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Abstract. In recent years, Magnetic Resonance Imaging (MRI) has emerged as a prevalent medical
imaging technique, offering comprehensive anatomical and functional information. However, the
MRI data acquisition process presents several challenges, including time-consuming procedures,
prone motion artifacts, and hardware constraints. To address these limitations, this study proposes a
novel method that leverages the power of generative adversarial networks (GANs) to generate multi-
domain MRI images from a single input MRI image. Within this framework, two primary generator
architectures, namely ResUnet and StarGANs generators, were incorporated. Furthermore, the net-
works were trained on multiple datasets, thereby augmenting the available data, and enabling the
generation of images with diverse contrasts obtained from different datasets, given an input image
from another dataset. Experimental evaluations conducted on the IXI and BraTS2020 datasets sub-
stantiate the efficacy of the proposed method compared to an existing method, as assessed through
metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR) and Nor-
malized Mean Absolute Error (NMAE). The synthesized images resulting from this method hold
substantial potential as invaluable resources for medical professionals engaged in research, edu-
cation, and clinical applications. Future research gears towards expanding experiments to larger
datasets and encompassing the proposed approach to 3D images, enhancing medical diagnostics
within practical applications.
Key words: medical imaging, MRI, synthesis, deep learning, GANs.

1. Introduction

Magnetic Resonance Imaging (MRI) plays a crucial role in modern medical diagnostics,
providing non-invasive visualization of internal body structures and aiding in the diagno-
sis and monitoring of various diseases (Katti et al., 2011). However, acquiring high-quality

∗Corresponding author.

https://doi.org/10.15388/24-INFOR556


284 L.H.N. Han et al.

MRI data can be a time-consuming and costly process. Additionally, the availability of di-
verse pulse sequences for MRI imaging is limited, which can restrict the ability to capture
specific anatomical or functional information (Geethanath and Vaughan, 2019).

The aim of MRI synthesis is to provide clinicians and researchers with a broader range
of imaging options without the need for additional scanning (Liang and Lauterbur, 2000).
By synthesizing multiple pulse sequences from a single input image, medical professionals
can study various aspects of the same anatomical region or analyse the effects of different
imaging parameters without subjecting patients to multiple scans (Wang et al., 2021). This
approach has the potential to save time, reduce costs, and minimize patient discomfort.

In recent years, several state-of-the-art MRI synthesis techniques have been devel-
oped to address the challenges of multimodal MRI, such as long scan times and artifacts
(Liu et al., 2019; Li et al., 2019). One of the techniques is the pyramid transformer net-
work (PTNet3D), a new framework for 3D MRI synthesis (Zhang et al., 2022). PTNet3D
uses attention mechanisms through transformer and performer layers, and it consistently
outperforms convolutional neural network-based generative adversarial networks (GANs)
in terms of synthesis accuracy and generalization on high resolution datasets. However,
PTNet3D requires a large amount of training data and is computationally intensive. An-
other study by Massa et al. (2020) explored the use of different clinical MRI sequences as
inputs for deep CT synthesis pipelines. Nevertheless, while deep learning-based CT syn-
thesis from MRI is possible with various input types, no single image type performed best
in all cases. Additionally, Hatamizadeh et al. (2021) proposed the Swin UNETR model,
which uses Swin Transformers for brain tumour segmentation in MRI images. They em-
phasized the need for multiple complementary 3D MRI modalities to highlight different
tissue properties and areas of tumour spread. However, automated medical image segmen-
tation techniques are still in their early stages, more research is needed to improve their
accuracy.

It can be seen from the abovementioned MRI synthesis models that they remain to
face limitations in relying on large training datasets (which must be synchronized and
adhere to a standardized template) and high computational complexity. Generalization
across different datasets and imaging modalities can be challenging. Therefore, to address
these research gaps, this study proposes a novel method that utilizes a single generator and
a single discriminator for the entire multi-domain image-to-image translation task. Instead
of employing separate generators and discriminators for each target domain, a unified
architecture is adopted, enabling the generation and discrimination of multiple classes
utilizing a single set of model parameters. This approach not only simplifies the overall
model architecture but also facilitates efficient training and inference processes.

The contributions of this paper are threefold:

1. Firstly, a deep learning based approach for MRI synthesis is proposed, incorporating
GANs based architecture and new generation loss, enabling the generation of multiple
MRI images with different contrasts from a single input image.

2. Secondly, the effectiveness of the proposed method is asserted through training on
multiple MRI datasets, including IXI and BraTS2020, which have different contrasts,
showcasing the ability to generate realistic and matching images.
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Fig. 1. Illustration of multi-contrast MRI synthesis on BraTS2020 and IXI datasets.

Fig. 2. ‘Glomerular hemorrhage’ was detected in T2 (right) instead of T1 (left).

Fig. 3. ‘Parotid pleomorphic adenoma’ detected in T1CE (right) instead of T1 (left).

3. Thirdly, both qualitative and quantitative results are generated on multicontrast MRI
synthesis tasks using the ResUnet generator and StarGAN generators.

The aim of this research is to generate MRI images with diverse contrasts solely from a
single MRI image. For instance, given an input MRI image acquired with a T1 pulse se-
quence, the model can generate MRI images with T2, MRA, FLAIR contrasts, and more
(as depicted in Fig. 1). This innovative approach has the potential to yield substantial
benefits, including cost savings, time efficiency, and reduced patient discomfort, by elim-
inating the necessity for multiple MRI scans that require patients to remain motionless
for prolonged periods. Moreover, taking the same anatomical structure in a different pulse
sequence can assist diagnosticians in detecting underlying pathologies or injuries, such as
brain tumours or oedema, as illustrated in Figs. 2, 3, and 4.

The remainder of this paper is structured as follows. Section 2 provides an overview
of related work in MRI synthesis using deep learning. The methodology and architecture
of the proposed GAN-based approach are described in Section 3. Then, the experimental
setup and results are detailed in Section 4. Finally, Section 6 concludes the paper and
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Fig. 4. ‘Simple ovarian cyst’ detected in T2 (left) instead of T1 (right).

discusses potential future directions for research in MRI synthesis using deep learning
models.

2. Related Works

2.1. Medical Image-to-Image Transformation

Recent studies have examined the application of deep learning models for MRI synthe-
sis, aiming to generate diverse MRI images with different contrasts. These approaches
have leveraged various techniques and architectures to achieve accurate and realistic syn-
thesis results. One prominent approach in MRI synthesis is the utilization of generative
adversarial networks (GANs). Sohail et al. (2019) introduced a method for synthesizing
multi-contrast MR images without paired training data. The proposed approach utilizes
GANs to learn the mapping between input images and target contrasts. Adversarial and
cycle-consistency losses are employed to ensure the generation of high-quality and real-
istic multi-contrast MR images. In another study, Zhu et al. (2017) suggested an approach
that bears similarities to the method introduced in Sohail et al. (2019). However, this
method utilizes cycle-consistent adversarial networks (CycleGAN) to learn mappings be-
tween only two different image domains. By employing two separate generator networks
and two discriminator networks, the model performs both forward and backward trans-
lations between the domains. The cycle-consistency loss ensures that the reconstructed
images from the translated images remain close to their original counterparts. Experi-
mental results demonstrate the effectiveness of CycleGAN in various image translation
tasks, including style transfer, object transfiguration, and season translation.

Wei et al. (2018) proposed a method to enhance the training of Wasserstein-GANs by
introducing a consistency term. The consistency term ensures that the generated samples
are consistent under small perturbations in the input noise space. This term helps stabilize
the training process and improve the quality of generated samples. They also introduced
the concept of the dual effect allowing the generator to capture more diverse modes of
data distribution. Experimental results demonstrate that the proposed method outperforms
the original WGAN and other state-of-the-art GAN variants in terms of image quality,
diversity, and stability.

In recent advancements in medical imaging, several methods have emerged to enhance
MRI image resolution such as Zhang et al. (2023) using Dual-ArbNet and Chen et al.
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(2023) with CANM-Net. Additionally, another study has been conducted to increase the
resolution and remove noise from 2D images using Transformer GANs by Grigas et al.
(2023). In general, although the task is named super-resolution, it can still be considered a
sub-category of image synthesis. It can be observed that in recent years, GANs have played
a crucial role and have been widely applied in tasks related to brain MRI images, especially
with the majority of studies aiming at MRI image synthesis applications, according to
statistics from Ali et al. (2022).

However, it can be seen that most of the above methods have limitations to provide
single-input multi-output (SIMO) MRI image synthesis, which could be extremely benefi-
cial, especially under circumstances where only a single modality is available but multiple
contrasts are necessary for diagnosis and treatment planning. Moreover, it is imperative to
develop an approach that facilitates training on multiple datasets to enhance the diversity
of learning data and improve the synthesizing performance.

2.2. Multi-Domain Image-to-Image Transformation

StarGANs represent one of the pioneering attempts to address multi-domain image-to-
image translation within a single dataset (Nelson and Menon, 2022). This innovation al-
lows the generator G to transform a single image X to an output image Y conditioned by
the expected target domain c : G(X, c) → Y . To achieve this, the input image is combined
with the target domain information to form the input for the generator (Choi et al., 2018).

By incorporating the target domain information during the synthesis process, Star-
GANs effectively enable the generator to adapt its output based on the specified domain.
This conditioning mechanism facilitates the translation of images across various domains
within a single training dataset, eliminating the need for separate models or training pro-
cesses for each specific domain. The generator, equipped with the ability to utilize the
target domain information, can effectively learn the mapping between the input image and
the desired output in a domain-specific manner (Choi et al., 2020).

While StarGan has shown impressive results in multi-domain image-to-image trans-
lation, the original research did not explore its application in the medical domain. Fur-
thermore, the original architecture simply consisted of a straightforward CNN with a few
layers. As a result, several subsequent efforts have focused on modifying the architecture
and adapting the StarGan approach to medical datasets. Building upon it, this study also
aims to further enhance the method and prove its capacity in the medical domain.

3. Methodology

The design methodology of this research is built upon a set of fundamental principles.
Firstly, simplicity and generality are given utmost priority in the model architecture, while
also ensuring its robustness to capture intricate features and facilitate efficient training.
Secondly, emphasis is placed on leveraging information from various aspects during the
optimization process to enhance the model’s generalization capabilities. This section en-
tails how those principles converge to the proposed modification to the original design.
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Fig. 5. Illustration of the StarGANs generator architecture.

3.1. Generator

3.1.1. StarGANs-Based Generator Architecture
The first approach in this study is StarGANs, based on the architecture of CycleGAN,
utilizing a generator network with two downsampling convolutional layers, six residual
blocks, and two upsampling transposed convolutional layers. Instance Normalization is
applied to the generator, while no normalization is used for the discriminator (Bharti et
al., 2022). The detailed architecture is shown in Fig. 5.

• Downsampling Convolutional Layers: The two downsampling convolutional layers are
responsible for reducing the spatial dimensions of the input image (Hien et al., 2021).
Convolutions are applied with a stride size of two, which effectively downsamples the
image and captures the coarse features.

• Residual Blocks: These parts play a crucial role in capturing fine-grained details and en-
hancing the gradient flow through the network. Each residual block consists of two con-
volutional layers with batch normalization and ReLU activation functions. The residual
connection allows the network to learn residual mappings, which helps in alleviating
the vanishing gradient problem and enables the network to learn more complex repre-
sentations.

• Upsampling Transposed Convolutional Layers: The two upsampling transposed con-
volutional layers perform the opposite operation of the downsampling layers. They in-
crease the spatial dimensions of the features, allowing the generator to reconstruct the
output image with higher resolution (Hien et al., 2020). These layers use transposed
convolutions with a stride size of two, effectively upsampling the features.

• Instance Normalization: Instance normalization is applied to the generator. It normal-
izes the activations within each instance (sample) in the batch, making the network
more robust to variations in instance statistics. By applying instance normalization, the
generator can effectively capture and preserve the style and texture information of the
input image during the translation process.
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Fig. 6. Illustration of the ResUNet architecture as a generator.

3.1.2. ResUNet Architecture
It is observed that the shallow design of the standard architecture might struggle to capture
fine-grained information at multiple scales. To address that concern, a ResUNet genera-
tor is utilized, which incorporates feature fusion at multiple scales for the image-to-image
translation task. The ResUNet network is constructed by stacking multiple modified resid-
ual blocks (ResBlock) in an encoder-decoder fashion (U-Net). In line with the U-Net de-
sign, this approach also maintains a symmetric architecture, as depicted in Fig. 6. The
ResUNet generator starts with 2 downsampling ResBlocks, followed by an encoder Res-
Block, an upsampling ResBlock, and a final ResBlock called Decoder. The generation
of the output is facilitated by a convolutional layer. The subsequent sections provide a
detailed exploration of the architecture and its functionality:

• Encoder: Positioned on the left side of the dashed line, the encoder consists of Down-
sampling Blocks, each composed of Residual Blocks. Within each Residual Block are
two convolutional layers accompanied by batch normalization and ReLU activation
functions. Notably, there’s an additional AvgPool layer at the conclusion of the Residual
Block, tasked with diminishing the spatial dimensions of the input image.

• Decoder: The right-hand side of the dashed line consists of upsampling blocks. Similar
to the Encoder, each upsampling block is composed of residual blocks; however, con-
trary to downsampling, at the end of each Residual Block, there is a deconvolution layer
to upscale the generated image, along with skip connections from the Encoder. These
skip connections fuse the high-resolution features from the encoder with the upsampled
features, enabling the reconstruction of detailed and high-quality images.

• Output Layer: This is the final layer of the generator and typically employs a suitable ac-
tivation function, such as sigmoid or tanh, to map the output values to the desired range.
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This layer generates the translated image in the target domain based on the learned fea-
tures and the input image.

3.1.3. Proposed Generator Architecture
After conducting experiments with the ResUNet architecture, a drawback was observed,
which is that the generated MRI images, although exhibiting relatively good structural fea-
tures, do not accurately represent the colours and components of the brain. It is speculated
that the extensive use of Residual Blocks throughout the network and concatenation of all
the encoder outputs to the decoder input causes the model to learn excessive colour fea-
tures from the source image and introduce colour discrepancies in the generated images.
Meanwhile, images generated by StarGANs exhibit high colour accuracy, addressing the
shortcomings of ResUNet, yet face challenges in ensuring fine-grained details and high
resolution.

Therefore, the image generation capability of the StarGANs network and the feature
extraction capability of the ResUnet network will be leveraged in this research. Specifi-
cally, the main components of the ResUnet network, including ResBlock, Encoder, and
Decoder, are retained. Additionally, two 7 × 7 convolutional layers are added followed
by instance normalization layers and a ReLU activation function at the two ends of the
network (Hien et al., 2021). This research aims to reduce the gradient of the network
and allow the model to retain features while still flexibly generating images, ensuring that
the colours of the generated images differ from the input images (e.g. image T1 has con-
trasting colours with image T2). Therefore, the resblock block in the bottleneck section
is replaced with 6 Residual Blocks, adapting from Choi et al. (2018). This modification
aims to make the network less deep and reduce the dominance of dense concatenation,
which may have been contributing to the colour discrepancies. The detailed architecture
summary is described in the Appendix section, in Table 6.

3.2. Discriminator

The discriminator is responsible for classifying whether an input image is real or fake,
and also predicting the class label of the image in the case of conditional GANs. It follows
the PatchGAN architecture (Choi et al., 2018; Zhu et al., 2017), which operates on local
image patches rather than the whole image.

The main part of the discriminator contains the stacked convolutional layers, accumu-
lating the number of channels to capture more complex features. The output of these layers
is then passed through two separate convolutional layers, as shown in Fig. 7 and Fig. 8.

The structure of the Discriminator in StarGAN is similar to a typical Discriminator,
but it includes two separate convolutional layers near the final layer to generate two distinct
outputs: the first output represents the probability of the image being real or fake, while
the second predicts the class label. The discriminator is designed to handle images of
varying sizes, and its architecture promotes the learning of local image details for accurate
discrimination. The detailed architecture summary is described at Table 7.
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Fig. 7. Illustration of the proposed generator architecture.

Fig. 8. Illustration of the discriminator architecture.

3.3. Loss Functions

The main purpose of GANs in general and this study approach, in particular, is to make
the generated images indistinguishable from real images, an adversarial loss of typical
GANs (Bharti et al., 2022) is adopted, defined

Ladv = Ex

[
log Dsrc(x)

] + Ex,c

[
log

(
1 − Dsrc

(
G(x, c)

))]
, (1)
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where G creates an image G(x, c) based on both the input image x and the specified
target domain label c, while D aims to differentiate between real and generated images.
Throughout this paper, the probability distribution over sources provided by D is denoted
as Dsrc. The primary aim of the generator G is to minimize this objective, while the
discriminator D aims to maximize it.

3.3.1. Multi-Domain Image-to-Image Translation
Adversarial loss: Instead of utilizing the adversarial loss in typical GANs (Eq. (1)), which
has been observed to encounter challenges such as mode collapse, vanishing gradients,
and hyper-parameter sensitivity, he regularized Wasserstein GAN with gradient penalty
WGAN-GP is employed. This choice ensures stable training for both the generator and
discriminator networks while also improving the overall image quality of the generated
outputs. The WGAN-GP loss function is defined as follows:

Ladv = LWGANgp + λctCT |x′,x′′ . (2)

In the above formulation, the initial term represents the WGAN-GP loss, while the
second term introduces a consistency term to regularize this loss. The WGAN-GP loss is
expressed as follows:

LWGANgp = E
[
Dsrc(x)

] + Ex,c

[
Dsrc

(
G(x, c)

)] − λgpEx̂

[(∥∥∇x̂Dsrc(x̂)
∥∥

2 − 1
)2]

,

(3)

where x̂ is sampled uniformly along a straight line between a pair of real and generated
images. Specifically, Gulrajani et al. (2017) presented a gradient penalty approach, high-
lighting that a differentiable discriminator Dsrc maintains 1-Lipschitz continuity when the
norm of its gradients remains at or below 1 universally.

CT |x′,x′′ = Ex∼P

[
max(0, d

(
D

(
x′),D(

x′′))+ 0.1 · d(
D_

(
x′),D_

(
x′′)−M ′)]. (4)

In particular, x′ and x′′ represent virtual data points that are in proximity to x. D(x′)
represents the discriminator’s output when provided with input x, while D_ refers to the
output of the second-to-last layer discriminator. And d represents the distance between
two data points. M ′ in the above formula is a constant by which d is bounded as assumed
by Wei et al. (2018)

Contrast classification loss: In order to achieve the desired image translation, an auxiliary
classifier is introduced on top of the discriminator D. This involves optimizing D using a
domain classification loss for real images and optimizing G using a domain classification
loss for fake images. The following are defined for real images:

Lr
cls = Ex,c′

[− log Dcls
(
c′|x)]

, (5)

where the expression Dcls(c
′|x) denotes a probability distribution over domain labels de-

termined by D. Through minimizing this objective, D is trained to classify a real image x
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to its original domain c′. It is assumed that the training data provides the input image and
its associated domain label pair (x, c′). On the flip side, the below formula is the loss
function for distinguishing fake images within the domain:

L
f
cls = Ex,c′

[− log Dcls
(
c′|G(x, c)

)]
. (6)

In particular, x and c′ represent a real image and its original label, respectively. G(x, c)

and c denote a generated (fake) image and the desired target contrast.
For this experiment, Softmax Cross Entropy is utilized to compute the classification

loss.

Cycle consistency loss: To enforce a reliable one-to-one mapping between the source and
target image domains, a cycle consistency loss is utilized in the compound loss. This loss
term ensures that the generated images can faithfully reconstruct the original source image
when translated back to the source domain. By incorporating the cycle consistency loss,
the model becomes more robust and capable of producing consistent and accurate image
translations. In this experiment, L1-norm is applied to compute cycle consistency loss:

Lcyc = Ex,c,c′
[∥∥x − G

(
G(x, c), c′)∥∥]

. (7)

3.3.2. New Generation Loss Functions with DSSIM and LPIPS
For the generator, the L1-norm has already been applied for cycle-consistent loss, but
the current L1 loss disregards patch-level dissimilarity among images, limiting the infor-
mation available for the generator. To overcome this limitation, two additional terms are
introduced in the generation loss, promoting small-scale dissimilarity between real and
reconstructed images at the patch level. This enhances the generator’s available informa-
tion.

Motivated by the effectiveness of measuring structural similarity between images using
the Structural Similarity (SSIM) metric in a patch-wise manner, the Structural Dissimi-
larity Loss (DSSIM) is adopted as an extension of SSIM:

LDSSIM = Ex,c,c′
[
(1 − SSIM(x − G(G(x, c), c′)))

2

]
. (8)

In particular, SSIM is formulated as:

SSIM(x, y) = (2μxμy + C1) + (2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
, (9)

with:
μx , μy : the pixel sample mean of x and y, respectively;
σ 2

x , σ 2
y : the variance of x and y, respectively;

σxy: the covariance of x and y;
C1 = (k1L)2, C2 = (k2L)2: two variables to stabilize the division with weak denom-

inator;
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L: the dynamic range of the pixel-values (typically this is 2#bits per pixel − 1);
k1 = 0.01 and k2 = 0.03 by default.
Additionally, to ensure that the generator continuously generates images that closely

match the target contrast, the Learned Perceptual Image Patch Similarity (LPIPS) metric
is incorporated, which has been recently proposed:

LLPIPS = Ex,c,c′
[
x − G

(
G(x, c), c

)]
. (10)

The ultimate reconstruction loss combines the desirable aspects of all three terms:

Lrec = λcycLcyc + λDSSIMLDSSIM + λLPIPSLLPIPS. (11)

3.3.3. Full Objective
In summary, the proposed loss function for the generator and discriminator networks can
be formulated as follows:

LD = −Ladv + Lr
cls, (12)

LG = Ladv + λclsL
f
cls + λrecLrec. (13)

4. Experimental Results

4.1. Dataset Detail and Data Preprocessing

To evaluate the method, 2 standard medical image datasets, namely BraTS2020 and IXI,
are adopted in this study.

4.1.1. Dataset Detail
BraTS2020: The BraTS2020 dataset is a widely used benchmark dataset for brain tu-
mor segmentation in magnetic resonance imaging (MRI). It consists of multi-modal MRI
scans, including T1-weighted, T1-weighted contrast-enhanced, T2-weighted, and Fluid
Attenuated Inversion Recovery (FLAIR) images (indicated in Table 1).

IXI dataset: The IXI (Information eXtraction from Images) dataset is a comprehensive
and publicly available collection of multimodal brain imaging data. 600 MR images from
normal, healthy subjects are collected with 4 acquisition protocols: T1-weighted, T2-
weighted, Proton Density (PD), and Magnetic Resonance Angiography (MRA) (indicated
in Table 2).

4.1.2. Data Preprocessing
For both datasets, the nibabel library is employed to manage the loading and saving of
MRI image files in .nii format.

BraTS2020: Since all of the images had already been registered to the same template with
size (240, 240, 155), there is no need to apply any registering method for this dataset. The
middle axial slices of 4 contrasts are shown in Fig. 9.
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Table 1
Detailed information on the BraTS2020 dataset.

Attributes Detailed information

Number of contrasts 4 (T1, T2, T1CE, FLAIR)
Number of samples per contrast 494 images/contrast
Image size (3D image) Already registered

All images: (240 × 240 × 155)

Ratio healthy/disease (tumour) 40/60

Table 2
Detailed information on the IXI dataset.

Attributes Detailed information

Number of contrasts 4 (T1, T2, PD, MRA)
Number of samples per contrast 568 images/contrast
Image size (3D image) Not registered:

T1: (256 × 256 × 150)

T2: (256 × 256 × 130)

MRA: (512 × 512 × 100)

PD: (256 × 256 × 130)

Ratio healthy/disease (tumour) 100/0

Fig. 9. Illustration of axial slices of the BraTS2020 dataset.

Table 3
Number of samples per contrast in the BraTS2020

dataset.

Train FLAIR 3690

T1 3690
T1CE 3690
T2 3690

Test FLAIR 1250

T1 1250
T1CE 1250
T2 1250

The original BraTS2020 dataset has already been divided into a training set and a val-
idation set, as presented in Table 3. Since the images of the BraTS2020 dataset provide
better resolution in the axial plane, axial slices of all images were taken. For this experi-
ment, 10 slices per 3D image are taken.

IXI dataset: Upon reviewing and analysing the entire IXI dataset, it was observed that
there are 2 contrasts that exist in different templates from the remaining. The middle orig-
inal slices of the 4 contrasts are shown in Fig. 10:
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Fig. 10. Illustration of axial slices of IXI dataset before registration.

Fig. 11. The axial slices of a common template synthesized from PD and T2 images.

As depicted in Fig. 10, it is evident that MRA images are in shapes (512, 512, 100),
while T1 images are in completely different templates (size and plane). However, it is
noteworthy that there are still PD and T2 images in the same template and similar to
BraTS2020 images. In light of this observation, the decision is made to apply some reg-
istering transformations to MRA and T1 images using the common template synthe-
sized from PD and T2. For this experiment, an affine transformation is employed from
the AntsPy package (Avants et al., 2009) which is a Python library that wraps the C++
biomedical image processing library ANTs. First, a common template is extracted from
two classes: PD and T2. Subsequently, a mask is derived from this template and subse-
quently the T1 and MRA images are registered onto the mask using affine transformation,
as mentioned in Sohail et al. (2019). The preprocessing process for the IXI dataset is
depicted in Figs. 11, 12, and 13.

This provides 568 images of the same size and position from which 68 were randomly
selected for testing while the remaining 500 were used for training. Since the MRA images
of the IXI dataset provide better resolution in the axial plane, axial slices of all images were
taken (as shown in Fig. 14). For the IXI dataset, only 5 middle slices per 3D image are
selected. This decision is made due to the presence of missing or noisy images in some
contrasts (as shown in Figs. 15 and 16), particularly in MRA, when attempting to take 8
or 10 slices.

For data preprocessing, transformations including horizontal flipping, resizing to
256 × 256, and normalization are applied. Table 4 and Fig. 17 indicate the number of
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Fig. 12. The axial slices of MRA/T1 when embedded in the common template.

Fig. 13. The axial slices of MRA/T1 after applied affine transformation.

Fig. 14. Illustration of axial slices of IXI dataset after registration.
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Fig. 15. Missing images in MRA contrast.

Fig. 16. Blur images in MRA contrast.

Table 4
Number of samples per contrast in the IXI dataset.

Train MRA 2430

PD 2430
T1 2430
T2 2430

Test MRA 335

PD 335
T1 335
T2 335

Fig. 17. Distribution of data from both datasets divided by datasets (BraTS2020/IXI).

samples in the IXI dataset and visualization of the distribution of actual collected data
from both datasets.

Regarding the number of samples per contrast, as depicted in Fig. 17, a notable imbal-
ance is observed, with a higher number of samples in T1 and T2 compared to the other
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Fig. 18. Distribution of data from both datasets divided by brain’s condition (healthy/diseases).

contrasts. However, this disparity falls within an acceptable range. In Fig. 18, there is a sig-
nificant disparity in the number of samples between the two brain conditions (healthy/dis-
eased). However, as the main purpose of this experiment is to focus on synthesizing MRI
in general, this problem would be resolved in future approaches.

In Fig. 18, a substantial disparity in the number of samples between the two brain
conditions (healthy/diseased) is evident. Nonetheless, it is important to note that the pri-
mary objective of this experiment is to focus on synthesizing MRI in general. The issue
of sample disparity will be acknowledged and addressed in future approaches.

4.2. Experimental Results

4.2.1. Implementation Details
All experiments were conducted using the PyTorch framework. To accommodate compu-
tational limitations, the image slices were resized to dimensions of 256 × 256. During
training, the input images and target contrast were randomly selected in an unpaired man-
ner to ensure fairness in comparison (Xiang et al., 2018). Both the default StarGAN model
and the proposed models used the same set of hyperparameter values. The training was
carried out for 200,000 iterations with a batch size of 4. Through numerous hands-on tri-
als, this study observed that the loss began to rise when the iteration count was configured
to exceed 200,000. Furthermore, due to hardware constraints, the batch size could only
be set to a value below 4 to prevent training process crashes. All models are trained us-
ing Adam optimizer with β1 = 0.5 and β2 = 0.999, as experienced by Kingma and Ba
(2014). All models are trained with a learning rate of 0.0001 for the initial 100,000 itera-
tions, followed by a linear decay of the learning rate to 0 over the next 100,000 iterations.
In this study, adjustments were made to the learning rate, resulting in a marginal fluctua-
tion of the loss value, which proved challenging to converge. The training process takes
about one day when conducted on a single NVIDIA RTX-3060 GPU.

During the training process, the following parameters are employed: where λct and
λgp are hyper-parameters that control the relative importance of consistent regulariza-
tion and gradient penalty, respectively. Within it, consistent regularization plays a sup-
portive role in complementing and improving the gradient penalty. Specifically, λct = 1
(Eq. (2)) and λgp = 10 (Eq. (3)) were selected after experimenting with neighbouring
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value ranges. In the training of this image generator, prioritization is given to image qual-
ity over classification. The reason is that image classification is relatively straightforward
and dependent on the task of synthesizing images; the closer the generated images are to
the ground truth, the higher the accuracy of the classification task will be. Additionally,
image reconstruction is as important as image generation, leading to the setting of λcls = 1
(Eq. (13)) and λrec = 1 (Eq. (13)). As stated previously, when M ′ varies within the range
of 0 to 0.3, the experiments yield similar outcomes. Consequently, M ′ = 0 (Eq. (4)) and
λcyc = λDSSIM = λLPIPS = 10 (Eq. (11)) are set uniformly across all experiments.

4.2.2. Mask Vector for Training on Multiple Datasets
The aim of this experiment is to integrate multiple datasets during model training to
mitigate the limitations posed by data scarcity in medical image synthesis. However,
a challenge arises when incorporating multiple datasets, as each dataset only holds partial
knowledge regarding the label information.

In the specific scenario of using datasets like BraTS2020 and IXI, a limitation arises
where one dataset (BraTS2020) includes labels for contrasts: T1, T2, T1CE, and FLAIR
but lacks labels for other contrasts such as PD and MRA, while the other dataset (IXI) is
the opposite (lack of T1CE and FLAIR). This poses a challenge because the reconstruction
of the input image x from the translated image G(x, c) requires complete information on
the label vector c′.

To address this issue, a mask vector is adopted, denoted as m, which was introduced in
the StarGAN framework. The purpose of the mask vector is to allow the model to ignore
unspecified labels and focus only on the explicitly known label provided by a particular
dataset. In the context of the paper, m is an n-dimensional one-hot vector, where n is the
number of datasets. Each element of the mask vector indicates whether the corresponding
dataset label is specified or not.

c = [c1, . . . , cn,m] (14)

For example, if n = 2 as mentioned in the paper (representing two datasets,
BraTS2020 and IXI), and if a sample belongs to the BraTS2020 dataset, then the mask
vector m can be represented as [1, 0], indicating that the first dataset label (BraTS2020)
is specified while the second dataset label (IXI) is unspecified. This approach helps the
model to handle multiple datasets efficiently, focusing on relevant labels while ignoring
irrelevant ones.

In the defined expression, [·] denotes concatenation, and represents a vector containing
the labels for the ith dataset. The vector, which represents the known labels, can take the
form of a binary vector for binary attributes or a one-hot vector for categorical attributes.
The remaining n−1 unknown labels are assigned zero values. In the specific experiments
conducted, the BraTS2020 and IXI datasets are utilized, resulting in a value of n equal to
two.

4.2.3. Qualitative Evaluation
Figures 19 and 20 provide a qualitative comparison between the proposed method and
Star-GAN in terms of multi-contrast synthesis. The results demonstrate that Star-GAN
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Fig. 19. Synthesis of MRA, PD-weighted and T1-weighted images using a single T2-weighted image as input
(IXI dataset).

Fig. 20. Synthesis of T1-weighted, T2-weighted, and FLAIR images using a single T1CE-weighted image as
input (BraTS2020 dataset).
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partly fails to capture structural and perceptual similarities for small anatomical regions,
which are effectively captured by the proposed method. In Fig. 19, the synthesis of MRA
from a T2-weighted image shows that Star-GAN struggles to reproduce the accurate colour
of the image, while the proposed method successfully generates an image that is nearly
identical to the real one. Similarly, Fig. 20 with FLAIR contrast.

4.2.4. Quantitative Evaluation
In order to evaluate the performance of the proposed model trained on multiple datasets
compared to Star-GAN and the training experiment conducted on a single dataset, well-
established metrics such as peak signal-to-noise ratio (PSNR), structural similarity index
(SSIM) [21], and normalized mean absolute error (NMAE) are utilized [22]. The average
results on BraTS2020 and IXI datasets are presented in Table 5. A higher PSNR and SSIM,
as well as a lower NMAE, indicate better quality in the generated images. The experimen-
tal evaluation encompasses StarGANs (SG), ResUNet (RU), and the proposed methods:
With two training strategies (training on a single dataset and multiple datasets); With new
generation losses and new generator architecture. The proposed approach has acquired
better performance than that of Star-GAN in evaluating PSNR and NMAE, demonstrat-
ing superior performance.

Regarding the comparison of architecture between the two models, it is observed that
the StarGANs-based with ResUNet (RU) and proposed generator outperformed default
StarGANs (SG) in most of the metric values, particularly in terms of metrics PSNR and
NMAE, for both training strategies. Table 5 reveals that model RU single yields the best re-
sults in 2 metrics on the BraTS2020 dataset with PSNR = 35.959 and NMAE = 0.0412,
followed by the second-best performance from the proposed model. However, because
RU single is trained solely on the BraTS2020 dataset, which contains both healthy nor-
mal brain MRI images and brains with tumours or abnormalities, instead of being trained
on both BraTS2020 and IXI datasets, it’s plausible that it may achieve superior perfor-
mance compared to a model trained on both datasets. This is because the IXI dataset only
consists of healthy normal brain MRI images. Upon close examination, the difference be-
tween the top-performing outcome and the second-best outcome is minimal. Additionally,

Table 5
Quantitative results.

Metric SG single1 RU single2 SG both3 RU both4 Proposed method∗

BraTS2020 SSIM 0.8166 0.7672 0.8238 0.7734 0.8167
PSNR 34.578 35.959 34.632 35.327 35.847
NMAE 0.0426 0.0412 0.0431 0.0427 0.0414

IXI SSIM 0.6883 0.6854 0.7310 0.6913 0.6972
PSNR 38.289 40.214 40.469 40.848 40.882
NMAE 0.0437 0.0399 0.0392 0.0387 0.0384

1StarGANs model trained on 1 dataset.
2Model with ResUnet generator trained on 1 dataset.
3StarGANs model trained on multiple datasets.
4Model with ResUnet generator trained on multiple datasets.
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the proposed model exhibited the best performance across all three metrics on the IXI
dataset. This underscores the model’s robustness and its capability to adapt effectively
when trained on diverse datasets.

On the other hand, when comparing the metrics between training on a single dataset
and training on multiple datasets on the same generator architecture, results show that
training on multiple datasets yielded comparable or sometimes even better results com-
pared to training on individual datasets. This approach can be applied to reduce time and
computational costs without compromising the model’s performance (results in Table 5).
After applying the proposed generator architecture, new generation losses, and training
on both datasets. The results (*) are shown in the last column in Table 5. demonstrate
superior effectiveness compared to previous methods, as indicated by higher SSIM and
PSNR values and lower NMAE.

4.3. Experience in Training

Throughout the training process, a rapid decrease in classification loss was observed, par-
ticularly within the first 1000 iterations for both datasets. However, with the IXI dataset,
the classification loss remained stable at a value of zero. By contrast, for the BraTS2020
dataset, the classification loss occasionally fluctuated away from zero. This can be under-
stood as the MRI images in the BraTS2020 dataset having similar colour characteristics,
making it challenging for the model to learn these specific features and smaller details
such as tumours and subtle brain oedema. On the other hand, the IXI dataset consists
of healthy, normal brain images with relatively different colour characteristics between
contrasts, providing more distinguishable features for the model to learn.

5. Demonstration

A website has been developed as a platform to showcase the conducted experiments. This
website serves as a repository of the research findings and provides a convenient means
for accessing the experimental data, results, and related materials. The repository can be
accessed via https://github.com/hanahh080601/Generate-MRI-FastAP. As illustrated in
Fig. 21, the website offers a user-friendly interface, allowing visitors to navigate through
the MRI Synthesis experiments, explore the data, and gain insights into the research pro-
cess. It serves as a valuable resource for researchers, practitioners, and interested individ-
uals to access and review the experimental work conducted in this study.

Specifically, users can select the input contrast and output contrast they desire for image
synthesis upon accessing the website. They can then choose to upload files from their local
device (the uploaded image must match the selected input contrast). Alternatively, users
may only select the input and output contrast, after which the system will generate image
using input data from the BraTS2020 and IXI datasets. This feature is used to qualitatively
assess the quality of the generated images compared to the original ones.

Based on observation in Fig. 21, T1 is selected as the input contrast, T2 as the out-
put contrast, and the IXI dataset is the chosen dataset. The system automatically chose a

https://github.com/hanahh080601/Generate-MRI-FastAP
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Fig. 21. Illustration of the user interface for the demo website.

Fig. 22. Illustration of the testing model with low-resolution input image.

random T1 image from the test set of the IXI dataset and sent a request for the model to
generate the T2 image. Additionally, the system also selected the ground truth T2 image
from the dataset and displayed both for user comparison.

Moreover, testing was carried out to assess the model’s performance when presented
with noisy or partially noisy input images. The experimentation was carried out on MRI
images from the test datasets (BraTS2020 and IXI), as well as random images sourced
from the Internet. Notable cases include input images corrupted with noise and T2 input
images exhibiting abnormal fluid with the same colour as cerebral spinal fluid. Observing
Fig. 22 with an input image of a noisy, low-resolution MRI T1 randomly obtained from
the Internet, it can be seen that the generated image maintains the same quality (low res-
olution) as the input image, ensuring accuracy in colour contrast: cerebral spinal fluid,
appearing dark in T1, manifests as bright in T2. In Fig. 23, with an input MRI T2 image
from the BraTS2020 test dataset, the synthesized MRI FLAIR image exhibits relatively
high image quality similar to the input image. Particularly, the model can learn and dis-
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Fig. 23. Illustration of the testing model with input image T2 exhibiting abnormal fluid with the same colour as
cerebral spinal fluid.

tinguish between cerebral spinal fluid (dark) and abnormal fluid (bright) in the generated
FLAIR image while both appear bright in the T2 image. Furthermore, in reality, MRI im-
ages scanned by MRI machines may suffer from poor quality, noise, or misalignment due
to objective and subjective factors, as illustrated by the REAL FLAIR image in Fig. 23.
In such cases, the model-generated images rely solely on the input image without consid-
eration of the MRI scanning process or subjective factors from the patient.

Therefore, this system can be utilized to synthesize multiple MRI images across vari-
ous contrasts from just a single MRI image. This application can assist medical imaging
specialists or diagnosing physicians by providing additional references in cases where
they are uncertain about the original MRI image or desire to observe additional anatom-
ical structures in a different contrast without requiring the patient to undergo additional
MRI scans. This could help minimize costs, time, and partly support in making diagnoses.

6. Conclustion

In this research, a novel method is proposed based on StarGANs, utilizing a ResUNet
generator and a novel generation loss, for synthesizing multi-contrast MRI images. De-
spite substantial efforts made in prior studies (Bharti et al., 2022; Dai et al., 2020; Shen
et al., 2020), the proposed approach only requires a single generator and discriminator.
The results showcase that both qualitative and quantitative demonstrate the superiority of
the proposed method over the default Star-GAN. Moreover, this study method overcomes
the limitation of training multiple networks for multi-contrast image synthesis, which is
crucial for deep learning methods reliant on multi-contrast data during training. The syn-
thesized images produced by this method possess significant potential as highly valuable
assets for medical professionals involved in research, education, and clinical applications.

Future work gears towards expanding the experiments to larger datasets in size and the
number of contrasts, avoiding disparity in the proportion of healthy and diseased brain
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images. Additionally, efforts will be directed toward training the proposed approach with
larger batch sizes and developing it into 3D images, which can significantly contribute to
medical diagnosis in practical applications.

A. Network Architecture Details

Table 6
Proposed generator architecture summary.

Layer Type Details

Input Conv2d (13, 64, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)
InstanceNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ReLU (inplace=True)

down_block1 Conv2d (64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ResBlock) InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

ReLU (inplace=True)
Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
AvgPool2d (kernel_size=2, stride=2, padding=0)

down_block2 Conv2d (128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ResBlock) InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

ReLU (inplace=True)
Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
AvgPool2d (kernel_size=2, stride=2, padding=0)

bottle_neck Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(6 x ResBlocks) InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
Each ResBlock →ReLU (inplace=True)

Conv2d (256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
InstanceNorm2d (256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

encoder Conv2d (256, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ResBlock) InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

ReLU (inplace=True)
Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ConvTranspose2d (128, 64, kernel_size=(2, 2), stride=(2, 2))

up_block1 Conv2d (320, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ResBlock) InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

ReLU (inplace=True)
Conv2d (128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
InstanceNorm2d (128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
ConvTranspose2d (128, 64, kernel_size=(2, 2), stride=(2, 2))

up_block2 Conv2d (192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(ResBlock) InstanceNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

ReLU (inplace=True)
Conv2d (64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
InstanceNorm2d (64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

Output Conv2d (64, 3, kernel_size=(7, 7), stride=(1, 1), padding=(3, 3), bias=False)
Tanh ()
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Table 7
Discriminator architecture summary.

Layer Type Details

(main) Sequential
Conv2d (3, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)
Conv2d (64, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)
Conv2d (128, 256, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)
Conv2d (256, 512, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)
Conv2d (512, 1024, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)
Conv2d (1024, 2048, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1))
LeakyReLU (negative_slope=0.01)

conv1 Conv2d (2048, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

conv2 Conv2d (2048, 4, kernel_size=(2, 2), stride=(1, 1), bias=False)
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