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Abstract. A special class of monotone Boolean functions coming from shadow minimization theory
of finite set-systems – KK-MBF functions – is considered. These functions are a descriptive model
for systems of compatible groups of constraints, however, the class of all functions is unambiguously
complex and it is sensible to study relatively simple subclasses of functions such as KK-MBF. Zeros
of KK-MBF functions correspond to initial segments of lexicographic order on hypercube layers.
This property is used to simplify the recognition. Lexicographic order applies priorities over con-
straints which is applicable property of practices. Query-based algorithms for KK-MBF functions
are investigated in terms of their complexities.
Key words: monotone Boolean function, reconstruction, lexicographic order, shadow, KK-MBF
class.

1. Introduction

Many problems with monotone Boolean functions (MBFs) appear in logical and physical
level design of systems (Aslanyan et al., 2019), but also in artificial intelligence (Aslanyan
and Sahakyan, 2009), data science and computational learning theory (Aslanyan et al.,
2023a), hypergraph theory (Sahakyan, 2023; Sahakyan and Aslanyan, 2017) and other
areas (e.g. Carlet et al., 2016; Kulhandjian et al., 2019; Crawford-Kahrl et al., 2022; Ka-
bulov and Berdimurodov, 2021; Zhang et al., 2022). MBFs are used to encode extremely
important constructions in various combinatorial optimizations providing a natural way of
describing compatible subsets of sets of finite constraints (see e.g. Aslanyan et al., 2023b;
Tennakoon et al., 2021; Damásdi et al., 2021).

Let there be n independent constraints in an optimization problem with a target func-
tion ν(α), α ∈ P([n]), where [n] = {1, 2, . . . , n}, and P([n]) is the power set of [n];
α encodes a subset of constraints, and the values of ν are valid only on compatible subsets.
Sometimes the compatibility check of subsets α becomes a separate intractable problem.
The question how to minimize the checks/tests in a global optimization procedure arises
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naturally. Obviously, if there is a compatible subset α1 given, and α2 ⊆ α1, then α2 is
compatible. The overall structure of compatibility is given by these inclusions and then
by monotone Boolean functions, and the idea behind the recognition of these functions is
to find the maximum compatible subsets of constraints, applying fewer checks and proce-
dures in the optimality search processes.

A number of applications (e.g. wireless sensor networks, dead-end tests of tables,
data mining) (Kovalerchuk and Delizy, 2005; Kulhandjian et al., 2019; Aslanyan and Sa-
hakyan, 2009; Aslanyan et al., 2019) use optimization with MBF, where MBFs are repre-
sented by hypercube constructions such as chains and anti-chains (Freixas, 2022; Griggs
et al., 2023). Other similar applications with MBF can be added to this list (Clements,
1973; Tennakoon et al., 2021; Damásdi et al., 2021; Carlet et al., 2016).

There is a number of known effective tools and methods for analysing MBFs (Ko-
robkov, 1965; Hansel, 1966; Tonoyan, 1979; Gainanov, 1984) and new approaches are
constantly being sought, investigated, and applied (e.g. Carlet et al., 2016; Boros and
Hammer, 2002; Lange and Vasilyan, 2023; Sahakyan et al., 2022; Balogh et al., 2021;
Bezrukov et al., 2023). Open problems in this area include the reconstruction problem
of bounded classes of Boolean functions with randomization of queries and functions,
and the use of cube-splitting and chain-splitting technique of the Boolean domain (Blum,
2003; Jackson et al., 2011; O’Donnell and Servedio, 2005; Aslanyan and Sahakyan, 2017;
Black et al., 2023; Boros et al., 1991).

A well-known approach concerning MBFs recognition is query-based identification –
recognition of an unknown MBF of n variables using an oracle and membership queries
to it. Hansel’s algorithm (Hansel, 1966), based on partitioning the binary cube into a spe-
cial set of non-intersecting chains, provides optimal reconstruction in the sense of Shannon
complexity for the whole class of MBFs. In practical algorithmic implementations, it is
even not necessary to build and store all Hansel chains in computer memory (Tonoyan,
1979), which solves the memory limitation problem in applications. But the computational
complexity remains.

In order to obtain solutions for bounded classes of MBFs, it is necessary to find a way
to the structural properties of these classes (Braverman et al., 2022; Chao and Yu, 2023;
Lovász, 2007). The research objective of this paper is related to the well-known Kruskal-
Katona theorem (Kruskal, 1963; Katona, 1968, 1987; Sales and Schülke, 2022; Frankl
and Katona, 2021), and the class of KK-MBF functions, related to this theorem, which
describes the exact optimal monotone constructions of shadow minimization (constraint
minimization) (Braverman et al., 2022; Chao and Yu, 2023; Jung, 2023; Madden, 2023)
and existence of Sperner systems for a given set of parameters. In this way, KK-MBF class
of MBFs becomes a special and attractive class for recognition, and this is the theoretical
value of KK-MBF recognition. On the other hand, the practical value of KK-MBF recogni-
tion consists in the following. KK-MBFs appear when compatibility is not only controlled
by the inclusion of subsets of constraints. Suppose we are given two constrained, k-subsets
α1 and α2, such that α2 alphabetically proceeds α1. In some applications, constraint com-
patibility should have the following property: compatibility of α2 is a simple consequence
of the compatibility of α1 because of the alphabetical priorities of constraints. In this case,
the structure of constraint compatibility is given by KK-MBF functions.
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In this research, we investigate the KK-MBF class, focusing on query-based recogni-
tion algorithms. Example subclasses of the class are also presented and discussed.

The rest of the paper is organized as follows. Section 2 provides necessary definitions,
preliminaries, and basic concepts. The KK-MBF class, its basic properties/constraints,
as well as recognition procedures, are introduced in Section 3. Section 4 discusses the
cardinality issues of the class. Special subclasses are considered in Section 5. The paper
ends with the concluding remarks.

2. Preliminaries

2.1. Monotone Boolean Function Recognition

Let Bn = {(x1, . . . , xn) | xi ∈ {0, 1}, i = 1, . . . , n} denote the set of vertices of the
n-dimensional binary (unit) cube. Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be two
vertices of Bn. α precedes β (by component-wise order), denoted as α � β, if and only
if αi � βi for 1 � i � n. α and β are comparable if α � β or β � α, otherwise, they are
incomparable. A set of incomparable vertices in Bn is also called a Sperner family. A set
{α1, . . . , αk} of elements of Bn is a growing chain if αi ≺ αj for 1 � i < j � k. A chain
is simple if αi ≺ αj and there is no αr such that αi ≺ αr ≺ αj .

The serial number of the vertex α = (a1, . . . , an) is the natural number a12n−1 +
a22n−2 + · · · + an20, whose binary representation is a1a2 . . . an.

We will also use the lexicographic order of vertices: α precedes β lexicographically
(α �lex β) if either there exists an integer k, 1 � k � n, such that ak < bk and ai = bi

for i < k, or α = β.
In literature there are different, sometimes confusing definitions of lexicographic or-

der (Schröder, 2016). Mathematical definition is set-theoretical that uses the value 1 to
code the presence of an element in a subset: x <lex y if min(x�y) ∈ x. Appearance of
elements in a subset is coded by a binary vector, and vector α precedes vector β when
α precedes β alphabetically. Here 1 < 0. When we apply to combinatorial settings, the
hypercube is considered, and lexicographical order of vertices of Bn, defined alphabet-
ically, uses relation 0 < 1. We will use the standard set-theoretical definition indicated
as lex in Fig. 1. revlex is the reverse of this, i.e. (00000, 00001, . . . , 11111). colex in set-
theoretical settings means: x <co-lex y if max(x�y) ∈ y. This is convenient when we
add a new dimension to the vectors intending to continue the ordered sequence when the
initial segment remains unchanged. But as we see in Fig 1, colex, unlike the lex or revlex,
preserves neither the order of numerical values nor the order on the layers of the hyper-
cube graphically, in the Hasse diagram. The sim (simplicial) order lists hypercube vertices
layer after the layer (see the next page for the concept of a layer); in each layer, vertices
are ordered according to their serial number. We will use the revlex basically, but when
there is no confusion we will refer to it simply as lex.

Lexicographic, co-lexicographic and simplicial orders are shown in Fig. 1 on the set
of vertices of B5.
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Fig. 1. Lexicographic, co-lexicographic and simplicial orders of vertices of B5. The sign # marks the natural
order which coincides with the numerical value of binary representation of vertices.

We define also partition/splitting of Bn into two (n − 1)-dimensional sub-cubes ac-
cording to the values of the binary variables; for arbitrary xi :

Bn−1
xi=0 = {

(x1, . . . , xn) ∈ Bn
∣∣ xi = 0

}
and

Bn−1
xi=1 = {

(x1, . . . , xn) ∈ Bn
∣∣ xi = 1

}
.

Any subset M ⊆ Bn will be partitioned into

Mxi=1 ⊆ Bn−1
xi=1, and Mxi= 0 ⊆ Bn−1

xi= 0.

Bn can also be partitioned according to a set of variables. Partitioning according to vari-
ables xi1, . . . , xik , we get 2k number of (n − k)-dimensional sub-cubes, where in each of
them the values of xi1, . . . , xik are fixed in an appropriate way; for example,

Bn−k
xi1 =1,...,xik

=1 = {
(x1, . . . , xn) ∈ Bn

∣∣ xi1 = 1, . . . , xik = 1
}
.

Figure 2 illustrates the split of the B6 according to two variables.
Let Lk = {

(x1, . . . , xn) ∈ Bn
∣∣ ∑n

i=1 xi = k
}
. We call Lk the k-th layer of Bn.

The shadow δiM of M ⊆Bn is the set of vertices of Li , which are less than some
vertex of M.

In case all the vertices of M are from the same layer, e.g. from the k-th layer, the
lower (upper, respectively) shadow of M is δk−1M (δk+1M, respectively), i.e. the set
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Fig. 2. Split of the B6 into the B4 × B2.

of vertices from the (k − 1)-th layer, which are less than some vertex of M (from the
(k + 1)-th layer, which are greater than some vertex of M, respectively).

Boolean function f : Bn → {0, 1} is called monotone if for every two vertices α, β ∈
Bn, if α ≺ β, then f (α) � f (β). Vertices of Bn, where f takes the value “1”, are called
units or true points of the function; vertices, where f takes the value “0”, are called zeros
or false points of the function. α1 is a lower unit (or minimal true point) of the function
if f (α1) = 1, and f (α) = 0 for every α ∈ Bn, such that α≺ α1. α0 is an upper zero (or
maximal false point) of the function if f (α0) = 0, and f (α) = 1 for every α ∈ Bn such
that α0 ≺ α. min T (f ) and max F(f ) denote the sets of minimal true points and maximal
false points, respectively. Obviously, min T (f ) and max F(f ) are Sperner families in Bn.

Formally, the work with MBFs started in 1897, with the issue of counting their number
(Dedekind, 1895). The first algorithmic and complexity-related considerations belong to
Korobkov (1965), where, in particular, the valuable concept of resolving subsets was in-
troduced. The final asymptotic estimate about the number of MBFs of n variables was ob-
tained in Korshunov (1981, 2003). The technique on how to introduce and analyse MBFs,
is basically presented in Hansel (1966), Korshunov (2003), Lovász (2007).

The Hansel chain structure (Hansel, 1966) was invented in 1966 and played one of the
central roles in MBF-related algorithmic techniques.

The next valuable step towards this was taken by Tonoyan (1979), who introduced
a set of simple procedures (chain algebra) that serve all the actual queries about Hansel
chains, providing a technical solution to all the problems related to algorithms with Hansel
chains, without constructing and keeping them in computer memory. A slightly modified
and simplified version of Sokolov (1987) is presented using tools such as: enumeration of
all chains, and a procedure of finding the i-th vertex of the j -th chain.

A recurrent step of constructing Hansel chains in Bn is the following (illustrated graph-
ically in Fig. 3). Let l0 be an arbitrary chain in Bn−1

xn=0, and let l1, geometrically, be the same
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Fig. 3. Recurrent step of constructing Hansel chains in Bn.

chain in Bn−1
xn=1. Thorough the chain constructions, all pairs of chains like l0 and l1 are mod-

ified according the following rule. Chain l1 is shortened by removing the last edge (α′
1, α

′
2)

from it, and chain l0 is updated by adding a new edge (α2, α
′
2) to it. This construction pro-

vides one of the basic properties of Hansel chains in Bn: the relative complement of three
consecutive vertices of extended chain l′0 belongs to the shortened chain l′1. Relative com-
plement is a vertex α, that together with the growing chain of tree consecutive vertices α1,
α2, α3 composes a subcube of dimension 2.

We aim at extending this picture of chain-split to the lexicographic order of vertices
in Bn. At least, we note that the longest Hansel chain corresponds to the chain consisting
of the first vertices of layers of Bn under the lexicographic ordering. The mirrored chain
of the last vertices under the lexicographic ordering will be considered as well.

In the MBF recognition problem using membership queries, the overall goal is to de-
termine an unknown MBF of n variables using as few oracle queries (or tests) as possible.
The function can be fully recognized by finding all its upper zeros (and/or lower units)
(Korobkov, 1965). The Shannon complexity of finding all upper zeros (lower units) of an
arbitrary monotone Boolean function of n variables is C

�n/2	
n + C

�n/2	+1
n (Hansel, 1966).

Another recognition structure is used in Sokolov (1987) and in its extensions. For
even n, Bn is split according to two variables and the recognition starts in the two middle
layer sub-cubes of this construction. For odd n, firstly Bn is split according to one variable,
then as each sub-cube now has an even size, the procedure for even sizes is applied. This
provides optimal recognition of all MBFs in the sense of Shannon complexity. Unfortu-
nately, while simple and attractive, this approach cannot be used as a practical algorithm.
Finally, it is worth to mention the work (Gainanov, 1984) that considers not the Shannon
complexity, but the individual complexity of MBF given by its resolving set size.

2.2. Constraint Monotone Boolean Function Recognition

In general, tasks related to the recognition of MBFs may have different formulations. One
objective is to recognize a particular unknown function, knowing that it belongs to the
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class of MBFs or to one of its subclasses. Another goal is to start with partial knowledge
about the unknown function, trying to complete the information. One more case is when
the number of queries is restricted by some number k and the goal is to maximize the rec-
ognized part of the function (Sahakyan et al., 2022). Similar problems can be formulated
for specific classes of Boolean functions. Examples of classes are as follows:

KK-MBF Kruskal-Katona MBFs arise as a result of the shadow minimization theorem
(Kruskal, 1963; Katona, 1968, 1987). KK-MBFs are monotone Boolean functions but they
also intersect the cube layers along their initial segments of the lexicographic order. The
complement of the KK-MBF area in Bn has a similar property; it is related to the initial
segments of the reverse-lexicographic order, and they are anti-monotone.

Symmetric MBF This is a trivial class of functions that takes a constant value on the
cube layers. Trivial, but these functions are practically important. Examples are majority
functions, parity functions, and others (Nosov, 2023).

Threshold MBF Functions are defined by a linear inequality of weighted sums of vari-
ables.

Matroid MBF Monotone Boolean function f is called a matroid function if for each
α, β ∈ min T (f ) with αi = 1, βi = 0, there exists a coordinate j with αj = 0, βj = 1
such that vertex α′, obtained from α by replacing αi with 0 and αj with 1, belongs to
min T (f ).

The combinatorial complexity of reconstruction in these and other subclasses of MBFs
is not well studied. For example, monotone Boolean functions, with zeros and units sep-
arated by two middle layers of the cube, are the most difficult functions for query-based
reconstruction when only the monotonicity of the function is given. But if it is known
that the function belongs to the class of symmetric functions, the reconstruction of this
function can be done by n queries. The same function also belongs to the KK-MBF class.
Knowing more MBF cases that are practically reconstructible enables system proctoring
and application problem solving.

3. KK-MBF Recognition

In this section, we consider a special class of monotone Boolean functions, related to
the well-known Kruskal-Katona theorem, which describes the exact optimal monotone
constructions of shadow minimization (constraint minimization) problem, and the ex-
istence problem of Sperner systems for a given set of parameters. Although the re-
construction problem for general MBFs is intractable, the problem itself is extremely
important in system design and implementation. The reconstruction problem for such
subsets of MBFs is insufficiently investigated, and in this paper, for the first time in
our knowledge, the problem of recognition of functions of class KK-MBF is investi-
gated.
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Fig. 4. KK-MBF function on B5 with p2 = 2 (vertices 11000 and 10100), p3 = 1 (vertex 10011), and p4 = 1
(vertex 01111). Uncoloured vertices show zeros, and the blue vertices – units of the function. Stars indicate the
corner points.

3.1. Introduction to KK-MBF Type Functions

Definition 1. Let f be a monotone Boolean function on Bn. f is called a KK-MBF
type function if zeros of f on the layers of Bn compose initial segments of the reverse-
lexicographic order (an example is given in Fig. 4, where uncoloured vertices correspond
to zeros of the function).

The initial formulations of the shadow theorem in Kruskal (1963), Katona (1968,
1987) are given in terms of co-lexicographic order, but this framework was later simplified
to the simple lexicographic ordering (Aslanyan, 1979). The basic result was obtained for
two neighbour layers of the cube. The name KK now refers to an extension of the basic re-
sult of the shadow minimization theorem to many layers of Bn, as well as to results on the
existence of Sperner families (Clements, 1973; Daykin et al., 1974). Usually, a KK-MBF
function f is given through its characteristics, # min T (f ) = 〈pi1, pi2, . . . , pir 〉, where
pij is the number of lower units of f on the ij -th layer. An example is given in Fig. 4.

3.2. Resolving Sets for KK-MBF

First, let us introduce some general concepts from the field of reconstruction of Boolean
functions (Korobkov, 1965). Suppose we are given a certain class S of Boolean functions
and f ∈ S .

Definition 2. A set of vertices G(f,S) of Bn is called a resolving set for the pair (f,S),
if from the fact that:
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a) a function g belongs to S , and
b) g(α) = f (α) for α ∈ G(f,S),

it follows that g = f .

It follows from the definition that to reconstruct a function it is sufficient to determine
its values on some of its resolving sets.

A resolving set G(f,S) is called a deadlock resolving set for (f,S), if no subset of it
is resolving for the pair (f,S).

When S is the set of all monotone Boolean functions, then every function f ∈ S
has a unique deadlock resolving set included in all its resolving sets; this is the set
G(f ) = min T (f ) ∪ max F(f ) (Korobkov, 1965). Thus, for a general MBF, the con-
cept of deadlock resolving set is given by the set of all upper zeros and lower units of the
function, which represent two interrelated Sperner systems.

It should be noted that this is not true for other Boolean functions and classes, for exam-
ple, for the class of symmetric Boolean functions there are no unique deadlock resolving
sets.

In this section, we investigate the existence of a deadlock resolving set for KK-MBF
functions.

We formulate two simple properties for KK-MBF type functions f and call them hor-
izontal and vertical conditions, denoting them as Cond-h and Cond-v.

Cond-h:

(1) if f (α) = 0 for a vertex α of some layer Lk , then f (β) = 0 for all β ∈ Lk reverse-
lexicographically preceding α (β �revlex α),

(2) if f (α) = 1 for a vertex α of some layer Lk , then f (β) = 1 for all β of Lk lexico-
graphically preceding α (β �lex α).

Cond-v:

(1) if f (α) = 0 for a vertex α, then f (β) = 0 for all β, β � α (component-wise order),
(2) if f (α) = 1 for a vertex α, then f (β) = 1 for all β, β � α (component-wise order).

These conditions, applied recursively, define a domain for each vertex α ∈ f ; denote
it by d(f, α). Domain is downward when f (α) = 0 and upward if f (α) = 1. A simple
characterization of the domains can be given in terms of natural order of vertices (their
serial numbers).

Proposition 1. For α ∈ Bn and f ∈ KK - MBF, d(f, α) is composed by:

• vertices of Bn with a higher serial number, when f (α) = 1, and
• vertices of Bn with a smaller serial number, when f (α) = 0.

Proof.

• Suppose that f (α) = 1. Consider the partition Bn−1
x1= 0∪Bn−1

x1=1 of Bn by the first variable
(see Fig. 4), and apply an inductive inference by the number of variables. Consider 2
cases:
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1) α ∈ Bn−1
x1=1; then, d(f, α) ⊆ Bn−1

x1=1, and by the induction hypothesis, the proposition
is correct.

2) α ∈ Bn−1
x1= 0; in this case, d(f, α) ⊆ Bn−1

x1= 0∪Bn−1
x1=1. For the part in Bn−1

x1= 0, all vertices
have higher serial number according to the induction hypothesis. As for the part in
Bn−1

x1=1, the proposition simply follows from the evident fact, that the vertex of the
smallest serial number in Bn−1

x1=1 is

(1

n−1︷ ︸︸ ︷
00 . . . 0) (equals to 2n−1), while the vertex of the highest serial number in

Bn−1
x1= 0 is (0

n−1︷ ︸︸ ︷
11 . . . 1) (equals 2n−1 − 1).

• Consideration of the case f (α) = 0 is similar.

Note that not all vertices of Bn with a higher (smaller) serial number than α, when
f (α) = 1 (f (α) = 0) are part of the d(f, α).

We also define the notion of corner points for KK-MBF type functions.

Definition 3. A zero vertex α of a function f is called a zero-corner point if:

(1) f (β) = 1 for all β from the same layer, such that β ≺lex α, and
(2) f (β) = 1 for all β, α ≺ β (component-wise order).

Similarly, a unit vertex α of a KK-MBF type function f is called one-corner point if:

(1) f (β) = 0 for all β from the same layer such that β lex α, and
(2) f (β) = 0 for all β, β ≺ α (component-wise order).

Let z(f ) denote the set of all zero-corner points, and o(f ) denote the set of all one-
corner points of function f .

Summarizing all the above reasoning, we formulate the following statement.

Proposition 2. Every monotone Boolean function f of class KK-MBF has a unique dead-
lock resolving set which is included in all its resolving sets. This deadlock resolving set
for f is the set G(f ) = z(f ) ∪ o(f ).

Proof. First note that any zero-corner point α, as a point of f (α) = 0 has its domain
d(f, α) filled with zero values. But as a corner point, d(f, α) cannot be strongly included
in any other domain d(f, β) of a point with f (β) = 0. So the domain of a zero-corner
point α is the deadlock domain filled with zero values. The same note is valid for one-
corner points. Now,

⋃
α∈z(f )∪o(f ) d(f, α) = Bn, otherwise, if there exists β ∈ Bn out of⋃

α∈z(f )∪o(f ) d(f, α), then β may generate a new domain, or it will properly include some
existing domain in it. It follows that z(f )∪o(f ) is a resolving set. Given that the domains
of 0- and 1-corner points cannot intersect by definition, and each point α ∈ z(f ) ∪ o(f )

is represented only by itself, and by its domain, the proof is complete.

For a general MBF, it is well-known that |min T (f ) ∪ max F(f )| can reach the value
C

�n/2	
n + C

�n/2	+1
n and as a consequence, recognition of these functions cannot be done
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with less complexity. Our first notion about the KK-MBF recognition complexity is an
upper bound obtained for the value |z(f ) ∪ o(f )|. Due to the resolving property of the
set z(f ) ∪ o(f ), the estimate will show the number of required tests for reconstruction of
KK-MBF functions.

Proposition 3. For monotone Boolean functions f of class KK-MBF |z(f ) ∪ o(f )| �
2(n − 1).

Proof. According to the condition Cond-h, on each layer of Bn there can be only one
pair α, β of neighbour vertices, for which f (α) = 0 and f (β) = 1. Theoretically, they
also may be corner points; hence, |z(f )∪o(f )| � 2(n+1). Exceptionally, on each of the
0-th and n-th layers there can be only 1 corner point, and in these cases |z(f )∪o(f )| = 1.
Therefore, |z(f ) ∪ o(f )| � 2(n − 1).

It is still a question if the value 2(n − 1) is reachable. A simple view of exercises in
Fig. 4 shows that the real number of corner points will be smaller, but at this point we aim
at mentioning the big difference between the recognition complexities of general MBF
and the KK-MBF.

Concerning the issue about the size of deadlock resolving sets we may refer to the
Theorem 1 of Daykin et al. (1974) and to Clements (1973). Here, parametrized subsets
of MBF are considered. Let us suppose that there are given numbers p0, p1, . . . , pn, de-
noting the quantities of upper zeros of functions on layers of Bn. Existence theorems of
Sperner families, i.e. existence of MBF by the sets {p0, p1, . . . , pn} are obtained. The
first theorem, Daykin et al. (1974), transfers all pi to the layers upper the middle layer.
The second theorem (Clements, 1973; Daykin et al., 1974) gives the necessary and suffi-
cient condition of existence in terms of a formula based on Kruskal’s cascade properties
(Kruskal, 1963).

Similar theorems could be formulated for KK-MBF, where pi s are the numbers of
corner points in layers, and then pis can be either 0 or 1. Thus, the formulas would obtain
simpler Kruskal’s cascade forms. But in our case, the upper bound 2(n − 1) is relatively
small and acceptable as a complexity estimation in comparison to C

�n/2	
n +C

�n/2	+1
n . The

problem is how to effectively find the mentioned corner points algorithmically.
On the other hand, let us consider a series of KK-MBF functions, which provide a

lower bound for |z(f ) ∪ o(f )|.
Define corner points on layers as follows:
On the 1st layer we take two corner points: 1-corner point is the vertex (1

n−1︷ ︸︸ ︷
00 . . . 0),

the smallest vertex of Bn−1
x1=1 in lex order; and 0-corner point is (01

n−2︷ ︸︸ ︷
00 . . . 0), the smallest

vertex of Bn−2
x1= 0,x2=1 in lex order. These are two neighbour vertices on the 1st layer.

On the 2nd layer we construct two corner points as follows: 1-corner point is

(01

n−3︷ ︸︸ ︷
00 . . . 01), the smallest vertex of the cube Bn−3

x1= 0,x2=1,xn=1; 0-corner point is

(0011

n−4︷ ︸︸ ︷
00 . . . 0), the smallest vertex of Bn−4

x1= 0,x2= 0,x3=1,x4=1, all in lex order.
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This process is continued until one of the constructed subcubes becomes small and we
reach a corner point defined by a 0-size subcube, i.e. a vertex.

Let us explain again the construction. Vertex (1

n−1︷ ︸︸ ︷
00 . . . 0) is the smallest vertex on layer 1

of Bn. Vertex (01

n−2︷ ︸︸ ︷
00 . . . 0) is its left neighbour (see Fig. 4). Vertex (1

n−1︷ ︸︸ ︷
00 . . . 0) defines all

vertices of Bn−1
x1=1 as units of the function by Cond-h, and vertex (01

n−2︷ ︸︸ ︷
00 . . . 0) defines as zero

only the vertex (

n︷ ︸︸ ︷
00 . . . 0). Upper area of vertex (01

n−2︷ ︸︸ ︷
00 . . . 0) still can be defined arbitrarily –

either as a zero or as a unit. But we take the leftmost vertex (01

n−3︷ ︸︸ ︷
00 . . . 01) of the layer next

to the layer of (01

n−2︷ ︸︸ ︷
00 . . . 0) defining its value as unit. The left neighbour’s value we define

as zero. This simple construction, repeated as long as possible, gives a series of KK-MBF
functions. How many corner points may have these functions?

Starting from the first layer, we reach the last possible corner point on the:
(n/2)-th layer, if n is even – in this case we have 2 corner points on each layer starting

from 1 to n/2; and (n+ 1)/2-th layer, if n is odd – in this case we have 2 corner points on
each layer starting from 1 to (n − 1)/2, and one corner point on the (n + 1)/2-th layer.

In both cases, we get |z(f ) ∪ o(f )| = n; and thus,

n � max
f ∈ KK - MBF

∣∣z(f ) ∪ o(f )
∣∣ � 2(n − 1).

3.3. Identification of KK-MBF Type Functions: Main Procedures

Hansel chain based MBF recognition methods are global tools and can be applied to rec-
ognize any class of monotone Boolean functions, including KK-MBF. However, we aim
to exploit specific properties of this class of functions to achieve more efficient recogni-
tion. To go beyond the chain-based analysis, in this section we consider the recognition of
KK-MBF functions at the level of analysis of particular layers of Bn.

A useful step and exercise in recognitions is to determine the first and last nontrivial
layers (trivial layers are those with all-zeros or with all units of the function). This can be
done considering the following two chains of length n: L1 that is the chain consisting of
all first, and L2 that is the chain consisting of all last elements of the lexicographic order
of layers. L1 is the longest Hansel chain in the chain split, see Fig. 3. Applying bisections
on chains L1 and L2, we can find two neighbouring layers (k1, k1 + 1) and (k2, k2 + 1)

and vertices on chains L1 and L2, respectively, where the function’s value changes from
0 to 1. This means that the layers from k2 +1 to n, and from 0 to k1 are trivial, they accept
values 0 and 1, correspondingly. Indeed, when first vertex of layer k1 accepts 0, then the
whole layer accepts 0. The layer k1 and below is filled by values 0 (the trivial 0 layers), but
in layer k1 + 1 there exists at least one vertex with value 1 so that trivial layers interrupt
here. Similar explanation is valid concerning the chain L2. The bisection procedure of
each chain requires only log2(n) queries to the oracle.
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On the other hand, if the vertices on each layer of Bn are ordered lexicographically,
we can apply layer by layer bisections and find a corner vertex candidate αk on the k-th
layer with no more than log2 (Ck

n + 1) queries.
In this manner, a KK-MBF type function can be recognized by no more than∑n

k=1 log2 (Ck
n + 1) queries. A very rough estimate of this total value would be O(n2),

as the largest layer is the middle k-th layer with k = [n/2], where C
[n/2]
n ∼ 2n+1√

2πn
with

n → ∞.

Proposition 4. Time complexity of reconstruction of monotone Boolean functions of class
KK-MBF by layer by layer bisections is O(n2).

For KK-MBF functions the time complexity of Hansel algorithm remains ∼ C
[n/2]
n

so O(n2) is a valuable reduction of the complexity characteristics. But the techniques of
Tonoyan (1979) and Sokolov (1987) for the reduction of memory used in Hansel algorithm
can not be applied in the case of our layer bisection approach.

To find a way to reduce the memory complexity we continue to address algorithmic
questions on layers from an additional perspective. In order to apply bisections on lay-
ers, we need to keep all 2n vertices (ordered lexicographically, layer-by-layer) in com-
puter memory. Otherwise, we need to find a vertex by its number in lexicographic order,
or by a distance from a certain vertex (again, in lexicographic order). There are no ex-
plicit formulas for this. Thus, both cases will require appropriate time and memory re-
source.

One way to avoid this situation is using sub-cube structures on layers when partitioning
the cube. This is easily applicable to find the 0–1 border on layers, although it will require
more than logarithmic queries on layers.

We will use αk
j for the j -th element of Lk in the lexicographic order. Then the smallest

element of Lk in the lexicographic order is αk
1 = (

k︷ ︸︸ ︷
11 . . . 1

n−k︷ ︸︸ ︷
00 . . . 0), and the largest one is

the element αk
Ck

n
= (

n−k︷ ︸︸ ︷
00 . . . 0

k︷ ︸︸ ︷
11 . . . 1).

Let Bn−1
x1=1 and Bn−1

x1= 0 be the partitions of Bn according to x1, and Lk,x1=1 and Lk,x1=0

denote the parts of Lk in Bn−1
x1=1 and Bn−1

x1= 0, respectively. Then α1 =
k

(0
︷ ︸︸ ︷
11 . . . 1

n−k−1︷ ︸︸ ︷
00 . . . 0)

is the lexicographically smallest element of Lk,x1= 0, and α0 = (1

n−k︷ ︸︸ ︷
00 . . . 0

k−1︷ ︸︸ ︷
11 . . . 1) is the

lexicographically largest element of Lk,x1=1.
Instead of taking the arithmetical middle vertex of Lk to ask/test the function value,

we take either α1 or α0 (for certainty, we will take α1). If f (α1) = 1, then f (α) = 1
for all α ∈ Lk,x1=1; therefore, the next vertex that we will take to ask the function value
is the largest element of Lk,x1= 0,x2= 0 (the part of Lk in Bn−2

x1= 0,x2= 0), this is element

α2 =
k

(00
︷ ︸︸ ︷
11 . . . 1

n−k−2︷ ︸︸ ︷
00 . . . 0).
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If f (α1) = 0, then f (α) = 0 for all α ∈ Lk,x1= 0; therefore, the next vertex that we
will take is the largest element of Lk,x1=1,x2= 0 (the part of Lk in Bn−2

x1=1,x2= 0), this is the

element α2 =
k−1

(10
︷ ︸︸ ︷
11 . . . 1

n−k−1︷ ︸︸ ︷
00 . . . 0).

In general, in Bn−i
x1= σ1,...,xi=σi

the largest element of k-th layer is

σ1 . . . σi

x︷ ︸︸ ︷
11 . . . 1

y︷ ︸︸ ︷
00 . . . 0, where x is k minus the number of 1s in σ1 . . . σi , and y is

(n − k) minus the number of 0s in σ1 . . . σi .
In this way, after each query, we continue in a smaller sub-cube, and hence, the number

of queries in each layer can be at most n−1. For the heaviest layer, for k = n/2, we get the
same estimate, but without either keeping all vertices in computer memory or calculating
the given j -th vertex in the lexicographic order. Indeed, the number of vertices of middle
layer equals C

[n/2]
n ∼ 2n+1√

2πn
when n → ∞. Logarithm of this, the number of steps in

dichotomy, is equivalent to n − 1, and so the partition by cube structures is simple and
effective.

Proposition 5. Reconstruction of monotone Boolean functions of class KK-MBF can be
organized with complexity O(n2) without keeping the cube structure in computer memory.

As an example, consider the function given in Fig. 4, and suppose that k = 3. Then,
α1 = (01110), and since f (01110) = 0, the next vertex is
α2 = (10110). f (10110) = 1, and it follows that the next is
α3 = (10011). f (10011) = 1.
This way, we found the corner points f (01110) = 0 and f (10011) = 1 of the third

layer.
So far, when recognizing KK-MBF functions layer by layer, we have only used the fact

that the function satisfies the condition Cond-h and have not used the monotonicity of
the function. Using the monotonicity will narrow the space for taking the next vertex for
testing.

Suppose that αk is the smallest vertex of Lk in the lexicographic order with f (αk) = 1.
Denote by αk+1 the lexicographically smallest upper neighbour of αk in Lk+1. Then, at
the next step, we need to consider only those vertices of Lk+1, lexicographically smaller
than αk+1.

For the given example in Fig. 4, (10100) is the smallest vertex of L2 in the reverse-
lexicographic order, where the function value is 1. Then, we will choose the next vertex
in the interval [(00111), (10011)] instead of [(00111), (11100)].

But to calculate the length of the interval [reverse-lexicographically first vertex of Lk+1,
αk+1] we need to find the number of αk+1 in lexicographic order. Effective solution of
this problem is still open.

Here as well, one can use sub-cube structures, but the benefit is only in the case when
f (αk+1) = 0.

We conclude the section with the following general note. It addresses an alternative
partial order of vertices to the traditional monotony based order, where α � β if α
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coordinate-wise precedes β. In terms of KK-MBF, each of the vertices α and β creates
2 domains: upper domains d̂(f, α) and d̂(f, β), when f (α) = f (β) = 1, and lower do-
mains ď(f, α) and ď(f, β), when f (α) = f (β) = 0. In this case we define the following
order: α �d β if d(f, α) ⊆ d(f, β) with f (α) = f (β) = 0, and, which is the same,
α �d β if d(f, α) ⊇ d(f, β) with f (α) = f (β) = 1. Otherwise, vertices α and β are in-
comparable. We call this construction KK-poset. Sperner type family may be obtained as a
simple extension of this concept to the case of KK-poset. Here, similar to general MBFs,
each KK-MBF is given by two complementary Sperner families – one is composed by
0-corner points, and the other includes all maximal 1-corner points of the function. We
obtain that the KK-MBF reconstruction is similar to the MBF reconstruction, just the ba-
sic space and poset is a bit different. The technique developed for the general MBF and
the experiences may be used in the problem of reconstruction of KK-MBF functions. We
consider this reduction and transfer from MBF to KK-MBF an interesting research topic
that is worthy of further investigations.

4. Cardinality of KK-MBF Class

Another important issue is the size of the whole class of KK-MBF functions (Kor-
shunov, 2003; BFA, 2023; Jung, 2023). First, let us note that the function, given through
pn/2 = C

n/2
n (with all other layer characteristics equal to 0), belongs to the class KK-MBF

and is the only function with the largest number of lower units. Therefore, to count the
number of KK-MBF functions, we need to consider the number of non-negative integer
partitions for an arbitrary positive integer p, 1 � p � C

n/2
n : p = p1+p2+· · ·+pn−1 (ex-

cluding the boundary cases p = p0 = 1 and p = pn = 1), such that 0 � p1 � |[αs
1, α

l
1]|,

0 � p2 � |[αs
2, α

l
2]|, . . . , 0 � pn−1 � |[αs

n−1, α
l
n−1]|, where [αs

j , α
l
j ] is the feasible in-

terval of vertices on the j -th layer with αs
j as the smallest and αl

j as the largest element in
the lexicographic order. These smallest and largest elements are defined in the following
way. For all intervals, αs

j is the lexicographically smallest element of the j -th layer. As for
the largest elements, – αl

1 is the largest element of the first layer. To find αl
2, we consider

the smallest element of δ1+1M1, where M1 is the final m1 element on the 1st layer in
the lexicographic order, and αl

2 is the vertex previous to it. To find αl
3, we consider the

smallest element of δ2+1M2, where M2 is the next m2 elements on the 2nd layer in the
lexicographic order, after δ1+1M1, and αl

3 is the vertex previous to it.
In general, αl

j is the previous to the smallest element of δjMj−1 in the lexicographic
order, where Mj−1 is the next pj−1 element of the (j − 1)-th layer after δj−1Mj−2.

Note that among p1, p2, . . . , pn−1 at most n − 2 elements can be positive. Moreover,
all n − 2 elements can be positive only in restricted cases, i.e. when p1 = p2 = · · · =
pn−2 = 1.

Thus, constraints on pi are imposed not only in the form of 0 � pi � |[αs
i , α

l
i ]|, but

also on their numbers depending on the previous values of p1, p2, . . . , pi−1. This is one
way of counting the number of elements of the class, but it is not easy to obtain an explicit
formula in this manner.
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Fig. 5. Structure of Rt (n).

Let C denote a particular subclass of KK-MBF functions having one 0-corner point at
any layer of the cube.

To construct this subclass we take an arbitrary point α ∈ Bn and define the function
by 0 value in the point α and in the domain d(f, α). f may have one or several 1-corner
points. Since we may choose the point α in 2n different ways, we get that |C| � 2n.

5. Special Cases

In this section, we address another particular subclass of KK-MBF functions, which is
related to the cascades of Kruskal.

Let Rt(n) denote the initial t-length segment of the reverse lexicographic ordering
on Bn. Rt(n) corresponds to the set of units of a monotone Boolean function, denote
it by fR , the structure of which can be illustrated as in Fig. 5, where k1, k2, . . . , kp are
parameters in binary representation of t , t = 2k1 + 2k2 + · · · + 2kp ; k1 > k2 > · · · >

kp > 0.
Let S = (s1, s2, . . . , sn) be the associated vector of partitions of Rt(n), composed as

si = |Rt(n)xi=1|, i = 1, . . . , n.
It is known (Sahakyan, 2013, 2015) that fR is the unique monotone Boolean function

(up to variable permutations) with the smallest sum of coordinates of its associated vector
of partitions among all monotone Boolean functions with t units. The coordinates of S =
(s1, . . . , sn) are also calculated.

Numbers of lower units of fR on the layers n − k1, n − k2 − 1, . . . , n − kp − 1 are
determined by t .

Equivalently, fR can be constructed in the following way:
Consider again the binary representation of t :

t = αn2n + αn−12n−1 + · · · + α121 + α020.

Suppose that the first positive summand is 2k1 (αk1 = 1). We construct an interval with
the lower unit as the smallest vertex of the n − k1-th layer by the reverse lexicographic
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order. If the next αk1−1 > 0, then we take the next vertex of the reverse lexicographic
order as a lower unit, and compose an interval. If a current αk1−j = 0, then we go up (we
go up as many times as they are 0), and take the smallest vertex of the reverse lexicographic
order (which is not in the upper shadows of the constructed intervals).

By constructing the same function in this manner, we know the numbers of lower units
in layers, depending on t .

Thus, for a given t , we constructed a KK-MBF function with t units, and we also know
its characteristics, # min T (fR) = 〈pi1, pi2, . . . , pir 〉.

On the other hand, if given characteristics # min T (fR) = 〈pi1, pi2, . . . , pir 〉 of some
KK-MBF function, we can count the number of its units.

In general, it is possible to impose restrictions on the numbers/layers of the lower units
of KK-MBF functions to get this special subclass.

6. Concluding Remarks

Boolean functions are not only a means of computing functional dependencies, but also
represent a suitable mathematical apparatus for modelling data science systems. The lim-
itations of models and the structure of their joint collections are reduced to considering
Boolean functions that have the property of monotonicity. However, decoding monotone
Boolean functions is a multifaceted problem, and there remain many unsolved or ineffi-
ciently solved problems in this context. Combinatorial constructions have been consid-
ered in some detail, but they are complex and often reduced to enumeration (brute-force).
A possible new approach is to bring in a new resource, namely that of artificial intelligence
(Valiant, 1984; Sahakyan et al., 2022; Zhuravlev et al., 2019, 2020). In this formulation,
the emphasis is placed on solving a large number of problems of the class under considera-
tion, accumulating the results of solutions in the form of a database, training on them, and
not solving but recognizing the solution of the problem under consideration by analysing
the parameters of the problem and the database information. The problem in this formu-
lation is already becoming popular, and our first results related to it refer to decoding
arbitrary monotone Boolean functions and are presented in Sahakyan et al. (2022).

Another possible approach continues the first one and seeks ways of refining, and re-
constructing the problem constraints, with subtypes of monotone Boolean functions ap-
pearing, the decoding of which requires refined approaches, and the associated algorithms,
whether combinatorial or based on machine learning, that can be practically implemented.
There is a list of practical problems in big data analytics that reduce to the diverse classes
of monotone Boolean functions. We begin the study of one of the classes of such func-
tions – shadow minimized Boolean functions, for subsets of finite sets. We proceeded
from the well-known solution of the problem for layers, formulated in the form of the
Kruskal-Katona theorem, and on the extension of this fact to all layers of the cube, when
the existence conditions for Sperner systems are obtained. We were able to show that the
class of these functions has the structure of a generating set, which is not a necessary
property of arbitrary classes of functions. Basic structures of data analysis of the problem
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of identification of these functions, details of memory organization in the optimal mode
are also given, but we consider the beginning of these investigations as the main step, and
we think that subsequent investigations will give acceptable complexity results for solving
these problems, both in this and in other systems of functions with constraints.
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