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Abstract. The interval-valued intuitionistic fuzzy sets (IVIFSs), based on the intuitionistic fuzzy
sets (IFSs), combine the classical decision method and its research and application is attracting at-
tention. After a comparative analysis, it becomes clear that multiple classical methods with IVIFSs’
information have been applied to many practical issues. In this paper, we extended the classical
EDAS method based on the Cumulative Prospect Theory (CPT) considering the decision experts
(DEs)’ psychological factors under IVIFSs. Taking the fuzzy and uncertain character of the IVIFSs
and the psychological preference into consideration, an original EDAS method, based on the CPT
under IVIFSs (IVIF-CPT-EDAS) method, is created for multiple-attribute group decision making
(MAGDM) issues. Meanwhile, the information entropy method is used to evaluate the attribute
weight. Finally, a numerical example for Green Technology Venture Capital (GTVC) project selec-
tion is given, some comparisons are used to illustrate the advantages of the IVIF-CPT-EDAS method
and a sensitivity analysis is applied to prove the effectiveness and stability of this new method.
Key words: MAGDM, IVIFSs, EDAS, CPT, entropy.

1. Introduction

During the long history of humanity, conflicts between environmental issues and eco-
nomic growth have always been one of the key issues (Yang et al., 2022) discussed by var-
ious researchers. Especially after the Industrial Revolution, while human society greatly
improved production efficiency and promoted economic development, the environmental
pollution caused by industrial production and manufacturing also constantly threatened
human health and survival. Therefore, in order to ensure stable economic development,
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we should seek a more long-term and sustainable development path. Specifically, the
GTVC (Dong et al., 2021; Dhayal et al., 2023), created by integrating the concept of
green development into the traditional financial system, is in line with the demand. It is an
emerging project technology related to protecting and improving the environment. In the
processes of GTVC, project screening and evaluation are important. However, project
evaluation often involves many qualitative indicators, coupled with the cognitive limi-
tations of DEs and the complexity of actual decision making (DM) scenarios, which may
lead to significant ambiguity in input information.

On the other hand, multiple criteria decision-making (MCDM) is usually classified
(Hashemi-Tabatabaei et al., 2019; Keshavarz-Ghorabaee, 2021; Keshavarz-Ghorabaee et
al., 2018, 2021, 2016) into two categories: multiple attribute decision-making (MADM)
(Ning et al., 2022; Zhang et al., 2021) and multiple objective decision-making (MODM),
based on whether the DM scheme is finite or infinite. MODM refers to the DM problem
that only considers two or more objectives simultaneously. MADM, also known as finite
alternative MODM, refers to the decision problem of selecting the optimal alternative so-
lution considering multiple attributes. MAGDM is an important component of modern
decision science, as it integrates the advantages of MADM and group DM (GDM). Cur-
rently, the relative theories and methods on MAGDM (Y. Li et al., 2021; Ning et al., 2023;
Zhang et al., 2023) are widely applied in fields such as investment risk and economic man-
agement. Moreover, MAGDM technology can utilize a systematic and logical approach to
collect and process multidimensional fuzzy evaluation information to determine the best
alternative.

That being the case, it is necessary to design a suitable and advanced MAGDM model
in a fuzzy environment to select the optimal GTVC project. To enhance the readability of
the proposed research work, we have sorted out some important abbreviations, as shown
in Table 1.

1.1. Motivations and Contributions for Proposed Research

The motivations of this study are given below:

(1) With the increasing complexity of DM problems and the ambiguity of informative
data, DEs find it is difficult to accurately quantify their evaluations using single nu-
merals, but their preferences can be expressed more completely in natural language.
Linguistic IVIFS theory is one of the most effective generalizations in FS theory,
which can describe the assessment information of DEs in even more detail.

(2) Compared with other evaluation methods, the EDAS method is a highly effective tool
to execute classification and decision for contradictory attributes in MAGDM. Classi-
cal EDAS algorithms assume that all decision makers are perfectly rational, but people
have different views on the same level of risks and benefits in practical environments.
They are more conservative when facing equal risks than when facing returns. There-
fore, it is necessary to develop a technology that simulates the real DM environment
to model IVIF information and evaluate the weights of attributes. From this perspec-
tive, it is necessary to integrate the CPT, which takes the DEs’ risk preference into
consideration, and the IVIF-EDAS method.
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Table 1
Description of abbreviations.

Abbreviations Description

DE Decision expert
DM Decision making
FS Fuzzy set
IFS Intuitionistic fuzzy set
IVIFS Interval valued intuitionistic fuzzy set
IVIFN Interval valued intuitionistic fuzzy number
IVIFWA Interval valued intuitionistic fuzzy weighted averaging
IVIFWG Interval valued intuitionistic fuzzy geometric
SF Score function
AF Accuracy function
CPT Cumulative prospect theory
GTVC Green technology venture capital
PDA(NDA) Positive (Negative) distance from average
MAGDM Multiple attribute group decision making
CRITIC CRiteria importance through intercriteria correlation
EDAS Evaluation based on distance from average solution
TOPSIS Technique for order preference by similarity to ideal solution
TODIM An acronym in Portuguese for interactive and multicriteria decision making
MABAC Muti-attributive border approximation area comparison

(3) Due to the fact that the entropy method determines attribute weights based on the
degree of the indicator confusion, the higher the degree of indicator information con-
fusion, the greater the entropy value, and the smaller the assigned weights. Combined
with the advantages of the EDAS method in solving DM problems with conflicting
attributes, it is necessary to extend the information entropy method to handle qualita-
tive information in the IVIF environment to guarantee the stability of the entire DM
system.

(4) As a key research issue in the MAGDM field, the selection of high-quality GTVC
projects has a great significance for environmental protection and sustainable eco-
nomic development. In this regard, considering the advantages of the EDAS method,
the CPT’s characteristics and the IVIFSs which may contain more information, the
aim of this paper is to extend the EDAS method based on CPT for MAGDM under
IVIFSs and apply it to the GTVC project selection.

The contributions of this paper are as follows:

(1) The integration of CPT and the EDAS method in IVIFSs, named as the IVIF-CPT-
EDAS method, is discussed to determine which GTVC project is suitable. The at-
tribute weights are determined by using IVIF-entropy method and alternatives are
ranked by using CPT-EDAS method in a IVIF context. Therefore, our proposed
method combines DEs evaluation values which makes it more profitable to use and
the decision results more precise.

(2) The IVIF-CPT-EDAS method, which considers not only the relatively simple and
reasonable classical method, but also the psychological state of DEs, which is more
realistic, has been constructed.
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Fig. 1. Full text framework diagram.

(3) We implement the constructed approach to a numerical example for GTVC project
selection to demonstrate the applicability of our proposed methodology.

(4) We compare the constructed approach with the existing methods to illustrate the ad-
vantages of the IVIF-CPT-EDAS method. Furthermore, comparative analysis and sen-
sitivity analysis are used to illustrate the effectiveness and authenticity of the devel-
oped approach.

In order to do so, the overall structure of the article is as follows: the basic knowledge
of IVIFSs is briefly introduced in Section 2, then the IVIF-CPT-EDAS method is con-
structed in Section 3. Section 4 gives a numerical study for GTVC project selection, and
the corresponding parameters’ sensitivity, and in Section 5, a comparison analysis is made
to prove its effectiveness and stability. In Section 6, conclusions are made to summarize
this paper. Figure 1 represents the full framework of our study.

1.2. Literature Review

In most practical decisions, the DEs’ evaluation of an index cannot be simply expressed by
real numbers (Ye, 2017; Liu and You, 2019; Gao et al., 2019a, 2019b). Therefore, Zadeh
(1965) introduced fuzzy sets (FSs), and later this theory and its extensions have been
applied to many fields (Zeng et al., 2018; Chen, 2018). An extension of the FSs, such as
the IFSs (Atanassov, 1986), is the classical fuzzy set, and due to the fact that the IFSs are
in the range of real numbers, the IVIFSs can extend the IFSs with the interval numbers to
fully express different conditions of the DM. Atanassov and Gargov (1989) proposed the
IVIFSs, and the corresponding operators (Atanassov, 1994), and with some basic research
made, the corresponding innovation of IVIFSs has been proposed. Grzegorzewski (2004)
proposed a new distance assessment based on Hausdorff metric which is the well-known
Hamming distance. Based on some operational laws of IVIFSs, TOPSIS method (Lin et
al., 2019; Yue and Zhang, 2020; Zulqarnain et al., 2021; Chen, 2015), Grey Relational



An Extended EDAS Approach Based on Cumulative Prospect Theory 425

Analysis method (Fankang et al., 2020; Hongjiu et al., 2019; Wei and Lan, 2008; Zhang
and Wang, 2022), VIKOR method (Dammak et al., 2020; Salimian et al., 2022a; Wu et
al., 2019), TODIM method (Krohling and Pacheco, 2014; Lin et al., 2020; Zhao et al.,
2021; Zindani et al., 2021), MABAC method (Keshavarz-Ghorabaee et al., 2015; Liu et
al., 2019; Mahmoudi et al., 2019; Salimian et al., 2022b), and other methods have been
applied to the IVIFSs (Kumar and Chen, 2022; Li et al., 2012, 2021; Lee, 2009; Ye et al.,
2021).

The EDAS method (Huang and Lin, 2021; Karunanithi et al., 2015; Keshavarz-
Ghorabaee et al., 2015) assesses the alternatives by the positive (negative) distance from
average (PDA and NDA). In other words, the higher value of the PDA or the lower value
of the NDA means a more optimal alternative. Among numerous evaluation methods,
EDAS not only has much easier formulas, but also has unique advantages in resolving con-
flicts between economic development and green technology evaluation elements, making
it more efficient and accurate than others. On the one hand, the EDAS method has been
applied to many fuzzy sets (Agrawal et al., 2023; Ecer et al., 2022; Zolfani et al., 2021),
for instance, IFSs (Kahraman et al., 2017), interval-valued fuzzy soft sets (Peng et al.,
2017), hesitant fuzzy linguistic sets (Feng et al., 2018), interval-valued neutronsophic
sets (Karasan and Kahraman, 2018), and so on. On the other hand, it can be seen that the
EDAS method has good adaptability in the DM fields. Dinghong and Wenhua (2021) ap-
plied the EDAS method to the selection of smart zero waste cities, and Mishra et al. (2020)
applied the EDAS method to the selection of medical waste treatment technologies. Al-
though Li and Wang (2020) extended the EDAS method to IVIFSs, this model cannot take
the risk reference of DEs into consideration. Due to the fact that most methods are based
on the utility theory which considers that DEs are entirely rational, the combination of
CPT (Tversky and Kahneman, 1992) and the classical EDAS method are now applied to
some FSs, such as probabilistic hesitant fuzzy sets (Liao et al., 2023) and picture fuzzy
sets (Jiang et al., 2022). We discussed some important previously proposed models and
methods in Table 2 to highlight the superiority of our study.

1.3. Research Gaps

1. According to the literature review, it is evident that while some scholars have suc-
cessfully utilized the CPT-EDAS method in various fuzzy environments (Zhang et al.,
2022), its application under the IVIF environment is inadequate. Additionally, there are
still deficiencies in certain existing methods for enhancing EDAS that require further
investigation to better meet vague and variable DM environments.

2. In the entire process of GTVC, project screening and evaluation are crucial steps. How-
ever, since GTVC primarily focuses on emerging technology projects related to envi-
ronmental protection and improvement, the evaluation of such projects often involves
numerous qualitative indicators and cognitive limitations, which can also cause signifi-
cant ambiguity. To address this issue, it is important to construct a scientific evaluation
index system for green finance risk capital projects and establish an appropriate eval-
uation model. This will bridge the gap and help venture investors make informed and
optimal investment decisions related to these projects.
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Table 2
Characteristic table of different approaches.

Year Approach Linguistic
data

Fuzzy information form Application

2012 IVIF-TOPSIS
(Izadikhah, 2012)

✓ Intuitionistic fuzzy number Supplier selection

2018 EHFLTS-EDAS
(Feng et al., 2018)

✓ Hesitant fuzzy linguistic term set Company project selection

2019 IVIF-VIKOR
(Wu et al., 2019)

✕ Interval-valued intuitionistic
fuzzy set

Financing risk assessment

2020 IVIF-EDAS
(Li and Wang, 2020)

✕ Intuitionistic fuzzy number Computer network system
assessment

2022 F-SECA (Keshavarz-
Ghorabaee et al.,
2022)

✓ Triangular fuzzy numbers E-waste scenario evaluation

2022 F-SBWM
(Amiri et al., 2023)

✓ Triangular fuzzy numbers Warehouse location and medical
selection

2022 PDHFWEPGMSM
(Ning et al., 2022)

✕ Probabilistic dual hesitant fuzzy
set

Sustainable supplier selection

2022 IVIF-GRA (Zhang
and Wang, 2022)

✕ Interval-valued intuitionistic
fuzzy set

The service quality evaluation of
agricultural e-commerce

2023 SF-CPT-TODIM
(Zhang et al., 2023)

✕ Spherical fuzzy set Commercial insurance selection

2023 PHF-CPT-EDAS
(Liao et al., 2023)

✕ Probabilistic hesitant fuzzy set Commercial vehicles and green
supplier selection

Current study ✓ Interval-valued intuitionistic
fuzzy set

Green technology venture
capital selection

3. After reviewing the existing research on GTVC projects, we can state that there is a lack
of emphasis on the psychological well-being. However, the psychological state of DM
is an inevitable objective presence in influencing their investment decisions. In order
to address this gap, the improved EDAS algorithm has been applied to GTVC, offering
new methods and tools for venture capitalists to effectively screen green investment
projects.

Overall, it is meaningful to use the IVIF-CPT-EDAS method for the GTVC project
selection. This study aims to promote the future development of the venture capital field,
provide solutions to guide practical cases, and also provide references for research on DM
methods and theories.

2. Preliminary Knowledge

In order to better understand the content of this article, in this section, we will review some
basic concepts of FSs and aggregation operators of IVIFSs.

Definition 1 (Zadeh, 1965). Set T as a finitely non-empty set, and the FSs on T is de-
scribed as follows:

FS = {〈t, ηIFS(t)〉
∣∣ t ∈ T

}
, (1)
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where ηIFS(t) denotes the degree of membership of FSs, and ηIFS : T → [0, 1] is a single
real value.

Definition 2 (Atanassov, 1986). Set T as a finitely non-empty set, and the IFSs on T is
described as follows:

IFS = {〈t, ηIFS(t), νIFS(t)〉
∣∣ t ∈ T

}
, (2)

where ηIFS(t) and νIFS(t) respectively represent the degree of membership and non-
membership of IFSs which are denoted as follows: 0 � ηIFS(t) + νIFS(t) � 1,

ηIFS(t) : T → [0, 1], t ∈ T → ηIFS(t) ∈ [0, 1], (3)
νIFS(t) : T → [0, 1], t ∈ T → νIFS(t) ∈ [0, 1], (4)
0 � ηIFS(t) + νIFS(t) � 1. (5)

Moreover, the hesitation degree of IFSs is denoted as follows:

πIFS(t) = 1 − ηIFS(t) − νIFS(t), (6)

where ∀t ∈ T , 0 � πIFS(t) � 1.

Definition 3 (Atanassov and Gargov, 1989). Set T as a finitely non-empty set, and the
IVIFSs on T is described as follows:

M̃N = {〈t, η̃M̃N(t), ν̃M̃N(t)〉 ∣∣ t ∈ T
}
, (7)

where η̃M̃N(t) and ν̃M̃N(t) respectively represent the interval of the degree of membership
and non-membership which are shown as follows:

η̃M̃N(t) : t ∈ T → η̃M̃N(t) = [ZM(t), UM(t)
] ⊆ [0, 1], (8)

ν̃M̃N(t) : t ∈ T → ν̃M̃N(t) = [ZN(t), UN(t)
] ⊆ [0, 1], (9)

0 � UM(t) + UN(t) � 1. (10)

Similarly, the interval of the hesitation degree of IVIFSs is described as follows:

π̃M̃N(t) = [1 − UM(t) + UN(t), 1 − ZM(t) − ZN(t)
]
, (11)

where ∀t ∈ T , 0 � π̃M̃N(t) � 1.
Usually, the interval-valued intuitionistic fuzzy number (IVIFN) (Xu and Chen, 2007)

of IVIFSs in Eq. (7) is shown in Eq. (12):

Ñ = (η̃M̃N(t), ν̃M̃N(t)
) = ([ZM(t), UM(t)

]
,
[
ZN(t), UN(t)

])
. (12)
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The Eq. (12) can be abbreviated in Eq. (13):

Ñ = ([ZM, UM], [ZN, UN]). (13)

Especially when ZM = UM, ZN = UN, IVIFSs can be degenerated into IFSs.
The maximum IVIFN is Ñmax = ([1, 1], [0, 0]), and the minimum IVIFN is Ñmin =
([0, 0], [1, 1]).

Definition 4 (Xu, 2007). Suppose any three IVIFNs Ñi = ([ZMi , UMi], [ZNi , UNi]),
i = 1, 2, 3 and the calculation rules of IVIFNs are defined as follows:

(1) (Ñ1)
c = ([ZN1, UN1], [ZM1, UM1]

)
;

(2) Ñ1 ⊕ Ñ2 =
( [ZM1 + ZM2 − ZM1ZM2, UM1 + UM2 − UM1UM2],

[ZN1ZN2, UN1UN2]
)

;

(3) Ñ1 ⊗ Ñ2 =
( [ZM1ZM2, UM1UM2],

[ZN1 + ZN2 − ZN1ZN2, UN1 + UN2 − UN1UN2]
)

;

(4) Ñ1 ∪ Ñ2 =
( [max{ZM1, ZM2}, max{UM1, UM2}],

[min{ZN1, ZN2}, min{UN1, UN2}]
)

;

(5) Ñ1 ∩ Ñ2 =
( [min{ZM1, ZM2}, min{UM1, UM2}],

[max{ZN1, ZN2}, max{UN1, UN2}]
)

;

(6) κÑ1 = ([1 − (1 − ZM1)
κ , 1 − (1 − UM1)

κ
]
,
[
ZNκ

1 , UNκ
1

])
, κ > 0;

(8) Ñκ
1 = ([ZMκ

1 , UMκ
1

]
,
[
1 − (1 − ZN1)

κ , 1 − (1 − UN1)
κ
])

, κ > 0.

Furthermore, the above algorithms also satisfy the following operation laws (Atanassov,
1994):

i. Commutative laws:

a) Ñ1 ⊕ Ñ2 = Ñ2 ⊕ Ñ1;
b) Ñ1 ⊗ Ñ2 = Ñ2 ⊗ Ñ1.

ii. Associative laws:

a) (Ñ1 ⊕ Ñ2) ⊕ Ñ3 = Ñ1 ⊕ (Ñ2 ⊕ Ñ3);
b) (Ñ1 ⊗ Ñ2) ⊗ Ñ3 = Ñ1 ⊗ (Ñ2 ⊗ Ñ3).

iii. Distributive laws:

a) κ(Ñ1 ⊕ Ñ2) = κÑ1 ⊕ κÑ2;
b) κ1Ñ1 ⊕ κ2Ñ1 = (κ1 + κ2)Ñ1.

iv. Exponential operation laws:

a) (Ñ1 ⊗ Ñ2)
κ = Ñκ

1 ⊗ Ñκ
2 ;

b) Ñ
κ1
1 ⊗ Ñ

κ2
1 = Ñ

(κ1+κ2)
1 ,

where κ, κ1, κ2 � 0.
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Definition 5 (Wang and Chen, 2018). Let Ñ = ([ZM, UM], [ZN, UN]) be IVIFN, and
the score functions SF(Ñ) and AF(Ñ) of IVIFN are defined as follows:

SF(Ñ) =
(

(ZM + UM)(ZM + UN) − (ZN + UN)(ZM + UN)

2

)
, (14)

where SF(Ñ) ∈ [−1, 1], if the value of SF(Ñ) is greater, the corresponding IVIFN is
larger.

AF(Ñ) = (1 − ZM + UM)(1 − ZM − ZN) + (1 − ZN + UN)(1 − UM − UN)

2
,

(15)

where AF(Ñ) ∈ [0, 1], if the value of AF(Ñ) is greater, the corresponding IVIFN is larger.

Example 1. If Ã = ([0.593, 0.638], [0.126, 0.243]), B̃ = ([0.553, 0.658], [0.100, 0.266]),
according to Wang and Chen (2017), the score function cannot compare these two IVIFs,
then it can be calculated that SFw(Ã) = SFw(B̃) = 0.687. Nevertheless, the two IVIFs
can be calculated as SF(Ã) = 0.280 and SF(B̃) = 0.226 using the formula in Definition 5,
which can overcome the shortcomings of the score function in Wang and Chen (2017) and
is of good quality.

Definition 6 (Wang and Chen, 2018). According to Definition 4, suppose any two IV-
IFNs Ñ1 = ([ZM1, UM1], [ZN1, UN1]) and Ñ2 = ([ZM2, UM2], [ZN2, UN2]), and the
comparison of these two IVIFNs is described as follows:

If SF(Ñ1) > SF(Ñ2), then Ñ1 > Ñ2;
If SF(Ñ1) < SF(Ñ2), then Ñ1 < Ñ2.
If SF(Ñ1) = SF(Ñ2), then it can be divided into the following three cases:

a) If AF(Ñ1) < AF(Ñ2), then Ñ1 < Ñ2;
b) If AF(Ñ1) > AF(Ñ2), then Ñ1 > Ñ2;
c) If AF(Ñ1) = AF(Ñ2), then Ñ1 = Ñ2.

Definition 7 (Xu and Chen, 2007). Let a set of n-dimensional IVIFNs Ñm =
([ZMm, UMm], [ZNm, UNm]), m = 1, 2, . . . , n. According to Definition 3, the IVIF
weighted average operator (IVIFWA) is defined as follows:

IVIFWAϑ(Ñ1, Ñ2, . . . , Ñn) =
n∑

m=1

ϑmÑm

=
([

1 −
n∏

k=1

(1 − ZMm)ϑm, 1 −
n∏

m=1

(1 − UMm)ϑm

]
,

[ n∏
m=1

ZNϑm
m ,

n∏
m=1

UNϑm
m

])
,

(16)
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where ϑ = (ϑ1, ϑ2, . . . , ϑn)
T is the weighting vector of Ñm, and ∀ϑm ∈ [0, 1],∑n

m=1 ϑm = 1.
Especially when ϑ = (1/n, 1/n, . . . , 1/n)T , IVIFWA operators degenerate into IVIF

average operators (IVIFA).

Definition 7 (Xu, 2007). Let a set of n-dimensional IVIFNs Ñm = ([ZMm, UMm], [ZNm,

UNm]), m = 1, 2, . . . , n. According to Definition 3, IVIF weighted geometric operator
(IVIFWG) can be defined as follows:

IVIFWGϑ(Ñ1, Ñ2, . . . , Ñn) =
n∏

m=1

(Ñm)ϑm

=
([ n∏

m=1

ZMϑm
m ,

n∏
m=1

UMϑm
m

]
,

[
1 −

n∏
m=1

(1 − ZNm)ϑm, 1 −
n∏

m=1

(1 − UNm)ϑm

])
,

(17)

where ϑ = (ϑ1, ϑ2, . . . , ϑn)
T is the weighting vector of Ñm, and ∀ϑm ∈ [0, 1],∑n

m=1 ϑm = 1.
Especially, when ϑ = (1/n, 1/n, . . . , 1/n)T , IVIFWG operators degenerate into IVIF

geometric operators (IVIFG).

Definition 8 (Grzegorzewski, 2004; Xu and Chen, 2007). Suppose two IVIFNs Ñ1 =
([ZM1, UM1], [ZN1, UN1]) and Ñ2 = ([ZM2, UM2], [ZN2, UN2]), then the hybrid dis-
tance of Hamming distance and Hausdorff distance is defined as follows:

DM(Ñ1, Ñ2) = 1

4

( |ZM1 − ZM2| + |UM1 − UM2|
+ |ZN1 − ZN2| + |UN1 − UN2|

)
+ 1

2
max

{ |ZM1 − ZM2|, |UM1 − UM2|,
|ZN1 − ZN2|, |UN1 − UN2|

}
. (18)

3. The Extended EDAS Method Based on CPT with IVIFSs

Keshavarz-Ghorabaee et al. (2015) proposed a new evaluation approach named EDAS
method which is based on the average distance between solutions in 2015. In this method,
the average scheme of alternative schemes under all attributes is selected as the reference
point, and then the positive and negative distances between each scheme and the average
scheme are calculated respectively. Finally, the optimal scheme is selected by synthesizing
the positive and negative distances. In this section, the influence of the DEs’ risk attitude on
the decision result is considered in the classical EDAS method, also the IVIFNs are used
to represent the evaluation value of the alternative attributes when the attribute weights are
completely unknown. Therefore, the following is a description of our proposed method to
solve the MAGDM problem in IVIF environment.
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We assume that the set of decision-makers is HD = {HD1, HD2, . . . , HDe}, as well as
the weighting vector of these e decision-makers is ν = (ν1, ν2, . . . , νe)

T and satisfies the
condition that ∀νl ∈ [0, 1],∑e

l=1 νl = 1. Simultaneously, the set of alternatives is HL =
{HL1, HL2, . . . , HLn} and the set of attributes is HT = {HT1, HT2, . . . , HTk}. Therefore,
the assessment value of the r − th alternative under the s − th attribute by l − th expert
is denoted by IVIFN: ̃(l)

rs = ([ZM(l)
rs , UM(l)

rs ], [ZN(l)
rs , UN(l)

rs ]), where [ZM(l)
rs , UM(l)

rs ] ⊂
[0, 1] and [ZN(l)

rs , UN(l)
rs ] ⊂ [0, 1], (r = 1, 2, . . . , n; s = 1, 2, . . . , k; l = 1, 2, . . . , e)

denote the membership and non-membership degree interval of the l-th decision-maker.
As previously mentioned, the IVIF-MAGDM matrices (19) are constructed by n × k

IVIF evaluation values:

R(l) = [̃(l)
rs ]n×k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

̃(l)
11 ̃(l)

12 · · · ̃(l)
1s · · · ̃(l)

1k

̃(l)
21 ̃(l)

22 · · · ̃(l)
2s · · · ̃(l)

2k
...

...
. . .

...
. . .

...

̃(l)
r1 ̃(l)

r2 · · · ̃(l)
rs · · · ̃(l)

rk
...

...
. . .

...
. . .

...

̃(l)
n1 ̃(l)

n2 · · · ̃(l)
ns · · · ̃(l)

nk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (19)

r = 1, 2, . . . , n; s = 1, 2, . . . , k; l = 1, 2, . . . e.

Then, the IVIF-CPT-EDAS detailed steps are as follows (Fig. 2):

Step 1. Obtain the IVIF decision matrix ℵ.
Integrate the IVIF decision matrix R(l) (l = 1, 2, . . . , e) by IVIFWA operator, and

obtain the IVIF decision matrix ℵ = [̃rs]n×k using Eq. (20).

̃rs = ([ZMrs , UMrs], [ZNrs , UNrs]
) = IVIFWAϑ

(̃(1)
rs , ̃(2)

rs , . . . , ̃(l)
rs

)
=
([

1 −
e∏

l=1

(
1 − ZM(l)

rs

)νl , 1 −
e∏

l=1

(
1 − UM(l)

rs

)νl

]
,

[ e∏
l=1

(
ZN(l)

rs

)νl ,

e∏
l=1

(
UN(l)

rs

)νl

])
. (20)

Step 2. Calculate the normalized IVIF decision matrix ℵ∗.
Transform the IVIF decision matrix ℵ = [̃rs]n×k into normalized IVIF decision

matrix ℵ∗ = [̃∗
rs]n×k = ([ZM∗

rs , UM∗
rs], [ZN∗

rs , UN∗
rs])n×k using Eq. (21):

̃∗
rs =

{ ([ZMrs , UMrs], [ZNrs , UNrs]
)
, attribute HTs is positive;([ZNrs , UNrs], [ZMrs , UMrs]
)
, attribute HTs is negative; (21)

r = 1, 2, . . . , n; s = 1, 2, . . . , k.

Step 3. Determine the original attribute weight �s (s = 1, 2, . . . , k) using the extended
entropy method.

The specific steps of IVIF-entropy method are shown as follows:
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Fig. 2. The flowchart of IVIF-CPT-EDAS.

(1) Determine the IVIF negative ideal point (IVIF-NIP): ̃∗−
s (s = 1, 2, . . . , k), by sat-

isfying the below condition:

̃∗−
s =

([
min

r
ZM∗

rs , min
r

UM∗
rs

]
,
[
max

r
ZN∗

rs , max
r

UN∗
rs

])
= ([ZM∗−

rs , UM∗−
rs

]
,
[
ZN∗−

rs , UN∗−
rs

])
. (22)

(2) Calculate the hybrid distance matrix � = [DMrs(̃∗
rs , ̃∗−

s )]n×k between the IVIF-
NIP and all alternatives HLr under each attribute HTs by employing Eq. (23):

DM
rs (̃∗

rs , ̃∗−
s ) = 1

4

( |ZM∗
rs − ZM∗−

rs | + |UM∗
rs − UM∗−

rs |
+ |ZN∗

rs − ZN∗−
rs | + |UN∗

rs − UN∗−
rs |
)

+ 1

2
max

{ |ZM∗
rs − ZM∗−

rs |, |UM∗
rs − UM∗−

rs |,
|ZN∗

rs − ZN∗−
rs |, |UN∗

rs − UN∗−
rs |

}
, (23)

r = 1, 2, . . . n; s = 1, 2, . . . , k.
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(3) The normalized distance matrix �′ = [DM′
rs(̃∗

rs , ̃∗−
s )]n×k can be normalized by

Eq. (24):

DM ′
rs

(̃∗
rs, ̃∗−

s

) = DMrs(̃∗
rs , ̃∗−

s )∑n
r=1 DMrs(̃∗

rs , ̃∗−
s )

, r = 1, 2, . . . , n; s = 1, 2, . . . , k.

(24)

(4) Calculate the entropy degree Es of the s-th attribute HTs using Eq. (25):

Es = − 1

ln n

n∑
r=1

DM ′
rs

(̃∗
rs, ̃∗−

s

)
ln DM ′

rs

(̃∗
rs , ̃∗−

s

)
, (25)

s = 1, 2, . . . , k, 0 � Es � 1.

(5) Figure out the original attribute weight �s using Eq. (26):

�s = 1 − Es∑k
s=1 1 − Es

, s = 1, 2, . . . , k. (26)

Step 4. Determine the average solution ÃV s (s = 1, 2, . . . , k) using Eq. (27) with the
information of IVIFWA operator and normalized IVIF decision matrix ℵ∗.

ÃV s =
⎛⎜⎝
[
1 −

(∏n
r=1(1 − ZM∗

rs)
) 1

n
, 1 −

(∏n
r=1(1 − UM∗

rs)
) 1

n
]
,[(∏n

r=1 ZN∗
rs

) 1
n
,
(∏n

r=1 UN∗
rs

) 1
n
]

⎞⎟⎠ . (27)

Step 5. Calculate the relative attribute weight g′
rs(�s) of all attributes using Eq. (28)

(α = 0.61, β = 0.69).

g′
rs(�s) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�α

s

(�α
s + (1 − �s)α)

1
α

, ̃∗
rs � ÃV s;

�
β
s

(�
β
s + (1 − �s)β)

1
β

, ̃∗
rs < ÃV s;

(28)

r = 1, 2, . . . , n; s = 1, 2, . . . , k.

Step 6. Calculate the PDA′
rs and NDA′

rs according to normalized decision matrix (ℵ∗) and
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average solution (ÃV), (ρ = 0.88).

PDA′
rs =

⎧⎨⎩
(DM(̃∗

rs , ÃV s))
γ

AF(ÃV s)
, ̃∗

rs � ÃV s;
0, ̃∗

rs < ÃV s;
(29)

r = 1, 2, . . . , n; s = 1, 2, . . . , k.

NDA′
rs =

⎧⎨⎩
0, ̃∗

rs � ÃV s;
ρ · (DM(ÃV s, ̃∗

rs))
δ

AF(ÃV s)
, ̃∗

rs < ÃV s; (30)

r = 1, 2, . . . , n; s = 1, 2, . . . , k.

Step 7. Calculate the weighted positive and negative distance (SP′
r and SN′

r ) using
Eqs. (31) and (32).

SP′
r =

k∑
s=1

g′
rs(�s)PDA′

rs , r = 1, 2, . . . , n, (31)

SN′
r =

k∑
s=1

g′
rs(�s)NDA′

rs , r = 1, 2, . . . , n. (32)

Step 8. The normalized weighted positive and negative distance (NSP′
r and NSN′

r ) can be
calculated by Eqs. (33) and (34).

NSP′
r = SP′

r

maxr (SP′
r )

, r = 1, 2, . . . , n, (33)

NSN′
r = 1 − SN′

r

maxr (SN′
r )

, r = 1, 2, . . . , n. (34)

Step 9. The overall assessment score S′
r of each alternative HLr using Eq. (35).

S′
r (HLr ) = 1

2

(
NSP′

r + NSN′
r

)
, r = 1, 2, . . . , n. (35)

Step 10. Rank the alternatives by descending order of the overall assessment scores S′
r

(r = 1, 2, . . . , n) in Step 9, and if the value of overall assessment score S′
r is larger, the

alternative is better.

4. An Illustrative Example and Parameter Analysis

4.1. Background Description

Development is a timeless topic. However, due to the limitations and irreversibility of re-
sources, it has become a new demand to reduce pollution, save resources, and take the
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path of sustainable development by developing a green economy. From an investment
perspective, GTVC, as one of the five key green investment areas, has a broad space to
promote the development of the circular economy, such as comprehensive utilization of
resource technology, environmental protection technology, ecological agriculture technol-
ogy, comprehensive utilization of resource technology, new energy technology, etc. At the
same time, evaluating investment projects that can yield significant benefits scientifically
and quickly is particularly important for a decision-maker. Therefore, this paper takes the
GTVC project selection as an example to verify the effectiveness and applicability of the
enhanced EDAS method.

4.2. Decision Process

We invite five experts HDc (c = 1, 2, . . . , 5) to select the best solution from five GTVC
projects HLr (r = 1, 2, . . . , 5) with six attributes HTs (s = 1, 2, . . . , 6). The specific
description of attributes is as follows: HT1: return on investment; HT2: amount of waste
produced; HT3: renewable resources; HT4: difficulty of capital exit; HT5: degree of market
demand; HT6: the R&D capability of the technical research team, where HT2 and HT4 are
the cost attributes, and others are the benefit attributes. Meanwhile, the weighting vector
ν = (ν1, ν2, . . . , ν5) = (0.29, 0.17, 0.19, 0.15, 0.20) of five experts is given.

Here, we will refer to the IVIF linguistic evaluation scale proposed by Peng and Luo
(2021) to collect expert evaluation information. The IVIF linguistic evaluation scale table
used in this article has a total of 10 evaluation scales, and corresponding IVIFNs are
used to quantify the evaluation values of the proposed investment project, in order to
achieve accurate DM results. Then the linguistic assessment matrices which are provided
in Tables 4 reveal the five DEs’ evaluation results about six attributes.

Next, the IVIF-CPT-EDAS technique is developed for selecting the best GTVC project.

Step 1. Experts utilize IVIF to provide their own evaluation information, and convert
the aforementioned five semantic evaluation matrices into their respective fuzzy decision
matrices, refer to Table 3, then aggregate the IVIF decision matrices into a single IVIF
group decision matrix using Eq. (20).

Table 3
IVIF linguistic evaluation scale.

Linguistic scale IVIFN

Extremely terrible (ET) 〈[0.00, 0.10], [0.85, 0.90]〉
Very terrible (VT) 〈[0.00, 0.10], [0.70, 0.75]〉
Terrible (T) 〈[0.15, 0.25], [0.55, 0.60]〉
Medium terrible (MT) 〈[0.30, 0.40], [0.45, 0.50]〉
Medium (M) 〈[0.40, 0.50], [0.35, 0.40]〉
Medium good (MG) 〈[0.50, 0.60], [0.25, 0.30]〉
Good (G) 〈[0.60, 0.70], [0.15, 0.20]〉
Very good (VG) 〈[0.70, 0.80], [0.05, 0.10]〉
Extremely good (EG) 〈[0.80, 0.90], [0.05, 0.10]〉
Perfectly good (PG) 〈[1.00, 1.00], [0.00, 0.00]〉
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Table 4
The linguistic assessment matrices by five experts.

DEs Alternatives Attributes
HT1 HT2 HT3 HT4 HT5 HT6

D1 HL1 MG G M G MG MG
HL2 VG M EG M EG G
HL3 MG VG M MG G M
HL4 M G MT M MG T
HL5 G VT M M G MG

D2 HL1 G MG MG G M MG
HL2 EG MT EG M EG G
HL3 G VG M M MG MT
HL4 MT G M M G T
HL5 MG MT MT MT MG M

D3 HL1 MG G G MG G M
HL2 EG M VG G EG G
HL3 MG G MG MG M MT
HL4 M G M MG G MT
HL5 G M VT M MG MG

D4 HL1 G G M G G MG
HL2 EG M EG M VG VG
HL3 M EG MG MG MG M
HL4 MT G MG M G MT
HL5 G MT MT M MG M

D5 HL1 VG MG G G MG G
HL2 EG MT EG MG VG VG
HL3 MG VG G MG G M
HL4 M G MG M VG MT
HL5 VG M MT M M MG

Table 5
The normalized IVIF decision matrix ℵ∗.

HT1 HT2 HT3

HL1 〈[0.580, 0.682], [0.154, 0.212]〉 〈[0.181, 0.232], [0.566, 0.666]〉 〈[0.503, 0.606], [0.238, 0.291]〉
HL2 〈[0.775, 0.878], [0.050, 0.100]〉 〈[0.338, 0.392], [0.402, 0.505]〉 〈[0.784, 0.886], [0.050, 0.100]〉
HL3 〈[0.505, 0.606], [0.241, 0.292]〉 〈[0.062, 0.114], [0.702, 0.805]〉 〈[0.480, 0.582], [0.264, 0.316]〉
HL4 〈[0.370, 0.470], [0.379, 0.430]〉 〈[0.165, 0.216], [0.583, 0.683]〉 〈[0.411, 0.512], [0.335, 0.386]〉
HL5 〈[0.682, 0.788], [0.081, 0.136]〉 〈[0.464, 0.516], [0.270, 0.404]〉 〈[0.284, 0.385], [0.455, 0.506]〉

HT4 HT5 HT6

HL1 〈[0.165, 0.216], [0.583, 0.683]〉 〈[0.522, 0.623], [0.223, 0.274]〉 〈[0.505, 0.606], [0.241, 0.292]〉
HL2 〈[0.265, 0.317], [0.479, 0.580]〉 〈[0.770, 0.873], [0.050, 0.100]〉 〈[0.638, 0.740], [0.102, 0.157]〉
HL3 〈[0.265, 0.315], [0.484, 0.585]〉 〈[0.570, 0.671], [0.177, 0.228]〉 〈[0.366, 0.466], [0.383, 0.433]〉
HL4 〈[0.328, 0.379], [0.420, 0.521]〉 〈[0.597, 0.699], [0.140, 0.196]〉 〈[0.235, 0.335], [0.494, 0.544]〉
HL5 〈[0.365, 0.415], [0.384, 0.484]〉 〈[0.514, 0.615], [0.231, 0.283]〉 〈[0.470, 0.570], [0.278, 0.329]〉

Step 2. Since there are mainly two types of attributes, namely benefit and cost, the Eq. (21)
can be used to obtain the normalized IVIF decision matrix ℵ∗ (see Table 5).
Step 3. Determine the original relative attribute weight �s (s = 1, 2, . . . , k) using the
extended entropy method.
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Table 6
IVIF-NIS ̃∗−

s .

IVIF-NIP HT1 HT2 HT3

̃∗−
s 〈[0.370, 0.470], [0.379, 0.430]〉 〈[0.062, 0.114], [0.702, 0.805]〉 〈[0.284, 0.385], [0.455, 0.506]〉

IVIF-NIP HT4 HT5 HT6

̃∗−
s 〈[0.165, 0.216], [0.583, 0.683]〉 〈[0.514, 0.615], [0.231, 0.283]〉 〈[0.235, 0.335], [0.494, 0.544]〉

Table 7
The normalized hybrid distance matrix �′.

Hybris distance HT1 HT2 HT3 HT4 HT5 HT6

DM′
1s

(̃∗
1s

, ̃∗−
s ) 0.209 0.138 0.217 0.000 0.022 0.260

DM′
2s

(̃∗
2s

, ̃∗−
s ) 0.364 0.306 0.466 0.182 0.605 0.393

DM′
3s

(̃∗
3s

, ̃∗−
s ) 0.131 0.000 0.193 0.176 0.144 0.122

DM′
4s

(̃∗
4s

, ̃∗−
s ) 0.000 0.120 0.124 0.337 0.229 0.000

DM′
5s

(̃∗
5s

, ̃∗−
s ) 0.296 0.436 0.000 0.354 0.000 0.225

Table 8
The entropy Es of each attribute.

HT1 HT2 HT3 HT4 HT5 HT6

Es 0.821 0.778 0.785 0.839 0.625 0.814
1 − Es 0.179 0.222 0.215 0.161 0.375 0.186

Table 9
The original attribute weight �s .

Original attribute
weight

HT1 HT2 HT3 HT4 HT5 HT6

�s 0.134 0.166 0.160 0.121 0.280 0.139

(1) Using the decision information in ℵ∗, determine the IVIF-NIS: ̃∗−
s by Eq. (22) (see

Table 6).
(2) Calculate the distance between each alternative solution and IVIF-NIS by employ-

ing Eq. (23), then retrieve the hybrid distance matrix � = [DM
rs (̃∗

rs , ̃∗−
s )]n×k and

normalize it (see Table 7).
(3) Figure out the entropy degree Es of each attribute HTs using the normalized hybrid

distance matrix �′ and Eq. (25) (see Table 8).
(4) Compute the original weight �s (s = 1, 2, . . . , 6) using Eq. (26); the results are

shown as Table 9.

Step 4. Determine the average solution ÃV s (s = 1, 2, . . . , k) of each attribute HTs

(s = 1, 2, . . . , k) by using Eq. (27) (see Table 10).

Step 5. Adjusting attribute weights can be achieved by CPT, which involves calculating
the relative attribute weights matrix G′ using Eq. (28) (α = 0.61, β = 0.69), and the
results are listed in Table 11.
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Table 10
The average solution ÃV s .

Average
solution

HT1 HT2 HT3

ÃV s 〈[0.607, 0.720], [0.142, 0.205]〉 〈[0.256, 0.309], [0.479, 0.595]〉 〈[0.528, 0.645], [0.217, 0.282]〉
Average
solution

HT4 HT5 HT6

ÃV s 〈[0.281, 0.332], [0.465, 0.567]〉 〈[0.608, 0.717], [0.145, 0.203]〉 〈[0.460, 0.565], [0.264, 0.324]〉

Table 11
The relative attribute matrix G′.

HT1 HT2 HT3 HT4 HT5 HT6

HL1 0.202 0.230 0.226 0.190 0.314 0.219
HL2 0.215 0.238 0.234 0.190 0.308 0.219
HL3 0.202 0.230 0.226 0.190 0.314 0.207
HL4 0.202 0.230 0.226 0.204 0.314 0.207
HL5 0.215 0.238 0.226 0.204 0.314 0.219

Table 12
The positive distance PDA′.

HT1 HT2 HT3 HT4 HT5 HT6

HL1 0.000 0.000 0.000 0.000 0.000 0.387
HL2 1.436 0.849 2.131 0.000 1.412 1.444
HL3 0.000 0.000 0.000 0.000 0.000 0.000
HL4 0.000 0.000 0.000 0.508 0.000 0.000
HL5 0.770 1.840 0.000 0.847 0.000 0.120

Table 13
The negative distance NDA′.

HT1 HT2 HT3 HT4 HT5 HT6

HL1 0.740 1.824 0.775 2.566 2.068 0.000
HL2 0.000 0.000 0.000 0.418 0.000 0.000
HL3 2.464 4.251 1.333 0.491 1.023 2.170
HL4 5.126 2.151 2.799 0.000 0.384 4.124
HL5 0.000 0.000 5.184 0.000 2.240 0.000

Step 6. Calculate the distance between each evaluation and ÃV s , then obtain the PDA′
rs

and NDA′
rs using Eq. (29)–(30) (γ = 0.88, δ = 0.88, ρ = 2.25), which are listed in

Tables 12 and 13.

Steps 7–8. Calculate the weighted positive and negative distance (SP ′
r and SN ′

r ) using
Eqs. (31)–(32), and then normalized them based on Eqs. (33)–(34) (see Table 14).

Step 9. Calculate the overall assessment score S′ of each alternative HLr utilizing Eq. (35)
(see Table 15).

It follows from the above: S′
1(HL1) = 0.224, S′

2(HL2) = 0.987, S′
3(HL3) = 0.079,

S′
4(HL4) = 0.029, S′

5(HL5) = 0.429.
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Table 14
The normalized weighted distance.

The normalized
weighted distance

HL1 HL2 HL3 HL4 HL5

NSP′
r 0.048 1.000 0.000 0.059 0.456

NSN′
r 0.400 0.975 0.158 0.000 0.403

Table 15
The overall assessment score S′.

Overall assessment
score

HL1 HL2 HL3 HL4 HL5

S′
r 0.224 0.987 0.079 0.029 0.429

Step 10. Based on the final assessment score S′
r (r = 1, 2, . . . , 5) of each alternative, the

relationship of five alternatives is listed as follows:

HL2 > HL5 > HL1 > HL3 > HL4.

So, HL2 will be the best choice.

4.3. Sensitivity Analysis

In this section, we incorporate the effects of CPT on the model and refer to the parameter
values given by Tversky and Kahneman (1992): the parameters in weight function α =
0.61, β = 0.69 and value function γ = 0.88, δ = 0.88, ρ = 2.25. At this time, it is
observed that five parameters are involved in Eqs. (28), (29) and (30), so we consider
naturally whether the change of parameter values will affect the DM result, i.e. checking
the robustness and effectiveness of the IVIF-CPT-EDAS model. Finally, we discuss the
influence of single parameter changes on our decision results in this section.

4.3.1. The Sensitivity of Parameter α in the Weight Function
We assign the parameter 0 < α < 1 and produce data in steps of 0.1 for simulation,
specifically taking in this paper α = 0.61. All the outcomes are shown in Table 16.

According to Table 16, different parameters have little influence on the score results of
the IVIF-CPT-EDAS model. With the value of parameter α increase, the overall scores of
HL2 and HL3 remain unchanged, while the overall scores of others alternative gradually
decrease. The ranking results remain unchanged, the best option alternative is HL2.

4.3.2. The Sensitivity Analysis of Parameter β in the Weight Function
We assign the parameter 0 < β < 1 and produce data in steps of 0.1 for simulation,
specifically taking in this paper β = 0.69. All the outcomes are shown in Table 17.

According to Table 17, different value of parameter β will cause certain fluctuations to
the score results of the IVIF-CPT-EDAS model. With the value increase of parameter β,
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Table 16
The calculation results with different value of α.

α HL1 HL2 HL3 HL4 HL5 Ranking results The optimal
solution

0.61 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.05 0.228 0.987 0.079 0.039 0.458 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.15 0.227 0.987 0.079 0.037 0.453 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.25 0.227 0.987 0.079 0.035 0.448 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.35 0.226 0.987 0.079 0.034 0.443 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.45 0.225 0.987 0.079 0.032 0.438 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.55 0.224 0.987 0.079 0.030 0.433 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.65 0.224 0.987 0.079 0.029 0.427 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.75 0.223 0.987 0.079 0.027 0.422 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.85 0.222 0.987 0.079 0.026 0.417 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.95 0.222 0.987 0.079 0.025 0.411 HL2 > HL5 > HL1 > HL3 > HL4 HL2

Table 17
The calculation results of different value of parameter β.

β HL1 HL2 HL3 HL4 HL5 Ranking results The optimal
solution

0.69 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.05 0.259 0.985 0.106 0.029 0.492 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.15 0.254 0.985 0.102 0.029 0.484 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.25 0.251 0.986 0.098 0.029 0.475 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.35 0.246 0.986 0.094 0.029 0.465 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.45 0.240 0.986 0.090 0.029 0.455 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.55 0.238 0.987 0.086 0.029 0.445 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.65 0.227 0.987 0.081 0.029 0.434 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.75 0.219 0.988 0.076 0.029 0.423 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.85 0.211 0.988 0.071 0.029 0.411 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.95 0.202 0.988 0.066 0.029 0.398 HL2 > HL5 > HL1 > HL3 > HL4 HL2

the overall score of HL4 remains unchanged, the overall score of HL2 gradually increases,
and the overall scores of other alternatives gradually decrease, but the ranking results
remain unchanged, and the optimal alternative is HL2.

4.3.3. The Sensitivity Analysis of Parameter γ in the Value Function
We assign the parameter 0 < γ < 1 and produce data in steps of 0.1 for simulation,
specifically taking in this paper γ = 0.88. All the outcomes are shown in Table 18.

According to Table 18, different values of parameter γ have little influence on the score
results of IVIF-CPT-EDAS model. With the value increase of parameter γ , the overall
scores of HL2 and HL3 remain unchanged, while the overall scores of other alternatives
gradually decrease. The ranking results almost remains the same, the optimal alternative
is always HL2.

4.3.4. The Sensitivity Analysis with Different Value of Parameter δ in the Value Function
We assign the parameter 0 < δ < 1 and produce data in steps of 0.1 for simulation,
specifically taking in this paper δ = 0.88. All the outcomes are shown in Table 19.
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Table 18
The calculation results with different value of parameter γ .

γ HL1 HL2 HL3 HL4 HL5 Ranking results The optimal
solution

0.88 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.05 0.275 0.987 0. 079 0. 079 0.539 HL2 > HL5 > HL1 > HL3 = HL4 HL2
0.15 0.265 0.987 0. 079 0. 070 0.515 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.25 0.257 0.987 0. 079 0.062 0.495 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.35 0.250 0.987 0. 079 0.056 0.479 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.45 0.244 0.987 0. 079 0.049 0.466 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.55 0.238 0.987 0. 079 0.044 0.455 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.65 0.233 0.987 0. 079 0.039 0.446 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.75 0.229 0.987 0. 079 0.035 0.437 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.85 0.225 0.987 0. 079 0.031 0.431 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.95 0.222 0.987 0. 079 0.027 0.426 HL2 > HL5 > HL1 > HL3 > HL4 HL2

Table 19
The calculation result with different value of parameter δ.

δ HL1 HL2 HL3 HL4 HL5 Ranking results The optimal
solution

0.88 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.05 0.094 0.936 0. 000 0. 094 0.515 HL2 > HL5 > HL1 = HL4 > HL3 HL2
0.15 0.099 0.945 0. 000 0. 083 0.498 HL2 > HL5 > HL1 > HL4 > HL3 HL2
0.25 0.106 0.953 0. 000 0.069 0.482 HL2 > HL5 > HL1 > HL4 > HL3 HL2
0.35 0.114 0.960 0. 000 0.053 0.465 HL2 > HL5 > HL1 > HL4 > HL3 HL2
0.45 0.122 0.967 0. 000 0.034 0.448 HL2 > HL5 > HL1 > HL4 > HL3 HL2
0.55 0.144 0.973 0. 016 0.029 0.440 HL2 > HL5 > HL1 > HL4 > HL3 HL2
0.65 0.169 0.978 0. 036 0.029 0.436 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.75 0.194 0.983 0. 055 0.029 0.433 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.85 0.217 0.986 0. 074 0.029 0.430 HL2 > HL5 > HL1 > HL3 > HL4 HL2
0.95 0.240 0.989 0. 091 0.029 0.428 HL2 > HL5 > HL1 > HL3 > HL4 HL2

According to Table 19, different value of parameter δ will cause certain fluctuations of
the score results of IVIF-CPT-EDAS model. With the value increase of the parameter δ,
the overall score of the alternative HL4 decreases gradually and then remains unchanged,
and the overall scores of the other alternatives decrease gradually. Despite some changes
in the ranking of alternative before and after setting δ = 0.55, the optimal alternative is
still HL2.

4.3.5. The Sensitivity Analysis of Parameter ρ in the Value Function
We assign the parameter 1 < ρ � 10 and produce data in steps of 0.1 for simulation,
specifically taking in this paper ρ = 2.25. All the outcomes are shown in Table 20.

According to Table 20, the overall scores and ranking results remain changed with
different ρ.

From the simulation analysis of the above five parameters, it can be seen that despite
the slight fluctuations in the model calculation and ranking results caused by changing the
parameters in the weight and value functions, the optimal and sub-optimal schemes remain
unchanged, demonstrating the IVIF-CPT-EDAS model’s robustness and effectiveness.
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Table 20
The calculation results with different value of parameter ρ.

ρ HL1 HL2 HL3 HL4 HL5 Ranking results The optimal
solution

2.25 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
1.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
2.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
3.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
4.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
5.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
6.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
7.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
8.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
9.55 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2
10.00 0.224 0.987 0.079 0.029 0.429 HL2 > HL5 > HL1 > HL3 > HL4 HL2

5. Comparative Analysis

5.1. Validity Analysis

In this subsection, we continue to explore the effectiveness of the enhanced EDAS
approach based on the same original matrices, the expert weighting vector ν =
(ν1, ν2, . . . , ν5) = (0.29, 0.17, 0.19, 0.15, 0.20) and initial attribute weighting vector
� = (�1,�2, . . . ,�6) = (0.134, 0.166, 0.160, 0.121, 0.280, 0.139), thus designing
the validity analysis between the method proposed by us with IVIFWA operator (Xu and
Chen, 2007), IVIF-TOPSIS method (Izadikhah, 2012), IVIF-TAXONOMY method (Xiao
et al., 2021), along with IVIF-TODIM method (Krohling and Pacheco, 2014) as follows.

5.1.1. Comparison with IVIFWA Operator (Xu and Chen, 2007)
The original matrices of this article are substituted by Eq. (16), Eq. (36) and Eq. (37)
(Hashemi-Tabatabaei et al., 2019). The calculation results are shown in Table 21, and the
optimal alternative is HL2.

SF(Ñ) = ZM − ZN + UM − UN
2

, (36)

AF(Ñ) = ZM + ZN + UM + UN
2

. (37)

5.1.2. Comparison with the IVIF-TOPSIS Method (Izadikhah, 2012)
We substitute the initial data of this article by the IVIF-TOPSIS method (Izadikhah, 2012),
which sorts each alternative by determining the relative closeness degree between it and
the positive ideal solution. All the outcomes are shown in Table 22, and the optimal alter-
native is HL2.

The DM process is as follows:
Step 1. Calculate the weighted decision matrix � using the decision matrix ℵ, IVIFN and
original attribute weight � .
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Table 21
The calculation results of IVIFWA operator.

Alternative IVIFWA operator SF(HLr ) AF(HLr ) Ranking
results

HL1 〈[0.444, 0.541], [0.284, 0.349]〉 0.176 0.809 3
HL2 〈[0.668, 0.782], [0.103, 0.172]〉 0.588 0.863 1
HL3 〈[0.421, 0.517], [0.311, 0.375]〉 0.126 0.812 4
HL4 〈[0.403, 0.499], [0.317, 0.387]〉 0.099 0.803 5
HL5 〈[0.481, 0.575], [0.251, 0.325]〉 0.240 0.816 2

Table 22
The calculation results of IVIF-TOPSIS.

Alternative D+
r D−

r Cr Ranking results

HL1 0.129 0.061 0.320 3
HL2 0.013 0.177 0.932 1
HL3 0.150 0.040 0.212 5
HL4 0.145 0.045 0.238 4
HL5 0.104 0.085 0.449 2

Step 2. Determine the IVIF-PIS ̃+
s = ([ZM+

s , UM+
s ], [ZN+

s , UN+
s ]) and IVIF-NIS ̃−

s =
([ZM−

s , UM−
s ], [ZN−

s , UN−
s ]).

̃+
s =

⎧⎪⎪⎨⎪⎪⎩
([maxr ZMrs , maxr UMrs], [minr ZNrs , minr UNrs]

)
,

attribute HTs is positive;([minr ZMrs , minr UMrs], [maxr ZNrs , maxr UNrs]
)
,

attribute HTs is negative;
(38)

r = 1, 2, . . . , n; s = 1, 2, . . . , k,

̃−
s =

⎧⎪⎪⎨⎪⎪⎩
([minr ZMrs , minr UMrs], [maxr ZNrs , maxr UNrs]

)
,

attribute HTs is positive;([maxr ZMrs , maxr UMrs], [minr ZNrs , minr UNrs]
)
,

attribute HTs is negative;
(39)

r = 1, 2, . . . , n; s = 1, 2, . . . , k.

Step 2. Calculate the distance between each possible solution and IVIF-PIS (IVIF-NIS).

D+
r = 1

4n

k∑
s=1

�s

{ |ZMrs − ZM+
s | + |UMrs − UM+

s |
+ |ZNrs − ZN+

s | + |UNrs − UN+
s |
}

, (40)

D−
r = 1

4n

k∑
s=1

�s

{ |ZMrs − ZM−
s | + |UMrs − UM−

s |
+ |ZNrs − ZN−

s | + |UNrs − UN−
s |
}

. (41)

Step 3. Calculate the relative proximity degree Cr(HLr ) between IVIF-PIS and each al-
ternative.
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Table 23
The calculation results of IVIF-Taxonomy.

Alternative Fr (HLr ) Ranking results

HL1 0.617 3
HL2 0.095 1
HL3 0.708 4
HL4 0.741 5
HL5 0.496 2

Cr = d−
r

d+
r + d−

r

, 0 � Cr � 1. (42)

5.1.3. Comparison with IVIF-Taxonomy (Xiao et al., 2021)
We substitute the initial data of this article by the IVIF-Taxonomy method (Xiao et al.,
2021). All the calculation results are shown in Table 23, and the optimal alternative is
HL2.

Step 1. Obtain the hybrid distance matrix M = [mpq ]k×k using Table 14 and Eq. (43).

mpq = 1

4

k∑
s=1

�s

( ∣∣μZM(̃∗
ps) − μZM(̃∗

ps)
∣∣+ ∣∣μUM(̃∗

ps) − μUM(̃∗
ps)
∣∣

+ ∣∣vZN(̃∗
ps) − vZN(̃∗

ps)
∣∣+ ∣∣vUN(̃∗

ps) − vUN(̃∗
ps)
∣∣
)

,

(43)

p, q = 1, 2, . . . k.

Step 2. The alternatives are homogenized using Eq. (44).

G = ḡ ± 2Hg, (44)

where ḡ = 1
n

∑n
r=1 gr , Hg =

√
1
n

∑n
r=1(gr − ḡ).

Step 3. Eq. (45) is used to determine the development mode of alternative schemes, and the
optimal alternative is selected according to formulas (46) and (47), as shown in Table 23.

Kro = 1

4

k∑
s=1

�s

( ∣∣μZM(̃∗
rs) − μZM(̃∗+

s )
∣∣+ ∣∣μUM(̃∗

rs) − μUM(̃∗+
s )
∣∣

+ ∣∣vZN(̃∗
rs) − vZN(̃∗+

s )
∣∣+ ∣∣vUN(̃∗

rs) − vUN(̃∗+
s )
∣∣
)

,

(45)

where ̃∗+
s = ([maxr ZNs , maxr UNs].[minr ZMs , minr UMs]) is the positive ideal point.

K = K̄ro + 2SKro , r = 1, 2, . . . , n, (46)

Fr = Kro

K
, r = 1, 2, . . . , n, (47)

where K̄ro and SKro is the average value and variance of Kro.
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Table 24
The calculation results of IVIF-TODIM.

Alternative ξr (HLr ) Ranking results

HL1 0.180 3
HL2 1.000 1
HL3 0.018 4
HL4 0.000 5
HL5 0.623 2

5.1.4. Comparison with IVIF-TODIM Method (Krohling and Pacheco, 2014)
The initial data of this article are substituted by the IVIF-TODIM method (Krohling and
Pacheco, 2014). All the outcomes are shown in Table 24, and the optimal alternative is
HL2.

Step 1. Obtain the normalized IVIF decision matrix ℵ∗′ = [̃∗
rs]n×k using Eq. (48):

̃∗
rs = ([ZM∗′

rs , UM∗′
rs

]
,
[
ZN∗′

rs , UN∗′
rs

])
=

⎛⎜⎜⎝
[

ZM∗
rs∑n

p=1((ZM∗
ps)

2+(UM∗
ps)

2)
1
2
,

UM∗
rs∑n

r=1((ZM∗
ps)

2+(UM∗
ps)

2)
1
2

]
,[

ZN∗
rs∑n

p=1((ZN∗
ps)

2+(UN∗
ps)

2)
1
2
,

UN∗
rs∑n

r=1((ZN∗
ps)

2+(UN∗
ps)

2)
1
2

]
⎞⎟⎟⎠ . (48)

Step 2. Obtain the normalized attribute weight � ′ = (� ′
1,�

′
2, . . . ,�

′
s) using Eq. (49).

� ′
qs = �s

�q

, (49)

where �q = maxs{�1,�2, . . . ,�s}.
Step 3. The dominance degree between each alternative HLp (p = 1, 2, . . . , n) and each
alternative HLr (r = 1, 2, . . . , n) can be calculated by Eqs. (50), (51) and Eq. (52), where
the parameter θ = 1.

δpr(HLp,HLr ) =
k∑

s=1

φs(HLp,HLr ), p, r = 1, 2, . . . , n, (50)

φs(HLp,HLr ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
�qs∑k
s=1 �qs

· dprs(̃∗
ps, ̃∗

rs), ̃∗
ps > ̃∗

rs;

0, ̃∗
ps = ̃∗

rs;

−1

θ

√∑k
s=1 �qs

�qs

· dprs(̃∗
ps, ̃∗

rs), ̃∗
ps < ̃∗

rs ,

(51)

dprs = 1

4

[∣∣ZM∗′
ps − ZM∗′

rs

∣∣+ ∣∣UM∗′
ps − UM∗′

rs

∣∣+ ∣∣ZN∗′
ps − ZN∗′

rs

∣∣+ ∣∣UN∗′
ps − UN∗′

rs

∣∣] 1
2 .

(52)
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Table 25
The ranking results of different DM methods.

Methods Order The best
choice

The worst
choice

IVIFWA (Xu and Chen, 2007) HL2 > HL5 > HL1 > HL3 > HL4 HL2 HL4
IVIF-TOPSIS (Izadikhah, 2012) HL2 > HL5 > HL1 > HL4 > HL3 HL2 HL4
IVIF-TOXONOMY (Xiao et al., 2021) HL2 > HL5 > HL1 > HL3 > HL4 HL2 HL4
IVIF-TODIM (Krohling and Pacheco, 2014) HL2 > HL5 > HL1 > HL3 > HL4 HL2 HL4
IVIF-CPT-EDAS HL2 > HL5 > HL1 > HL3 > HL4 HL2 HL4

Fig. 3. The score value of different DM methods.

Fig. 4. The ranking results of different DM methods.

Step 4. Calculate the overall dominance degree ξr (r = 1, 2, . . . , n) of each alternative
HLr using Eq. (53):

ξr =
∑n

p=1 δpr(HLp, HLr ) − minp δpr(HLp, HLr )

maxp δpr(HLp, HLr ) − minp δpr(HLp, HLr )
. (53)

5.2. Comprehensive Analysis

After conducting the validity analysis above and analysing the research results presented
in this article, we can conclude that HL2 is consistently the superior alternative. For more
intuitive comparison results, see Table 25, Figs. 3 and 4. We all know that each of five
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MAGDM methods in the same fuzzy environment will have its own merits. IVIFWA op-
erator pays more attention to the overall balance, but cannot avoid the impact of extreme
values on the decision results. The IVIF-TOPSIS method, IVIF-TOXONOMY method
and IVIF-CPT-TODIM method all utilize the same distance matrix for DM purposes.
However, according to the research of other scholars, it is generally believed that these
methods are only applicable to conservative investors and may be distorted in the pro-
cess of information aggregation. In comparison to the aforementioned DM methods, the
IVIF-CPT-EDAS method designed in this paper takes fully into account the impact of
decision-makers’ psychological factors, and enhances the DM process through the uti-
lization of the cumulative prospect function. Consequently, the algorithm logic presented
in this paper is more closely aligned with the real-world DM environment. Moreover, the
improved method is better equipped to handle MAGDM problems with extreme data and
conflicts among all decision attributes during the DM process, and it possesses more dis-
tinctive characteristics.

6. Conclusions

In this article, we modified the traditional EDAS method for settling the MAGDM issues
better by combining IVIFs. First of all, we briefly review the fundamental definition of IV-
IFSs, aggregation operator and distance formula. We are aware that the EDAS method is
highly effective in resolving DM issues involving contradictory attributes. Therefore, the
prominent advantage of introducing the enhanced EDAS technology to IVIFSs in order
to address MAGDM problems due to the influence of the actual environment is that it not
only lets the average scheme reduce the impact of extreme data, but also takes into account
the proximity of the distance between each attribute and the average scheme. Simultane-
ously, the implementation of the entropy weight method also guarantees the stability of
the DM system. Finally, we verified the feasibility of the developed technique by applying
the IVIF-CPT-EDAS method to a numerical example of GTVC. Furthermore, sensitivity
analysis and several contrast analyses are conducted to validate the rationality and feasibil-
ity of MAGDM problems in the practical application process, respectively. Therefore, the
main advantages of this paper can be shown as follows: (1) The attribute weights via ex-
ploiting information entropy method in IVIFS are constructed. (2) The IVIF-CPT-EDAS
approach is designed for addressing MAGDM issues. (3) The presented method of this
study not only provides DEs with a broader space for information expression, but also
fully considers the psychological characteristics of DEs when facing gains and losses,
providing inspiration for subsequent research on DM methods under the framework of
bounded rationality.

Nonetheless, the proposed method also has some shortages. On the one hand, the tech-
nology developed in this paper solely takes into account the scenario where evaluation
information is provided in IVIFs, and real-world evaluation might encounter diverse DM
environments. On the other hand, we should thoroughly take into account the genuine
psychological alteration trend of decision-makers. Therefore, in future research, we will
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concentrate on creating novel models and functions for determining attribute weights, en-
abling them to vary dynamically based on the data. Simultaneously, with the advancement
of network technology, numerous DM methods in network form have arisen, including
microblog, WeChat, and other online voting forms. In theory, when confronted with such
complex DM, we can also extend the findings of this paper to the realm of complex DM
that evolves with time.
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