemset of size
2k−1 + p, 1 � p � 2k−1, for some p.
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4. Experimentations

This section compares three algorithms: Graank and two versions of the proposed algo-
rithm. Section 4.1 presents datasets. Section 4.2 presents the results of the experimental
comparisons.

4.1. Presentation of Datasets

In this section, we present four types of datasets: one agricultural dataset (Islam et al.,
2018), three health datasets (Li and Liu, 2021; Chicco and Jurman, 2020), one economic
dataset (Clémentin et al., 2021) and three synthetic datasets (Clémentin et al., 2021).

The agricultural dataset (agricultural-dataset-bangladesh) comes from information
collected on 28 agricultural areas of Bangladesh. It provides relationships between soil
nutrients, types of fertilizers, types of soil and meteorological information. The soil nutri-
ents were collected on 6 different types of land: flooded land at high altitude, flooded
land at medium altitude, medium land, medium low land, flood low land, very low
flood land and miscellaneous land. We have 4 types of fertilizers (urea, triple super-
phosphate, diammonium dhosphate, and MP). The types of soils come from 19 dif-
ferent types of soil and 4 different types of soil information. The meteorological data
come from the Bangladesh Meteorological Department (BMD), providing information
on average rainfall, maximum and minimum temperature, and humidity from 2008–2017.
The complete description of the different attributes are given in Islam et al. (2018).
The initial database is composed of 44 attributes and 70 transactions. For experimen-
tation purposes, non-numeric attributes and those with missing values were remove,
reducing the number of attributes to 32. The acces link to the agricultural dataset is
https://www.kaggle.com/tanhim/agricultural-dataset-bangladesh-44-parameters

The three health datasets are described in the following.

1. The first health dataset concerns diabetes (diabetes.csv). It comes from the national
institute of diabetes and digestive and kidney diseases. It is composed of 9 numeric
attributes and 768 transactions. The objective of this dataset is to predict whether
a patient is diabetic or not, based on certain diagnostic measures included in the
dataset. Several constraints were placed on the selection of these instances from a
larger database. In particular, all patients here are females at least 21 years old and
of Pima Indian origin. The dataset is composed of several medical predictor vari-
ables and a target variable. The predictor variables include the number of pregnan-
cies the patient has had, her BMI, insulin level, age, blood pressure, triceps skin-
fold thickness and diabetes pedigree function. The acces link to the diabete dataset
is https://www.kaggle.com/uciml/pima-indians-diabetes-database

2. The second health dataset concerns child mortality (fetal_health.csv) (Li and Liu,
2021). These data come from Larxel Volunteer (São Paulo), It is a set of 22 numeri-
cal attributes and 2126 transactions. Due to memory limitations, only 200 transactions
were considered in experimentations. The objective of this dataset is to predict fetal
health allowing healthcare professionals to take action to prevent infant and maternal

https://www.kaggle.com/tanhim/agricultural-dataset-bangladesh-44-parameters
https://www.kaggle.com/uciml/pima-indians-diabetes-database
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Table 5
Characteristics of the datasets.

Datasets Number of items Number of transactions

Agricultural dataset bangladesh 32 70
Diabetes 9 768
Fetal health 26 200
Heart Failure Clinical Records 13 299
Fondamental 20 150
C250-A100-50 12 250
F20Att200Li 20 100
test 10 100

mortality. The different attributes in the dataset are based on Fetal Heart Rate (FHR),
fetal movements, uterine contractions. The access link to the child mortality dataset is
https://www.kaggle.com/andrewmvd/fetal-health-classification

3. The third and last health dataset contains medical records of 299 patients with heart fail-
ure collected at Faisalabad Heart Institute and Allied Hospital Faisalabad (Punjab, Pak-
istan), between April and December 2015 (heart_failure_clinical_records.csv) (Chicco
and Jurman, 2020). It is a set of 13 numeric attributes and 299 transactions. The access
link to this dataset is https://www.kaggle.com/andrewmvd/fetal-health-classification

The economic dataset comes from the Nasdaq Financials dataset (fundamentals.csv)
(Clémentin et al., 2021). It contains 35 attributes and 300 transactions. Due to memory
limitations, only the first 20 attributes and the first 150 transactions were considered in
experimentations. The access link of the economic dataset is https://www.kaggle.com/
dgawlik/nyse?select=fundamentals.csv.

The three synthetic datasets are C250-A100-50 (Negrevergne et al., 2014), F20Att00Li
(Negrevergne et al., 2014) and test (Negrevergne et al., 2014). The access link to all these
datasets is https://github.com/bnegreve/paraminer/tree/master/data/gri

The characteristics of these datasets are summarized in Table 5.

4.2. Experimental Evaluation of Algorithms

This section compares the performance of the Graank algorithm (Laurent et al., 2009) and
the two versions of the proposed algorithms. Experiments were performed on a computer
with a Intel(R) Core(TM) i7 CPU M 620 @ 2.67 GHz 2.67 GHz with 6 GB RAM, running
on Windows 10 Home 64-bit operating system. The different algorithms are implemented
in Java. The purpose of experiments is to compare the runtime as depicted on Figs. 2, 3, 4,
5 and the memory consumption as shown in Figs. 6, 7, 8, 9 for different support threshold
values on datasets presented on Section 4.1.

4.2.1. Runtime Evaluation of Algorithms
Figure reffig:timeagriculture shows the runtime performance of the three algorithms on
the agricultural dataset. The two versions of the proposed algorithm have almost similar
execution times and are sometimes at least five times faster than Graank.

https://www.kaggle.com/andrewmvd/fetal-health-classification
https://www.kaggle.com/andrewmvd/fetal-health-classification
https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv
https://www.kaggle.com/dgawlik/nyse?select=fundamentals.csv
https://github.com/bnegreve/paraminer/tree/master/data/gri
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Fig. 2. CPU performance on agricultural dataset.

Fig. 3. CPU performance on medical datasets.

Figure 3 shows the runtime performances of the three algorithms on the three medical
datasets. The two versions of the proposed algorithm are globally faster than Graank on
medical datasets. Moreover, they are sometimes seven times faster than Graank on the dia-
bete dataset and twice as fast as Graank on fetal health and heart failure datasets. However,
for some support threshold values, both versions of the proposed algorithm are slightly
slower than Graank. This is due to the matrix multiplication times according to Lemma 2.
As with the agricultural dataset, the two versions of the proposed algorithm have nearly
similar runtimes on medical datasets.

Figures 4, 5 show the runtime performances of the three algorithms on economic and
synthetic datasets respectively. Both versions of the proposed algorithms are faster than
Graank. On the other hand, the first version is slightly faster than the second one.

In summary, the runtime evaluation shows that Algorithms 1 and 2 outperform Graank
in terms of CPU consumption and are sometimes at least 5–7 times faster. Between Algo-
rithms 1 and 2, the advantage goes to Algorithm 1 in terms of CPU consumption.
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Fig. 4. CPU performance on economic dataset.

Fig. 5. CPU performance on synthetic datasets.



An Improved Algorithm for Extracting Frequent Gradual Patterns 595

Fig. 6. RAM usage on agricultural dataset.

Fig. 7. RAM usage on medical datasets.

4.2.2. Memory Evaluation of Algorithms
Figure 6 shows the memory consumption on agricultural dataset. The memory consump-
tion of both versions of the proposed algorithm is less than that of Graank for support
threshold values which are less than 0.37 and slightly higher otherwise.

Figure 7 shows memory consumption on medical datasets. The memory consumption
of both versions of the proposed algorithm is lower than that of Graank. On the other hand,
the second version uses less memory than the first one.

Figure 8 shows the memory consumption on the economical dataset. The memory
consumption of both versions of the proposed algorithm is lower than that of Graank.
Moreover, the second version uses less memory than the first one.

Figure 9 shows the memory consumption on synthetic datasets. The memory con-
sumption of both versions of the proposed algorithm is lower than that of Graank on the
first two datasets and slightly higher than that of Graank on the third dataset. As with the
economic dataset, the second version consumes less memory than the first one.
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Fig. 8. RAM usage on economic dataset.

Fig. 9. RAM usage on synthetic datasets.

In summary, the memory evaluation shows that, in general, Algorithms 1 and 2 outper-
form Graank in terms of memory consumption and they require sometimes at most half
the memory. Between Algorithms 1 and 2, the advantage goes to Algorithm 2 in terms of
memory consumption. However, there are marginal cases where Graank consumes less
memory than Algorithms 1 and 2. Formula (18) in Lemma 4 characterizes some of the
said cases.

4.3. Presentation of Some Interesting Patterns

This section presents some interesting patterns extracted from real datasets.

4.3.1. Case of the Agricultural Dataset
Here some interesting gradual patterns extracted from the agricultural-dataset-bangladesh
dataset, with the minimum support threshold minSupp = 43%: “the more calcareous
brown floodplain soil increases, the more calcareous dark grey floodplain soil increases,
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the more non calcareous grey floodplain soil increases and the more non calcareous dark
grey floodplain soil increases” (Supp = 51.46%); “the more average rainfall increase, the
more minimum temperature increase, the more the boron content increases and the more
potato yield increases” (Supp = 51.80%).

4.3.2. Case of Health Datasets
Here are some interesting gradual patterns extracted from the diabetes dataset with the
minimum support threshold minSupp = 4%: “the more number of times pregnant in-
creases, the more plasma glucose concentration after 2 hours in an oral glucose tolerance
test increases, the more diastolic blood pressure increases, the more body mass index in-
creases and the more age increases” (Supp = 16.45%); “the more triceps skin fold thick-
ness increases, the more 2-hour serum insulin level increases, the more body mass index
increase and the more diabetes pedigree function increases” (Supp = 23.36%).

Here are some interesting gradual patterns extracted from the fetal heart dataset with
the minimum support threshold minSupp = 6.9% : “the more number of fetal movements
per second increases, the more percentage of time with abnormal short term variability
decreases, the more width of the histogram made using all values from a record increases
and histogram minimum value decreases” (Supp = 30.49%); “the more percentage of
time with abnormal short term variability increases, the more width of the histogram made
using all values from a record decreases, the more histogram minimum value increases
and the histogram maximum value decreases and the more histogram variance decreases”
(Supp = 42.25%).

Here are some interesting gradual patterns extracted from the heart failure dataset
with the minimum support threshold minSupp = 4%: “the more age increases, the more
Level of serum creatinine in the blood increases and the more follow-up period (days)
decreases” Supp = 31.92%; “the more percentage of blood leaving the heart at each
contraction increases, the more number of platelets in the blood increases and the more
follow-up period (days) increases” (Supp = 23.97%).

4.3.3. Case of the Economic Dataset
Here are some interesting gradual patterns extracted from the fundamentals dataset, with
the minimum support threshold minSupp = 5.625%: “the more capital expenditure in-
creases, the more earnings before interest and tax decrease, the more earnings before tax
decrease and the more fixed asset decreases” (Supp = 57.86%); “the more cost of revenue
increases, the more earnings before interest and tax increase and the more earnings before
tax increase” (Supp = 63.49%).

5. Conclusion

In this paper, we have presented a new approach to improve the performance of frequent
gradual pattern mining algorithms by reducing the candidate generation and processing
costs. The complexity analysis and experimental performances carried out on different
databases are to the advantage of the proposed approach compared to the previous ones,



598 E. Kenmogne et al.

which confirms the effectiveness of the new approach. Sometimes, the CPU consumption
gain factor is greater than 5 and the memory consumption gain factor is greater than 2.
However, the theoretical and experimental studies carried out in this article reveal marginal
cases for which Graank requires less memory than the proposed approach. This work
opens interesting perspectives. Studying how to reduce the memory space required by
Graank for marginal cases is an interesting research question. This may lead to an adap-
tation or improvement of the candidate generation and processing technique proposed in
this paper. It could also lead to the design of a new technique. It is also interesting to study
the integration of the proposed candidate generation and processing technique into other
data mining algorithms in order to improve their performance. Another research question
is to study how to parallelize the algorithms in which the technique proposed in this paper
has been integrated in order to take advantage of the benefits offered by parallel computing
for processing large datasets.
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