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Abstract. The Multi-Objective Mixed-Integer Programming (MOMIP) problem is one of the most
challenging. To derive its Pareto optimal solutions one can use the well-known Chebyshev scalar-
ization and Mixed-Integer Programming (MIP) solvers. However, for a large-scale instance of the
MOMIP problem, its scalarization may not be solved to optimality, even by state-of-the-art opti-
mization packages, within the time limit imposed on optimization. If a MIP solver cannot derive
the optimal solution within the assumed time limit, it provides the optimality gap, which gauges
the quality of the approximate solution. However, for the MOMIP case, no information is provided
on the lower and upper bounds of the components of the Pareto optimal outcome. For the MOMIP
problem with two and three objective functions, an algorithm is proposed to provide the so-called
interval representation of the Pareto optimal outcome designated by the weighting vector when there
is a time limit on solving the Chebyshev scalarization. Such interval representations can be used to
navigate on the Pareto front. The results of several numerical experiments on selected large-scale
instances of the multi-objective multidimensional 0–1 knapsack problem illustrate the proposed
approach. The limitations and possible enhancements of the proposed method are also discussed.
Key words: multi-objective mixed-integer programming, large-scale optimization, Chebyshev
scalarization, Pareto front approximations, lower bounds, upper bounds.

1. Introduction

The derivation of optimal solutions to large-scale instances of the Mixed-Integer Program-
ming (MIP) problem can be impossible within a reasonable time limit even for contempo-
rary commercial MIP solvers, e.g. GUROBI (Gurobi, 2023), CPLEX (IBM, 2023). In this
case, a MIP solver provides the optimality gap (MIP gap) that gauges the quality of the
approximate solution, i.e. the last feasible solution (incumbent). This optimality gap is
calculated based on the incumbent and the so-called MIP best bound.

∗Corresponding author.

https://doi.org/10.15388/24-INFOR549


256 G. Filcek, J. Miroforidis

In the case of the Multi-Objective MIP (MOMIP) problem, scalarization techniques
and MIP solvers can be used to derive Pareto optimal solutions (see, e.g. Miettinen, 1999;
Ehrgott, 2005). Examples of applying MIP packages to solve multi-criteria decision prob-
lems are shown in, e.g. Ahmadi et al. (2012), Delorme et al. (2014), Eiselt and Mari-
anov (2014), Oke and Siddiqui (2015), Samanlioglu (2013). As a scalarization technique,
one can use the Chebyshev scalarization that guarantees the derivation of each (prop-
erly) Pareto optimal solution (see, e.g. Kaliszewski, 2006). Other advantages of using this
scalarization in the context of decision-making and expressing the decision maker’s pref-
erences are discussed in, e.g. Miroforidis (2021).

In the current work, we say that an instance of the MOMIP problem is large-scale if its
Chebyshev scalarization cannot be solved to optimality by a MIP solver within an assumed
time limit that is reasonable in the decision-making process. The existence of this limit
is justified in solving practical multi-criteria decision-making problems. When there is a
time limit on deriving a single Pareto optimal solution, the Chebyshev scalarization of
the instance may not be solved to optimality. The decision maker (DM) then obtains the
incumbent, i.e. the approximation of the Pareto optimal solution, as well as the MIP gap of
the single-objective optimization problem. However, based on this information, the quality
of the approximation of a single component (namely its lower and upper bounds) of the
Pareto optimal outcome, i.e. the image of the Pareto optimal solution in the objective space
cannot be shown to the DM. And it is based on these components that the DM navigates
on the Pareto front (set of Pareto optimal outcomes). Fortunately, there is a method to
provide the DM with such lower and upper bounds in the literature.

In Kaliszewski and Miroforidis (2019), a general methodology for multi-objective op-
timization to provide lower and upper bounds on objective function values of a Pareto
optimal solution designated by a vector of weights of the Chebyshev scalarization of a
multi-objective optimization problem has been proposed. The bounds form the so-called
interval representation of the Pareto optimal outcome. The DM can use interval repre-
sentations instead of (unknown to him/her) Pareto optimal outcomes, to navigate on the
Pareto front. To derive them, one needs the so-called lower shells and upper shells whose
images in the objective space are finite two-sided approximations of the Pareto front (see,
e.g. Kaliszewski and Miroforidis, 2014).

In Kaliszewski and Miroforidis (2022), it has been shown how to provide lower and
upper shells to large-scale instances of the MOMIP problem. In that work, lower shells
are composed of incumbents to the Chebyshev scalarization of the MOMIP problem de-
rived within the time limit, and upper shells consist of elements that are solutions to the
Chebyshev scalarization of a relaxation of the MOMIP problem.

However, there is a lack of an algorithmic method for deriving an upper shell that is
necessary to calculate the interval representation of the Pareto optimal outcome designated
by a given vector of weights of the Chebyshev scalarizing function. The idea of how to
derive such useful upper shells for the MOMIP problem with two objective functions has
been shown in our earlier works (Kaliszewski and Miroforidis, 2021) and (Miroforidis,
2021).

In the current work, we combine ideas from works (Kaliszewski and Miroforidis, 2019,
2021, 2022), and (Miroforidis, 2021). For this reason, our work is an incremental one.
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For the MOMIP problem with up to three objective functions, we propose an algorithmic
method of deriving upper shells that can be used to calculate the interval representation of
a single Pareto optimal outcome designated by a given vector of weights of the Chebyshev
scalarizing function. This opens the way for providing the DM with this representation
when there is a time limit for deriving a single Pareto optimal solution. Because of the
need to derive the appropriate upper shells, additional time is needed for optimization,
but as we show in numerical experiments, this time can be a fraction of the assumed
time limit. To illustrate our method, we present results of several numerical experiments
with selected large-scale instances of the multi-objective multidimensional 0–1 knapsack
problem.

To our best knowledge, the method we propose is the only algorithmic method for
determining the interval representation of the Pareto optimal outcome given by weights
of the Chebyshev scalarizing function for large-scale instances of the MOMIP problem,
assuming the existence of a time budget for optimization.

The main contribution of this article is summarized as follows:

• We propose a generic framework for providing interval representations of Pareto opti-
mal outcomes, designated by weights of the Chebyshev scalarization, of the MOMIP
problem when there is a time budget for optimization.

• We propose two algorithms, which are realizations of the framework.
• We demonstrate the operation of these algorithms on computationally demanding large-

scale instances of the MOMIP problem up to three objective functions.
• We discuss possible directions for changing the framework to better adapt it to the

realities of decision-making and the budgeting of calculations.

The current work is organized as follows. In Section 2, we formulate the MOMIP prob-
lem and we recall a method for the derivation of Pareto optimal solutions with the use of
the Chebyshev scalarization. In Section 3, we briefly recall the theory of parametric lower
and upper bounds. There, we also introduce the concept of the interval representation
of the implicit Pareto optimal outcome as well as an indicator measuring its quality. In
Section 4, we present two versions of an algorithm for deriving interval representations
of implicit Pareto optimal outcomes. In Section 5, we conduct extensive numerical ex-
periments, as well as discuss their results. In Section 6, we show the limitations of the
proposed method, as well as discuss how to eliminate them. Section 7 contains some final
remarks.

2. Background

In this section, we formulate the MOMIP problem, and we recall a method for the deriva-
tion of Pareto optimal solutions with the use of the Chebyshev scalarization.

Let X := R
n1 × Z

n2 , n1 + n2 = n, n2 > 0, x ∈ X denote a solution, X0 := {x ∈ X |
gp(x) � bp, bp ∈ R} the set of feasible solutions, where gp : Rn → R, p = 1, . . . , m,
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m � 1. The MOMIP problem is defined as follows:

vmax f (x)

s.t. x ∈ X0,
(1)

where f : R
n → R

k , f = (f1, . . . , fk), fl : R
n → R, l = 1, . . . , k, k � 2, are

objective functions, and “vmax” is the operator of deriving set N that contains all Pareto
optimal solutions in X0. The set Rk is called the objective space. Solution x̄ ∈ X0 is
Pareto optimal, if for any x ∈ X0, fl(x) � fl(x̄), l = 1, . . . , k, implies f (x) = f (x̄).
If fl(x) � fl(x̄), l = 1, . . . , k, and f (x) �= f (x̄), then x dominates x̄ (x̄ is dominated)
which is denoted by the relation x � x̄. We say that element f (x), x ∈ X0, is the outcome
of x. Set f (N) is called the Pareto front.

According to well-established knowledge (Ehrgott, 2005; Kaliszewski, 2006; Kaliszew-
ski et al., 2016; Miettinen, 1999), solution x is Pareto optimal (actually, x is properly
Pareto optimal, see, e.g. Ehrgott, 2005; Kaliszewski, 2006; Kaliszewski et al., 2016; Mi-
ettinen, 1999) if and only if it solves the Chebyshev scalarization of problem (1), namely

min maxl λl

(
y∗
l − fl(x)

) + ρek
(
y∗ − f (x)

)
s.t. x ∈ X0,

(2)

where weights λl > 0, l = 1, . . . , k, ek = (1, 1, . . . , 1), y∗
l = ŷl+ε, ŷl = maxx∈X0 fl(x),

ŷl < ∞, l = 1, . . . , k, ε > 0, and ρ is a positive “sufficiently small” number.
The linearized version of problem (2) is the following.

min s

s.t. s � λl(y
∗
l − fl(x)) + ρek(y∗ − f (x)), l = 1, . . . , k,

x ∈ X0.

(3)

In the following, we will assume that Pareto optimal solutions come from solving prob-
lem (3) with varying λ = (λ1, . . . , λk).

Given λ, xPopt (λ) denotes the implicit Pareto optimal solution designated by λ that
is a solution which would be derived if problem (2) with λ were solved to optimality.
f (xPopt (λ)) denotes the implicit Pareto optimal outcome designated by λ.

3. Lower and Upper Bounds on Components of Implicit Pareto Optimal Outcomes

This section contains a brief description of the general theory of lower and upper bounds
on components of implicit Pareto optimal outcomes proposed in Kaliszewski and Miro-
foridis (2019).

To calculate the bounds, one needs two finite sets (that satisfy certain properties)
namely a lower shell (SL ⊆ X0) and upper shell (SU ⊆ R

n).
Given λ, SL, and SU , the theory provides formulas for calculating lower and upper

bounds on fl(x
Popt (λ)), l = 1, . . . , k. That is,

Ll(SL, λ) � fl

(
xPopt(λ)

)
� Ul(SU , λ), l = 1, . . . , k. (4)
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Formulas for lower bounds Ll(SL, λ) and upper bounds Ul(SU , λ) are shown in
Kaliszewski and Miroforidis (2022). In that work, all those elements of the theory of
lower and upper bounds that are required to understand the rest of the current work are
presented in a synthetic way.

In addition, and of great relevance to the current work, the theory specifies that only
elements x ∈ SU appropriately located with respect to the vector of lower bounds
L(SL, λ) := (L1(SL, λ), . . . , Lk(SL, λ)) can provide upper bounds U l̄ ({x}, λ) =
fl̄(x) for f l̄ (x

Popt(λ)) for some l̄. This is specified by the following lemma defined in
Kaliszewski and Miroforidis (2019).

Lemma 1. Given lower shell SL and upper shell SU , suppose x ∈ SU and L l̄ (SL, λ) �
f l̄ (x) for some l̄ and Ll(SL, λ) � fl(x) for all l = 1, . . . , k, l �= l̄. Then x provides an
upper bound for f l̄ (x

Popt(λ)), namely f l̄ (x
Popt(λ)) � f l̄ (x).

Let S̄U ⊆ SU be a set of elements fulfilling Lemma 1 for some l̄ ∈ {1, . . . , k}. If
S̄U �= ∅, then each x ∈ S̄U can provide an upper bound on f l̄ (x

Popt(λ)), and Ul̄(SU , λ) =
minx∈S̄U

Ul̄({x}, λ). If S̄U = ∅, then Ul̄(SU , λ) = ŷl̄ . In Section 5, we show how to set
Ul̄(SU , λ) when ŷl̄ is not known.

Further on, U(SU , λ) := (U1(SU , λ), . . . , Uk(SU , λ)) denotes the vector of upper
bounds.

3.1. The Interval Representation of the Implicit Pareto Optimal Outcome

Given λ, SL, and SU , the interval representation of f (xPopt(λ)) is R(SL, SU , λ) =
([L1(SL, λ), U1(SU , λ)], . . . , [Lk(SL, λ), Uk(SU , λ)]).

For k = 2, components of the interval representation of f (xPopt(λ)), lower and upper
shells, as well as vectors of lower and upper bounds, are illustrated in Fig. 1.

Fig. 1. Components of R(SL, SU , λ): �, ◦ – images of lower shell SL and upper shell SU elements, respectively,
in the objective space, � – vector of lower bounds, � – vector of upper bounds.
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To gauge the quality of R(SL, SU , λ), we calculate

GPsub,l(λ) := 100 × Ul(SU , λ) − Ll(SL, λ)

Ul(SU , λ)
, l = 1, . . . , k. (5)

GPsub
(R(SL, SU , λ)) := (GPsub,1(λ), . . . ,GPsub,k(λ)) forms the Pareto suboptimality

gap of interval representation R(SL, SU , λ).

4. Providing Interval Representations of Implicit Pareto Optimal Outcomes

In this section, we develop a generic framework for providing interval representations of
Pareto optimal outcomes, designated by weights of the Chebyshev scalarization, of the
MOMIP problem when there is a time limit for optimization.

Given λ, we assume that there is a time limit T L on solving problem (2) by a MIP
solver. We also assume that if the MIP solver can not derive the solution to (2), i.e. xPopt(λ),
within T L, then it provides incumbent INCλ that is the approximation of xPopt(λ). In this
case, our goal is to provide R(SL, SU , λ) calculated on some lower shell SL and on some
upper shell SU .

4.1. The Derivation of Lower and Upper Shells

As in Kaliszewski and Miroforidis (2022), we will use SL := {INCλ} as a valid lower
shell one can use to calculate Ll(SL, λ), l = 1, . . . , k.

To populate upper shell SU , the following two lemmas defined in Kaliszewski and
Miroforidis (2022) can be used.

Lemma 2. Given λ′, solution x′ to the relaxation of problem (2) with X′
0, X′

0 ⊃ X0, is
not dominated by solution x to problem (2) for any λ.

Lemma 3. If x is a Pareto optimal solution to the relaxation of problem (1) with X′
0, then

set {x} is an upper shell to problem (1).

Given X′
0 ⊃ X0 and λ, let ChebRLX(X′

0, λ) denote the Chebyshev scalarization (prob-
lem (2)) of some relaxation of the MOMIP problem (problem (1)) with feasible set X′

0
for some λ. Based on Lemmas 2 and 3, one can derive a single-element upper shell by
solving ChebRLX(X′

0, λ). Given X′
0 ⊃ X0, the sum of such single-element upper shells

derived for different vectors λ forms upper shell SU .
The surrogate relaxation of problem (1) with X′

0(μ) := {x ∈ X | ∑m
p=1 μpgp(x)

�
∑m

p=1 μpbp} instead of X0, where μp � 0, p = 1, . . . , m, μ �= 0, is a valid relaxation
of this problem (see Kaliszewski and Miroforidis, 2022). μ is a vector of surrogate multi-
pliers. We will use this type of relaxation with μ as a parameter to derive elements of an
upper shell. We also follow what has been shown in Kaliszewski and Miroforidis (2022)
on large-scale instances of the MOMIP problem that for a given μ solving the Chebyshev
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Fig. 2. Deriving upper shell S1
U

, whose element xλ′′′
is a source of an upper bound, U1, for f1(xPopt (λ)) with

some λ : ◦ – image of upper shell S1
U

in the objective space, � – vector of lower bounds.

scalarization of the surrogate relaxation of the MOMIP problem by a MIP solver is much
easier than solving the Chebyshev scalarization of the MOMIP problem.

Given λ and SL, based on Lemma 1, element x of upper shell SU is a source of an upper
bound on f l̄ (x

Popt(λ)), l̄ ∈ {1, . . . , k}, when f (x) is appropriately located with respect
to the vector of lower bounds L(SL, λ). In Miroforidis (2021), an idea of how to derive an
upper shell that consists of an element useful to calculate upper bounds on f l̄ (x

Popt(λ))

has been proposed. This idea is to probe the objective space by perturbing components
of vector λ. Yet, there is no algorithmic approach in Miroforidis (2021) doing that. In the
current work, we try to fill in this gap.

For k = 2, the idea of an algorithm for deriving upper shell S1
U whose some element is

a source of an upper bound on f1(x
Popt(λ)) is shown in Fig. 2. Let us assume that vector μ

is given. At the beginning, S1
U := ∅. Below, we describe three iterations of this example.

Iteration 1. We set the first probing vector λ′ := (λ1 + δ, λ2 − δ), λ′
2 > 0, for some δ > 0

(as a probing vector, we exclude λ because we expect that the corresponding solution will
not be properly located with respect to the vector of lower bounds, see Kaliszewski and
Miroforidis, 2021). Let xλ′ be the solution to ChebRLX(X′

0(μ), λ′). S1
U := S1

U ∪ {xλ′ }.
Based on Lemma 1, xλ′ is not a source of an upper bound on f1(x

Popt(λ)) because f (xλ′
)

is not appropriately located with respect to the vector of lower bounds L = L(SL, λ).
Hence, we CONTINUE.

Iteration 2. We set λ′′ := (λ′
1 + δ, λ′

2 − δ), λ′′
2 > 0. Let xλ′′ be the solution to

ChebRLX(X′
0(μ), λ′′). S1

U := S1
U ∪ {xλ′′ }. Based on Lemma 1, xλ′′ is not a source of

an upper bound on f1(x
Popt(λ)). Hence, we CONTINUE.

Iteration 3. We set λ′′′ := (λ′′
1 + δ, λ′′

2 − δ), λ′′′
2 > 0. Let xλ′′′ be the solution to

ChebRLX(X′
0(μ), λ′′′). S1

U := S1
U ∪ {xλ′′′ }. Based on Lemma 1, xλ′′′ is a source of an

upper bound on f1(x
Popt(λ)). So, U1 = U(S1

U , λ) = f1(x
λ′′′

). Hence, we STOP.
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As elements xλ′ , xλ′′ , and xλ′′′ are Pareto optimal solutions to the relaxation of the
MOMIP problem with X′

0(μ), S1
U is a valid upper shell.

To obtain an upper bound on f2(x
Popt(λ)), we need to derive upper shell S2

U . To do this,
in the first iteration, we set λ′ := (λ1 − δ, λ2 + δ), λ′

1 > 0, and proceed in the same way.
Given l̄ ∈ {1, . . . , k}, the FindUpperShell algorithm tries to derive upper shell Sl̄

U

whose element x is a source of an upper bound on f l̄ (x
Popt(λ)), i.e. Ul̄(S

l̄
U , λ).

In Line 2, we set step size δ that is used to modify components of consecutive probing
vectors λ′. Parameter γ > 0 controls the step size, i.e. the greater the value of parameter γ ,
the denser the sampling of the objective space to search for the desired element of the
upper shell. In the main loop (Lines 4–16), we populate upper shell Sl̄

U checking if its
new element fulfills conditions of Lemma 1 to be a valid source for the upper bound on
fl̄(x

Popt(λ)). The algorithm stops when λ′̄
l
� 1 OR some component of λ′ is negative

OR an element that fulfills conditions of Lemma 1 is found. Lines 6 and 9 guarantee that∑k
l=1 λ′

l = 1. The exit condition of the “while” loop ensures that λ′
l > 0, l = 1, . . . , k.

If no element of Sl̄
U satisfies conditions of Lemma 1, then the algorithm simply returns

the upper shell as well as the only available upper bound on f l̄ (x
Popt(λ)), namely y ∗̄

l
.

Otherwise, an upper bound better than y ∗̄
l

is returned, as well as the upper shell.
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4.2. Calculating Interval Representations

Based on the above elements, an interval representation of the Pareto optimal outcome
given by vector λ can be calculated with the use of the Chute algorithm. Along with
the interval representation, this algorithm also returns lower and upper shells that were
determined during its operation. In Section 5.7, we explain why the algorithm also returns
lower and upper shells.

Line 4 of the algorithm needs clarification. Vector μ can be set as shown in Kaliszewski
and Miroforidis (2022), namely by taking μp := 1, p = 1, . . . , m. In that work, all
surrogate multipliers have the same value. We call this version of the Chute algorithm
Chute1.

Yet, in Kaliszewski and Miroforidis (2022), in the section “Final remarks”, it has been
suggested that “Tighter bounds might be obtained with other values of the multipliers.
This possibility is worth exploring in future works.”. Unfortunately, there is no idea there
how to select a vector of surrogate multipliers other than (1, . . . , 1) ∈ R

m. However, we
can use the theory of duality for this purpose.

Given μ, λ, let x be the solution to ChebRLX(X′
0(μ), λ), and s(μ) be the objective

function value of x. Based on Lemmas 2 and 3, {x} is a valid upper shell. Let s be the
objective function value of the solution to problem (2) with λ and X0. It is a well-known
fact (see, e.g. Glover, 1965, 1968) that s � s(μ). Hence, for a given λ and μ, s(μ) is a
lower bound on values of s.

Given λ, the best (highest) lower bound s∗ on values of s is the objective function value
of the solution μ∗ to the following surrogate dual problem

sup
μ�0,μ �=0

{
min

x∈X′
0(μ)

max
l

λl

(
y∗
l − fl(x)

) + ρek
(
y∗ − f (x)

)}
(6)
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that is connected to the Chebyshev scalarization (problem (2)). Solving (6) to optimality
can be time-consuming. Yet, a suboptimal vector of multipliers μ̃ can be determined in-
stead of μ∗. It can be done with the help of a quasi-subgradient-like algorithm (we shall
call it Suboptimal) by Dyer (1980) with the following stopping condition.
“Number of iterations without improving the value of the objective function in problem (6)
is greater than N” OR “time limit on optimization is greater than T S seconds”.

In the current work, we set time limits on computation, hence the above stopping con-
dition is justified in practice.

We will use vector (1,...,1)
||(1,...,1)|| ∈ R

m, where ||.|| is the Euclidean norm, as an initial vec-
tor of surrogate multipliers in the Suboptimal algorithm. Under the above assumptions,
this algorithm has three parameters, namely λ, N , and T S , i.e. in pseudocode, it can be
used as a function Suboptimal(λ,N, T S), which returns a suboptimal vector of multipli-
ers μ̃.

We shall call a version of the Chute algorithm that uses (in Line 4) the Suboptimal
algorithm to set vector of surrogate multipiers μ for a given λ Chute2. It has two additional
input parameters N and T S .

Let us note that in the Chute2 algorithm, we set the vector of surrogate multipliers
once for a given λ. The FindUpperShell algorithm uses perturbations of the λ vector to
sample the objective space, and for all these perturbations the same vector μ is used. It is
our heuristic assumption that even using the same vector μ for various vectors λ′, that are
close to λ, the Chute2 algorithm is able to find a better R(SL, SU , λ), so tighter upper
bounds on components of f (xPopt(λ)), than the Chute1 algorithm. However, it is at the
cost of increasing the computation time relative to Chute1 by at most T S . We will check
it experimentally in the next section.

The idea (for k = 2 and ρ = 0) of using suboptimal values of surrogate multipli-
ers to get an upper shell that is a source of a better upper bound is illustrated in Fig. 3.
Let μI := (1, . . . , 1) ∈ R

m, and μ̃ be the output of the Suboptimal algorithm (with

Fig. 3. The idea of deriving upper shell {x(μ̃)} whose element is a source of a better upper bound on f2(xPopt (λ))

than the element of upper shell {x(μI )}.
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some N and T S) for some λ. x(μI ) is the solution to optimization problem (2) with X0

replaced with X′
0(μ

I ), and s(μI ) is the objective function value of x(μI ). x(μ̃) is the solu-
tion to optimization problem (2) with X0 replaced with X′

0(μ̃), and s(μ̃) is the objective
function value of x(μ̃). Vector of lower bounds L is marked with a triangle. Both ele-
ments f (x(μ̃)) and f (x(μI )) are appropriately located with regards to L (see Lemma 1)
to be sources for an upper bound on f2(x

Popt(λ)). As s(μ̃) > s(μI ) (contours of the
Chebyshev metric for both values s(μ̃) and s(μI ) are shown by solid thin lines) as well
as f1(x(μ̃)) < f1(x(μI )) AND f2(x(μ̃)) < f2(x(μI )), element x(μ̃) is a source of a
better upper bound on f2(x

Popt(λ)) than element x(μI ), as upper bounds are calculated
with the use of components of the upper shell elements. In Fig. 3, f (x(μ̃)) is closer to the
(unknown) Pareto front (represented by the solid curve) than element f (x(μI )). It could
happen that condition f1(x(μ̃)) < f1(x(μI )) AND f2(x(μ̃)) < f2(x(μI )) does not hold.
In this case, if f2(x(μ̃)) � f2(x(μI )), we obtain no better upper bound on f2(x

Popt(λ)).
On the other hand, if f1(x(μ̃)) � f1(x(μI )) and still f (x(μ̃)) is appropriately located
with regards to L (see Lemma 1) to be a source for an upper bound on f2(x

Popt(λ)), we
get a better upper bound on f2(x

Popt(λ)).

5. Computational Experiments

In this section, we present the results of two experiments where we apply algorithms
Chute1 and Chute2 presented in Section 4.2 to selected instances of the Multi-Objective
Multidimensional 0–1 Knapsack Problem (MOMKP) with two and three objective func-
tions. The instances are demanding for modern MIP solvers.

5.1. Multi-Objective Multidimensional 0–1 Knapsack Problem

For k > 1, the MOMKP is formulated in the following way.

vmax

⎧⎪⎨
⎪⎩

f1(x) := ∑n
j=1 c1,j xj

. . .

fk(x) := ∑n
j=1 ck,j xj

s.t. x ∈ X0 :=
{
x

∣∣∣ ∑n
j=1 ap,j xj � bp, p = 1, . . . , m,

xj ∈ {0, 1}, j = 1, . . . , n

}
,

(7)

where all ap,j , cp,j are non-negative. In Kaliszewski and Miroforidis (2022), it has been
explained why the MOMKP is NP-hard.

5.2. Test Instances of the MOMIP Problem

As tri-criteria instances of the MOMKP, we take two instances from Kaliszewski and
Miroforidis (2022) that were generated based on the 1st problem of the 6th group (n =
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500, m = 10) of multidimensional 0–1 knapsack problems, as well as on the 1st problem
of the 9th group (n = 500, m = 30) (both single-objective problems are stored in Beasley
OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html). We call these tri-criteria
instances Three6.1 and Three9.1, respectively.

By removing the third objective function of problem Three6.1, we create a bi-criteria
instance called Bi6.1. Analogously, by removing the third objective function of problem
Three9.1, we create a bi-criteria instance called Bi9.1.

Bi6.1, Bi9.1, Three6.1, and Three9.1 are our test instances of the MOMIP problem.1

5.3. Experimental Setting

Gurobi (version 10.0.0) for Microsoft Windows (x64) is our selected MIP solver. The
optimizer is installed on the Intel Core i7-7700HQ-based laptop with 16 GB RAM.

To be consistent with limiting optimization time, we do not derive element ŷ to op-
timality. So it is not known. Instead, we separately maximize each objective function
of problem (7) within the time limit equal to 400 seconds. For instances Three6.1 and
Three9.1, we set y∗

l , l = 1, 2, 3, to the best upper bound (provided by the MIP solver)
on values of the respective objective functions (none of these maxima the MIP solver de-
termined in this time limit). Thus, for Three6.1, y∗ := (128872, 131116, 131738), and
for Three9.1, y∗ := (119379.88, 119365, 118122). Obviously, ŷl < y∗

l . Hence, such y∗
approximating ŷ can be used in (2) as well as when calculating lower and upper bounds.
To avoid redundant calculations, for instances Bi6.1 and Bi9.1, we take only the first two
components of respective y∗.

We set T L := 1200 seconds, ρ := 0.001. The absolute lower bound on values of all ob-
jective functions of the MOMKP is 0 (see Section 5.1), so this value is used for calculating
lower bounds Ll(SL, λ), l = 1, . . . , k (for details, see Kaliszewski and Miroforidis, 2022).

For instances Bi6.1 and Bi9.1, we generate one set of five vectors λ uniformly sam-
pled from two-dimensional unit simplex (see Smith and Tromble, 2004), and obtain
corresponding vectors of lower bounds L(SL, λ) (Table 1). For instances Three6.1 and
Three9.1, we generate separate sets of five vectors λ, uniformly sampled from the three-
dimensional unit simplex, and obtain corresponding vectors of lower bounds L(SL, λ)

(Tables 2 and 3, respectively).
For all problem instances, for no vector λ, the selected MIP solver derived the solution

to problem (2) in the assumed T L = 1200 seconds. Thus, the use of the Chute algorithm

Table 1
Vectors λ and lower bounds for test problems Bi6.1 and Bi9.1.

No. λ L(SL, λ) for Bi6.1 L(SL, λ) for Bi9.1

1 0.055 0.945 114253.29 130251.56 104466.45 118482.17
2 0.116 0.884 116707.61 129508.69 107215.43 117756.82
3 0.733 0.267 125690.15 122399.79 116288.83 110899.20
4 0.397 0.603 122075.81 126638.06 112806.06 115033.24
5 0.439 0.561 122514.80 126139.05 113385.01 114671.51

1The instances can be made available to the reader by e-mail upon request.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
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Table 2
Vectors λ and lower bounds L(SL, λ) for test problem Three6.1.

No. λ L(SL, λ)

1 0.187 0.770 0.043 118622.54 128616.78 87944.84
2 0.521 0.324 0.155 124156.03 123541.43 115957.65
3 0.067 0.680 0.253 90480.66 127282.50 121460.00
4 0.359 0.295 0.346 120988.48 121527.94 123559.14
5 0.136 0.078 0.786 115623.82 108141.30 129431.77

Table 3
Vectors λ and lower bounds L(SL, λ) for test problem Three9.1.

No. λ L(SL, λ)

1 0.351 0.351 0.298 111876.06 111861.18 109288.07
2 0.243 0.143 0.614 110262.24 103915.65 114504.59
3 0.278 0.494 0.228 110549.31 114387.77 107363.36
4 0.179 0.471 0.350 105139.63 113934.39 110819.31
5 0.407 0.014 0.579 112514.84 0.00 113292.80

to determine interval representations of Pareto optimal outcomes given by vectors λ is
justified.

We conduct two numerical experiments. In experiment 1, we test the behaviour of
algorithm Chute1. In experiment 2, we test the behaviour of algorithm Chute2. In both
experiments, on generated test instances, we test the behaviour of the Chute algorithm
for γ := 10, 30, 50. Given λ, we check the impact of parameter γ on components of
GPsub

(R(SL, SU , λ)).
In the tables with results of the experiments, the meaning of the columns is as follows.

• U(SU , λ) – components of the vector of upper bounds;
• GAP Psub

% – components of GPsub
(R(SL, SU , λ));

• |SU | – the number of elements in the upper shell;
• Time SU (s) – time to derive the upper shell (in seconds); for Chute2, the running time

of the Suboptimal algorithm is given in parentheses.

In bold, we indicate the improvement of a single component of GPsub
(R(SL, SU , λ))

when changing the value of parameter γ to a higher value, namely, we consider changes
from γ = 10 to γ = 30 and from γ = 30 to γ = 50. By underscore, we indicate the
deterioration of a single component of GPsub

(R(SL, SU , λ)) when changing the value of
parameter γ to a higher value, namely, we consider changes from γ = 10 to γ = 30 and
from γ = 30 to γ = 50.

5.4. Experiment 1 – Deriving Interval Representations with the Chute1 Algorithm

In this experiment, we check the behaviour of the Chute1 algorithm.
The results for instance Bi6.1 are shown in Tables 4–6, and the results for instance

Bi9.1 are shown in Tables 7–9. The results for instance Three6.1 are shown in Ta-
bles 10–12, and the results for instance Three9.1 are shown in Tables 13–15.



268 G. Filcek, J. Miroforidis

Table 4
Chute1, vectors of upper bounds for test problem Bi6.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 120964.00 131117.00 120466.00 131117.00 120093.00 131117.00
2 121666.00 131117.00 121666.00 131117.00 121441.00 131117.00
3 127790.00 126078.00 127635.00 125842.00 127646.00 125642.00
4 125252.00 128990.00 124924.00 128990.00 124852.00 128990.00
5 125502.00 128779.00 125335.00 128665.00 125307.00 128710.00

Table 5
Chute1, GAPPsub

% for test problem Bi6.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 5.55 0.66 5.16 0.66 4.86 0.66
2 4.08 1.23 4.08 1.23 3.90 1.23
3 1.64 2.92 1.52 2.74 1.53 2.58
4 2.54 1.82 2.28 1.82 2.22 1.82
5 2.38 2.05 2.25 1.96 2.23 2.00

Table 6
Chute1, values of |SU |, and Time SU (s) for test problem Bi6.1 and

γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 11 32 52 1.90 8.00 11.49
2 11 33 54 2.02 5.97 11.52
3 8 21 34 2.07 4.26 9.12
4 7 19 31 2.38 5.90 9.50
5 7 19 32 2.08 5.63 8.59

Table 7
Chute1, vectors of upper bounds for test problem Bi9.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 116289.00 119365.00 116289.00 119365.00 116193.00 119365.00
2 117277.00 119365.00 117050.00 119365.00 117057.00 119365.00
3 119379.88 118456.00 119379.88 118456.00 119379.88 118404.00
4 119379.88 119365.00 119295.00 119365.00 119329.00 119365.00
5 119379.88 119365.00 119379.88 119365.00 119379.88 119365.00

For instance Bi6.1, when changing γ = 10 to γ = 30, we observe an improvement in
at least one component of GPsub

(R(SL, SU , λ)) for four vectors λ, although only in two
cases (λ Nos. 3 and 5) two components improve. Yet, when changing γ = 30 to γ = 50,
we observe an improvement of GPsub

(R(SL, SU , λ)) in at least one of its components
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Table 8
Chute1, GAPPsub

% for test problem Bi9.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 10.17 0.74 10.17 0.74 10.09 0.74
2 8.58 1.35 8.40 1.35 8.41 1.35
3 2.59 6.38 2.59 6.38 2.59 6.34
4 5.51 3.63 5.44 3.63 5.47 3.63
5 5.02 3.93 5.02 3.93 5.02 3.93

Table 9
Chute1, values of |SU |, and Time SU (s) for test problem Bi9.1 and

γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 12 36 59 3.06 11.22 20.44
2 14 40 67 3.91 10.70 17.21
3 17 51 84 3.82 13.05 21.78
4 20 59 99 59 13.79 24.32
5 20 60 100 60 14.84 21.51

Table 10
Chute1, vectors of upper bounds for test problem Three6.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 128872.00 131116.00 122914.00 128872.00 131116.00 122471.00 128872.00 131116.00 122387.00
2 127143.00 127325.00 124450.00 127069.00 127325.00 123193.00 127105.00 127325.00 122899.00
3 124359.00 131116.00 131738.00 124359.00 131116.00 131738.00 124217.00 131116.00 131738.00
4 125062.00 125714.00 126639.00 124809.00 125327.00 126342.00 124747.00 125273.00 126099.00
5 128872.00 120016.00 131738.00 128872.00 120016.00 131738.00 128872.00 119610.00 131738.00

Table 11
Chute1, GAPPsub

% for test problem Three6.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 7.95 1.91 28.45 7.95 1.91 28.19 7.95 1.91 28.14
2 2.35 2.97 6.82 2.29 2.97 5.87 2.32 2.97 5.65
3 27.24 2.92 7.80 27.24 2.92 7.80 27.16 2.92 7.80
4 3.26 3.33 2.43 3.06 3.03 2.20 3.01 2.99 2.01
5 10.28 9.89 1.75 10.28 9.89 1.75 10.28 9.59 1.75

for three vectors λ. For λ No. 3, we observe a deterioration of the first component of
GPsub

(R(SL, SU , λ)), and at the same time, an improvement of the second. For λ No. 5,
we observe an improvement of the first component of GPsub

(R(SL, SU , λ)), and at the
same time, a deterioration of the second.
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Table 12
Chute1, values |SU |, and Time SU (s) for test problem Three6.1 and

γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 8 14 33 2.69 4.46 10.48
2 11 21 50 3.39 7.80 23.98
3 11 21 49 5.37 11.84 22.38
4 7 12 28 5.46 9.28 24.29
5 11 21 51 3.27 6.54 16.37

Table 13
Chute1, vectors of upper bounds for test problem Three9.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 119379.88 119365.00 117516.00 119379.8835 119365.00 117398.00 119379.8835 119365.00 117362.00
2 119379.88 119365.00 118122.00 119379.8835 119365.00 118122.00 119379.8835 119365.00 118122.00
3 119379.88 119365.00 118122.00 119379.8835 119365.00 118122.00 119379.8835 119365.00 118122.00
4 119379.88 119365.00 118122.00 119379.8835 119365.00 118122.00 119379.8835 119365.00 118122.00
5 119379.88 119365.00 118122.00 119379.8835 119365.00 118122.00 119379.8835 119365.00 118122.00

Table 14
Chute1, GAPPsub

% for test problem Three9.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 6.29 6.29 7.00 6.29 6.29 6.91 6.29 6.29 6.88
2 7.64 12.94 3.06 7.64 12.94 3.06 7.64 12.94 3.06
3 7.40 4.17 9.11 7.40 4.17 9.11 7.40 4.17 9.11
4 11.93 4.55 6.18 11.93 4.55 6.18 11.93 4.55 6.18
5 5.75 100.00 4.09 5.75 100.00 4.09 5.75 100.00 4.09

Table 15
Chute1, values of |SU |, and Time SU (s) for test problem Three9.1 and

γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 28 79 130 50.09 163.04 237.71
2 18 53 86 46.24 324.61 413.15
3 25 69 115 79.80 222.40 387.76
4 22 64 105 36.09 104.40 175.58
5 11 29 49 11.38 50.33 101.04

When changing γ = 10 to γ = 50, we observe an improvement in at least one com-
ponent of GPsub

(R(SL, SU , λ)) for all vectors λ.
For instance Bi9.1, we observe a similar phenomenon (an improvement, as well as a

deterioration), although when changing γ = 10 to γ = 30, we observe an improvement
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in only one component of GPsub
(R(SL, SU , λ)) for just two vectors λ. When changing

γ = 10 to γ = 50, we observe an improvement in GPsub
(R(SL, SU , λ)) for vectors λ

Nos. 1–4 (at least one component improves). For λ No. 5, GPsub
(R(SL, SU , λ)) remains

unchanged.
For instances Bi6.1 and Bi9.1, the higher the value of parameter γ (higher sampling

density of the objective space), the more numerous the derived upper shells are. For each
vector λ, the time to derive the corresponding upper shell is a small fraction of the assumed
time limit T L = 1200 seconds.

Let us check the results for tri-criteria instances. For instance Three6.1, when changing
γ = 10 to γ = 30, we observe an improvement of GPsub

(R(SL, SU , λ)) in at least one of
its components for three vectors λ, although only for one (λ No. 4) all components improve.
When changing γ = 30 to γ = 50, we observe an improvement of GPsub

(R(SL, SU , λ))

in at least one of its components for three vectors λ. We also observe a deterioration of the
first component of GPsub

(R(SL, SU , λ)) for λ No. 2, and, at the same time, an improvement
on its third component. When changing γ = 10 to γ = 50, we observe an improvement
in GPsub

(R(SL, SU , λ)) for all vectors λ (at least one component improves). For instance
Three9.1 and vectors λ Nos. 2–5, upper bounds on all components of f (xPopt(λ)) are equal
to the corresponding component of y∗. Only for λ No. 1, f3(x

Popt(λ)) < y∗
3 , and when

changing γ = 10 to γ = 30, as well as γ = 30 to γ = 50, there is an improvement only
for the third component of GPsub

(R(SL, SU , λ)). For instances Three6.1 and Three9.1, the
higher the value of parameter γ (higher sampling density of the objective space), the more
numerous the derived upper shells are. For instance Three6.1 and instance Three9.1 with
γ = 10, for most vectors λ, the time to derive the corresponding upper shell is a small
fraction of the assumed time limit T L = 1200 seconds. However, for instance Three9.1
with γ = 30 and γ = 50, the time to derive the corresponding upper shell increases
significantly compared to γ = 10, for all vectors λ.

We checked that for all instances, for no vector λ, the MIP solver derived the optimal
solution to problem (2) within time limit T L + Time SU .

5.5. Experiment 2 – Deriving Interval Representations with the Chute2 Algorithm

In this experiment, we check the behaviour of the Chute2 algorithm with N = 20 and
T S = 400. Recall that these parameters are related to the Suboptimal algorithm.

The results for instance Bi6.1 are shown in Tables 16–18, and the results for instance
Bi9.1 are shown in Tables 19–21. The results for instance Three6.1 are shown in Ta-
bles 22–24, and the results for instance Three9.1 are shown in Tables 25–27.

For instance Bi6.1, when changing γ = 10 to γ = 30, we observe an improvement
in at least one component of GPsub

(R(SL, SU , λ)) for all vectors λ, although only in three
cases (λ Nos. 3–5) two components improve. Yet, when changing γ = 30 to γ = 50,
we observe an improvement of GPsub

(R(SL, SU , λ)) in at least one of its components
for three vectors λ (Nos. 1, 2, and 5). For λ No. 3, we observe a deterioration of the
second component of GPsub

(R(SL, SU , λ)), and, at the same time, an improvement on the
first one. All components of GPsub

(R(SL, SU , λ)) deteriorate for λ No. 4. When changing
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Table 16
Chute2, upper bounds for test problem Bi6.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 118423.00 130703.00 116671.00 130703.00 116230.00 130703.00
2 119507.00 130021.00 118226.00 129980.00 117969.00 129946.00
3 126391.00 123927.00 126213.00 123235.00 126179.00 123296.00
4 123079.00 127228.00 122598.00 127102.00 122657.00 127146.00
5 123474.00 126864.00 123273.00 126864.00 123233.00 126766.00

Table 17
Chute2, GAPPsub

% for test problem Bi6.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 3.52 0.35 2.07 0.35 1.70 0.35
2 2.34 0.39 1.28 0.36 1.07 0.34
3 0.55 1.23 0.41 0.68 0.39 0.73
4 0.82 0.46 0.43 0.37 0.47 0.40
5 0.78 0.57 0.62 0.57 0.58 0.49

Table 18
Chute2, |SU |, and Time SU (s) for test problem Bi6.1 and γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 6 16 26 81.16 (78.64) 84.79 (77.97) 91.44 (79.81)
2 4 9 13 182.12 (180.58) 215.77 (211.45) 197.74 (192.33)
3 3 5 8 37.59 (36.74) 41.65 (38.50) 42.82 (37.99)
4 2 3 6 42.39 (41.04) 41.65 (40.42) 44.57 (41.78)
5 2 5 7 44.07 (43.33) 41.28 (39.66) 39.82 (37.83)

Table 19
Chute2, upper bounds for test problem Bi9.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 110646.00 119365.00 109109.00 119365.00 109313.00 119365.00
2 111592.00 119218.00 111080.00 119124.00 110985.00 119105.00
3 118331.00 114263.00 118172.00 113760.00 118138.00 113655.00
4 115241.00 116795.00 115230.00 116781.00 115121.00 116732.00
5 115443.00 116518.00 115426.00 116271.00 115321.00 116233.00

γ = 10 to γ = 50, we observe an improvement in GPsub
(R(SL, SU , λ)) for all vectors λ

(at least one component improves).
For instance Bi9.1, when changing γ = 10 to γ = 30, we observe an improvement

in at least one component of GPsub
(R(SL, SU , λ)) for all vectors λ, and for λ Nos. 2–5,

both components of GPsub
(R(SL, SU , λ)) improve. When changing γ = 30 to γ = 50,



Providing Interval Representations of Pareto Optimal Outcomes 273

Table 20
Chute2, GAPPsub

% for test problem Bi9.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 5.58 0.74 4.25 0.74 4.43 0.74
2 3.92 1.23 3.48 1.15 3.40 1.13
3 1.73 2.94 1.59 2.51 1.57 2.42
4 2.11 1.51 2.10 1.50 2.01 1.46
5 1.78 1.58 1.77 1.38 1.68 1.34

Table 21
Chute2, |SU |, and Time SU (s) for test problem Bi9.1 and γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 11 31 52 439.96 (411.14) 515.48 (402.94) 665.55 (404.57)
2 10 27 44 482.23 (407.04) 678.38 (402.56) 765.19 (409.44)
3 8 20 32 443.50 (406.40) 534.97 (410.38) 667.23 (404.69)
4 5 15 23 424.95 (403.06) 465.13 (400.30) 484.92 (402.56)
5 5 13 20 432.90 (400.51) 485.67 (404.07) 512.03 (403.40)

Table 22
Chute2, upper bounds for test problem Three6.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 128872.00 131116.00 122259.00 128872.00 131116.00 120988.00 128872.00 131116.00 120434.00
2 125477.00 125196.00 121464.00 125483.00 125196.00 120230.00 125477.00 125196.00 119034.00
3 122652.00 131116.00 131738.00 122094.00 131116.00 131738.00 122334.00 131116.00 131738.00
4 122671.00 123772.00 125154.00 122242.00 123201.00 124765.00 122404.00 123097.00 124677.00
5 128872.00 119155.00 131738.00 128872.00 118229.00 131738.00 128872.00 117837.00 131738.00

Table 23
Chute2, GAPPsub

% for test problem Three6.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 7.95 1.91 28.07 7.95 1.91 27.31 7.95 1.91 26.98
2 1.05 1.32 4.53 1.06 1.32 3.55 1.05 1.32 2.58
3 26.23 2.92 7.80 25.89 2.92 7.80 26.04 2.92 7.80
4 1.37 1.81 1.27 1.03 1.36 0.97 1.16 1.27 0.90
5 10.28 9.24 1.75 10.28 8.53 1.75 10.28 8.23 1.75

Table 24
Chute2, |SU |, and Time SU (s) for test problem Three6.1 and γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 8 20 31 106.30 (104.24) 133.88 (121.32) 118.75 (102.00)
2 4 11 17 413.24 (408.25) 436.70 (409.23) 429.80 (401.94)
3 10 27 44 50.87 (47.43) 76.35 (61.08) 60.59 (41.18)
4 3 6 10 293.45 (289.56) 380.25 (365.56) 353.60 (319.88)
5 11 30 50 56.90 (51.22) 66.93 (51.58) 79.55 (50.46)
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Table 25
Chute2, upper bounds for test problem Three9.1 and γ ∈ {10, 30, 50}.

No. U(SU , λ)

γ = 10 γ = 30 γ = 50

1 115765.00 115804.00 113089.00 115250.00 115546.00 112742.00 115126.00 115335.00 112656.00
2 114092.00 113121.00 118122.00 113842.00 112477.00 117089.00 113861.00 112778.00 118122.00
3 116240.00 117966.00 112426.00 116229.00 117577.00 111977.00 116160.00 117657.00 111578.00
4 112893.00 116633.00 114061.00 112291.00 116382.00 113713.00 112177.00 116438.00 113665.00
5 119379.88 112286.00 118122.00 119379.88 111440.00 118122.00 119379.88 111242.00 118122.00

Table 26
Chute2, GAPPsub

% for test problem Three9.1 and γ ∈ {10, 30, 50}.

No. GAPPsub
%

γ = 10 γ = 30 γ = 50

1 3.36 3.40 3.36 2.93 3.19 3.06 2.82 3.01 2.99
2 3.36 8.14 3.06 3.14 7.61 2.21 3.16 7.86 3.06
3 4.90 3.03 4.50 4.89 2.71 4.12 4.83 2.78 3.78
4 6.87 2.31 2.84 6.37 2.10 2.54 6.27 2.15 2.50
5 5.75 100.00 4.09 5.75 100.00 4.09 5.75 100.00 4.09

Table 27
Chute2, |SU |, and Time SU (s) for test problem Three9.1 and γ ∈ {10, 30, 50}.

No. |SU | Time SU (s)

γ = 10 γ = 30 γ = 50 γ = 10 γ = 30 γ = 50

1 8 20 31 519.63 (420.77) 548.70 (400.11) 654.78 (411.71)
2 12 32 55 412.71 (403.34) 478.80 (409.01) 521.99 (401.65)
3 12 32 52 444.12 (400.92) 527.00 (404.25) 605.74 (405.75)
4 9 22 36 425.02 (400.11) 462.81 (405.86) 515.93 (405.72)
5 5 12 20 325.93 (323.31) 335.62 (324.23) 360.17 (330.95)

we observe an improvement in both components of GPsub
(R(SL, SU , λ)) for all vectors

λ but the first one, where the first component of GPsub
(R(SL, SU , λ)) deteriorates. When

changing γ = 10 to γ = 50, we observe an improvement in GPsub
(R(SL, SU , λ)) for all

vectors λ (at least one component improves).
For instances Bi6.1 and Bi9.1, the higher the value of parameter γ (higher sampling

density of the objective space), the more numerous the derived upper shells are. For in-
stance Bi6.1, average times over all vectors λ to derive the upper shell for γ = 10, γ = 30,
and γ = 50 are, respectively, 77.74, 85.03, and 83.28 seconds. These times are small frac-
tions of the assumed time limit T L = 1200 seconds. For instance Bi9.1, average times
over all vectors λ to derive the upper shell for γ = 10, γ = 30, and γ = 50 are, respec-
tively, 444.71, 535.92, and 618.98 seconds, and they are not small fractions of T L = 1200
seconds.

Let us check the results for tri-criteria instances. For instance Three6.1, when chang-
ing γ = 10 to γ = 30, we observe an improvement of GPsub

(R(SL, SU , λ)) in at least one
of its components for vectors λ Nos. 1, and 3–5. For λ No. 2, we observe an improvement
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in the third component of GPsub
(R(SL, SU , λ)), as well as a deterioration of the first one.

When changing γ = 30 to γ = 50, we observe an improvement of GPsub
(R(SL, SU , λ))

in at least one of its components for vectors λ Nos. 1–3, and 5. For λ No. 4, we observe an
improvement in the second and third components of GPsub

(R(SL, SU , λ)), as well as a de-
terioration of the first one. When changing γ = 10 to γ = 50, we observe an improvement
in the GPsub

(R(SL, SU , λ)) for all vectors λ (at least one component improves).
For instance Three9.1, when changing γ = 10 to γ = 30, we observe an improve-

ment in all components of GPsub
(R(SL, SU , λ)) for vectors λ Nos. 1–4, and for λ No. 5,

GPsub
(R(SL, SU , λ)) remains unchanged. When changing γ = 30 to γ = 50, we ob-

serve an improvement in all components of GPsub
(R(SL, SU , λ)) for vector λ No. 1. For

λ No. 2, we observe a deterioration of all components of GPsub
(R(SL, SU , λ)), and for λ

Nos. 3–4, we observe an improvement in two components of GPsub
(R(SL, SU , λ)), and a

deterioration of one of its components. When changing γ = 10 to γ = 50, we observe
an improvement in the GPsub

(R(SL, SU , λ)) for all vectors λ (at least one component im-
proves) but the last one.

For instances Three6.1 and Three9.1, the higher the value of parameter γ (higher sam-
pling density of the objective space), the more numerous the derived upper shells are. For
instance Three9.1, average times over all vectors λ to derive the upper shell for γ = 10,
γ = 30, and γ = 50 are, respectively, 425.48, 470.58, and 531.72 seconds, and they are
not small fractions of T L = 1200 seconds.

We checked that for all instances, for no vector λ, the MIP solver derived the optimal
solution to problem (2) within time limit T L + Time SU .

5.6. Comparing Chute2 with Chute1

When comparing Chute2 to Chute1, for all tested instances and all values of the γ param-
eter, we observe no deterioration of any component of GPsub

(R(SL, SU , λ)). We observe
the following.

For instance Bi6.1, for all values of γ , all components of GPsub
(R(SL, SU , λ)) improve

for all vectors λ.
For instance Bi9.1, for γ = 10, all components of GPsub

(R(SL, SU , λ)) improve for
four vectors λ, and one component improves for one vector λ. The same situation occurs
for γ = 30 and γ = 50.

For instance Three6.1, for γ = 10, at least one component of GPsub
(R(SL, SU , λ))

improves for all vectors λ, and for two ones all components improve. The same situation
occurs for γ = 30 and γ = 50.

For instance Three9.1, for all γ , at least one component of GPsub
(R(SL, SU , λ)) im-

proves for four vectors λ. All components of GPsub
(R(SL, SU , λ)) improve for γ = 10,

γ = 30, and γ = 50, respectively, for three, four, and three vectors λ. For all val-
ues of the γ parameter, for one vector λ there is no improvement of any component of
GPsub

(R(SL, SU , λ)).
Table 28 shows times of deriving upper shells averaged over all vectors λ for both

tested algorithms. We observe a significant increase in these times for Chute2 compared
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Table 28
Average times of deriving upper shells for Chute1

and Chute2.

γ
AVG Time SU (s) AVG Time SU (s)

Chute1 Chute2

Bi6.1
10 2.09 77.47 (76.07)
30 5.95 85.03 (81.60)
50 10.04 83.28 (77.95)

Bi9.1
10 4.02 444.71 (405.63)
30 12.72 535.92 (404.05)
50 21.05 618.98 (404.93)

Three6.1
10 4.04 184.15 (180.14)
30 7.98 218.82 (201.75)
50 19.50 208.46 (183.09)

Three9.1
10 44.72 425.48 (389.69)
30 172.96 470.58 (388.69)
50 263.05 531.72 (391.16)

to Chute1. It should be recalled here that Chute2 uses the Suboptimal algorithm, for which
the stopping condition depends on the assumed for this algorithm time limit T S = 400
seconds. For Chute2, the average running time of the Suboptimal algorithm is given in
parentheses. It can be seen that in this case a significant fraction of its running time is
that of the Subotimal algorithm. In addition, for all γ values, the average running times
of Chute2 are larger for Bi9.1 than for Three9.1, which is theoretically a harder problem
to solve because it has one more objective function. The implication is that for Bi9.1, for
all five lambda vectors, the Subotimal algorithm terminated due to the T S limit, while
for Three9.1 – for four lambda vectors. This affected the average times. For details, see
Tables 21 and 27.

5.7. Discussion

For all test instances of the MOMIP problem, with time limits set, algorithm Chute2 de-
termines tighter upper bounds measured with the help of GPsub

(R(SL, SU , λ)) than algo-
rithm Chute1 in most cases. Yet, this comes at the expense of a significant increase in the
computation time for deriving upper shells. So, we can observe a trade-off between the
quality of the interval representation of the implicit Pareto optimal outcome for a given
λ and computation time. In both the algorithms, for a given λ, tightness of upper bounds
can be controlled by changing values of parameter γ . However, changing the γ value
from lower to higher does not always guarantee an improvement in at least one compo-
nent of GPsub

(R(SL, SU , λ)). It may even happen that some of its components deteriorate.
However, in all tested instances, when changing from the lowest to the highest value of pa-
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rameter γ , no deterioration of any component of GPsub
(R(SL, SU , λ)) has been recorded

for all vectors λ.
The deterioration of some of the components of GPsub

(R(SL, SU , λ)) after increasing
γ may be due to the fact that increasing the value of γ does not preserve the elements of the
set SU obtained for smaller γ , but generates a new, denser set SU , yet different in general.
These new SU elements may not be able to generate always better, but in some cases
generate even slightly worse vectors of upper bounds than those obtained for smaller γ .
During decision-making, one can store all the derived upper shells and use their elements
in the Chute algorithm as helpers to determine tighter upper bounds for a given λ when
the DM asks for them.

Parameters affecting the operation of algorithms Chute1 and Chute2 (in particular,
time limits for optimization, as well as parameter γ ) were arbitrarily set for the numerical
experiments conducted on the selected test instances. We can not recommend the adopted
parameter values (e.g. T L = 1200 seconds, T S = 400 seconds) for other instances of
the MOMIP problem. The values of these parameters might depend on the problem to be
solved, the available computational resources and the conditions of the decision-making
process itself.

As Chute1 and Chute2 use a MIP solver as a black box, it is difficult to provide their
theoretical performance, especially since they can work with any instance of the MOMIP
problem that meets the very generic assumptions made in this work. During their opera-
tion, multiple instances of the single-objective MIP problem are solved, which are parame-
terized by λ in the case of Chute1 and (λ,μ) in the case of Chute2. Moreover, Chute2 uses
the Suboptimal algorithm as a black box, and it is difficult to predict which termination
condition of Suboptimal will occur as it runs for different instances of the single-objective
MIP problem parametrized by λ.

The Chute algorithm returns not only the interval representation but also lower and
upper shells. Let us assume that for a given set � := {λ1, λ2, λ3} the algorithm de-
rives upper shells SU(λ1), SU(λ2), and SU(λ3). SU := ⊕̂3

i=1SU(λi) (where “⊕̂” is an
operator of adding two sets and removing dominating elements) is an upper shell, and
SL := ⊕3

i=1{INCλi } (where “⊕” is an operator of adding two sets and removing dom-
inated elements) is a lower shell. One can use SL and SU to calculate interval represen-
tations of implicit Pareto optimal outcomes designated by λ /∈ �. For test problem Bi6.1
and γ := 50, images of the lower and upper shells obtained this way (for five considered
vectors λ) are shown in Fig. 4. These images form a finite two-sided approximation of the
Pareto front. The approximation does not fully cover the entire Pareto front, as it was de-
rived to determine interval representations of implicit Pareto optimal outcomes designated
by just the selected five vectors λ.

We can say that we obtained the two-sided approximation of the Pareto front, shaped
by the DM’s preferences expressed with the help of vectors λ.

Although we aim not to derive approximations of the entire Pareto front (as in multi-
objective branch and bound, see, e.g. Przybylski and Gandibleux, 2017; Forget et al., 2022)
for k = 2, 3, with a fairly large set of evenly distributed vectors λ, one would imagine the
corridor in which the Pareto front is located.
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Fig. 4. A finite two-sided approximation of the Pareto front: �, ◦ – images of lower shell SL and upper shell SU

elements in the objective space, respectively, • – y∗.

6. Limitations of the Chute Algorithm and Its Possible Enhancements

In this section, we discuss the limitations and possible enhancements of the Chute algo-
rithm to better adapt it to the realities of decision-making and the budgeting of calcula-
tions.

In the Chute algorithm, we have assumed that for all probing vectors λ′ in the FindUp-
perShell algorithm, the same vector of multipliers μ is used. The Chute1 version inherently
uses a single vector μ. Yet, for the Chute2 version, it is just a heuristic assumption that
vector μ, set with the help of the Suboptimal algorithm for a given vector λ in line 4 of the
Chute algorithm, provides a tight lower bound on values of the objective function of prob-
lem (2) for probing vectors λ′ close to λ. However, this need not be the case, especially for
vectors λ′, which are significantly different from λ (i.e. when they indicate a significantly
different search direction in the objective space).

However, one can imagine version Chute3 of the Chute algorithm in which the de-
termination of vector μ takes place in the FindUpperShell algorithm for each probing λ′
considered in it (or, e.g. for λ′ not close, in a sense, to a given λ). This, at the same time,
would require adopting a reasonable time limit on optimization in the Suboptimal algo-
rithm, as we expect many probing vectors λ′ in the FindUpperShell algorithm. This time
limit could be, e.g. a fraction of time T S adopted in Chute2. Since the number of probing
vectors λ′ is not a priori known, this time limit would have to be determined by some
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heuristic rule. It is not desirable that excessive time to determine all vectors μ be a barrier
to the applicability of the proposed method.

In a real decision-making process using the Chute algorithm, it is possible to calculate
a more adjusted value of parameter γ for a new vector λ based on the properties of the
lower and upper shells obtained for previous vectors λ, and with which this algorithm
was called. Let us look, for example, at Table 18. For λ1 = (0.055, 0.945), |SU | = 26,
Time SU = 91.44 seconds, but for λ5 = (0.439, 0.561), |SU | = 7, Time SU = 39.82
seconds. To have the time of deriving an upper shell for some λ′ close to λ1 comparable to
the time for λ5, it could be possible to lower the value of parameter γ from 50 to, e.g. 20.
Such an overarching mechanism (with a set of rules based on statistics collected during
the decision-making process) for controlling the behaviour of the Chute algorithm could
be useful when computation time is an important factor.

In the proposed method of deriving upper shells (algorithm FindUpperShell), there is
no single parameter to limit optimization time for getting theirs. Yet, such a time limit
can be incorporated relatively easily as an additional stop condition in FindUpperShell.
More generally, it could be even desirable to introduce in the Chute algorithm a time limit
for determining the interval representation of the implicit Pareto optimal outcome for a
given vector λ. The DM would give, for example, in addition to λ and T L, time limit
T I (e.g. T L = 1200 seconds, T I = 500 seconds). Then the Chute algorithm would
have time limit T I

k
to derive an upper shell for calculating a single component of the

interval representation of implicit Pareto optimal outcome designated by λ. Determination
of suboptimal vectors μ in Chute2 and Chute3 would, of course, have to be within some
fraction of T I .

Based on the above alone, one can imagine many schemes for budgeting calculations,
leading to providing interval representations in a decision-making system based on the
Chute algorithm.

In our approach, to find elements of the upper shell we solve to optimality the Cheby-
shev scalarization of the surrogate relaxation of the MOMIP problem. For instances of
the MOMIP problem with a large number of constraints (e.g. 1000), even with a subopti-
mal vector of multipliers μ provided by the Suboptimal algorithm (that is, with a single
constraint that mimics the original set of constraints of the MOMIP problem), the Find-
UpperShell procedure may not derive elements x of the upper shell that fl(x) < y∗

l ,
l = 1, . . . , k. In this case, the upper bounds on components of Pareto optimal outcome
designated by λ are not better than components of y∗

l . That is, images of elements of
the upper shell in the objective space are very far from the Pareto front of the MOMIP
problem, and do not provide better upper bounds than the components of y∗.

To find (sub)optimal values of multipliers μp, other algorithms can be used (see, e.g.
Sikorski, 1986). To find elements of upper shells, sophisticated combined relaxation tech-
niques for MIP problems, e.g. Lagrangean/surrogate heuristics (see Narciso and Lorena,
1999) can also be applied. In the current work, we consider the most general formula-
tion of the MOMIP problem, but to find those elements, problem-specific techniques may
help. The disadvantage of the proposed generic scheme Chute is that it does not take into
account the specifics of a given instance of the MOMIP problem. However, by showing
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its Chute2 modification and pointing to the Chute3 option, it has been shown how this
scheme can be modified.

Within the generic framework presented, other methods of deriving upper shells in
the FindUpperShell procedure can also be applied, e.g. a method shown in Miroforidis
(2021).

7. Final Remarks

It has been shown how to algorithmically derive lower and upper shells to the MOMIP
problem (for any k > 1) to get the interval representation of the Pareto optimal outcome
designated by vector λ. On selected examples, it has been shown that with the help of the
proposed method, one can find such interval representations for randomly selected vectors
λ where there is a time limit for a MIP solver on deriving a single Pareto optimal solution.

We conducted some preliminary experiments with the Chute algorithm on instances
of the MOMKP with four objective functions. However, due to the mechanism adopted
in the FindUpperShell algorithm for changing the probing λ vectors, the results achieved
were not satisfactory.

In our future work, we want to improve the method of populating upper shells (in
quest of finding their elements that can provide upper bounds) by changing the scheme
of probing the objective space. We want it to determine upper shells with the desired
properties for four and more objective functions. We also want to apply the presented
generic approach to other instances of the MOMIP problem, especially ones connected to
real-life problems. This would help verify the practicality of the proposed general method
and identify those elements that could be tailored for specific instances of this problem.
Possible modifications to the proposed method are indicated in Section 6. These are also
worth considering in further work.
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