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Abstract. A complex spherical fuzzy set (CSFS) is a generalization of the spherical fuzzy set (SFS)
to express the two-dimensional ambiguous information in which the range of positive, neutral and
negative degrees occurs in the complex plane with the unit disk. Considering the vital importance
of the concept of CSFSs which is gaining massive attention in the research area of two-dimensional
uncertain information, we aim to establish a novel methodology for multi-criteria group decision-
making (MCGDM). This methodology allows us to calculate both the weights of the decision-
makers (DMs) and the weights of the criteria objectively. For this goal, we first introduce a new
entropy measure function that measures the fuzziness degree associated with a CSFS to compute
the unknown criteria weights in this methodology. Then, we present an innovative Complex Pro-
portional Assessment (COPRAS) method based on the proposed entropy measure in the complex
spherical fuzzy environment. Besides, we solve a strategic supplier selection problem which is very
important to maximize the efficiency of the trading companies. Finally, we present some compara-
tive analyses with some existing methods in different set theories, including the entropy measures,
to show the feasibility and usefulness of the proposed method in the decision-making process.
Key words: complex spherical fuzzy sets, COPRAS, entropy, multi-criteria group
decision-making, supplier selection.

1. Introduction

In our world which is becoming a more global marketplace, the global environment is
forcing companies to take almost everything into consideration at the same time, remain
competitive and respond to rapidly changing markets. In this aspect, supply chain manage-
ment and strategic sourcing have been one of the fastest-growing and most important areas
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of management in companies. Since technological complexity has affected the logistics
and supply chains directly, the supply chain management has to adapt to these complex
and dynamic factors. So, in this trading world, the search for new and strategic suppliers is
a continuous priority for companies in order to upgrade the variety and typology of their
product range. Hence, supplier selection represents one of the most important functions
to be performed by the purchasing department that determines the long-term viability of a
company. Strategic supplier selection is a multi-criteria problem that includes both quali-
tative and quantitative criteria. In order to select the best suppliers, it is necessary to make
a tradeoff between tangible and intangible criteria, some of which may conflict. In this
case, we are required to handle a decision-making problem.

Decision-making is the process of identifying different and possible alternatives that
can solve a problem and choosing the one that will best meet the expectations among these
alternatives. Since complexity prolongs the decision-making process, as it requires the
evaluation of many alternatives according to many criteria in the process, many studies
and decision-making methods have been developed in the literature to work with com-
plex data and make an appropriate choice (Chen, 1988; Maji et al., 2001). Multi-criteria
decision-making (MCDM) is one of the decision-making methods based on an expert’s
opinion. If more than one expert is attending, this method is called MCGDM. In litera-
ture, there are many techniques that have been developed to solve MCDM and MCGDM
problems such as the Analytic Hierarchy Process (AHP) (Saaty, 1980), Technique for Or-
der Performance by Similarity to Ideal Solution (TOPSIS) (Hwang and Yoon, 1981), CO-
PRAS (Zavadskas et al., 1994), VIsekriterijumsko optimizacija Kompromisno Rangiranje
(VIKOR) (Opricovic, 1998), Multi-Objective Optimization by Ratio Analysis (MOORA)
(Brauers and Zavadskas, 2006) and so on.

Fuzzy set (FS) theory (Zadeh, 1965) is an effective tool for solving decision-making
problems in this increasingly complex world, as FS is a way of thinking used to describe
the imprecise. However, since the evaluation is only made on the degree of member-
ship in FS theory, this is also insufficient to solve complex problems. For this reason,
many generalizations of FS theory have been made in the literature. The intuitionistic
fuzzy set (IFS) (Atanassov, 2003) which is one of these generalizations, refers to a set
whose sum of positive-membership degree and negative-membership degree is less than
or equal to 1. After, the IFS theory was extended to Pythagorean fuzzy set (PyFS) (Yager,
2013) theory by considering the sum of the squares of its positive-membership degree and
negative-membership degree is less than or equal to 1. The other extension of IFS is Pic-
ture Fuzzy Set (PFS) (Cuong, 2013) which has positive-membership, neutral-membership
and negative-membership degrees and the sum of these degrees is less than or equal to 1.
PFS is able to deal with problems that have more answers. Then the theory of SFS has been
developed by Mahmood et al. (2018) to encounter situations that PFS cannot meet. In the
SFS, the sum of the squares of positive-membership, neutral-membership and negative-
membership degrees is less than or equal to 1. Many authors have studied on these sets
(Aydoğdu and Gül, 2020; Güner and Aygün, 2020, 2022). Geometric representations of
the theories IFS, PyFS, PFS and SFS are shown in Fig. 1. The mentioned set theories are
highly proficient and skilled to carry ambiguous information but their capabilities are lim-
ited to handle one-dimensional data. Many MCDM problems comprise two-dimensional
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Fig. 1. Geometric representations of IFS, PyFS, PFS and SFS.

data but the existing MCDM strategies are incompetent to handle the two-dimensional in-
formation. To handle such phenomena, complex generalizations of FSs mentioned above
have been studied by Ramot et al. (2002, 2003), Alkouri and Salleh (2013), Ullah et al.
(2020), Akram et al. (2021c) and these sets have been applied to many decision-making
problems. Azam et al. (2022) gave an example of evaluating the enterprise’s information
security management issue in a particular organization on complex intuitionistic fuzzy sets
(CIFSs). Akram et al. (2020) made an example of selecting the best capable ERP systems
as candidates after collecting information about ERP vendors and systems from all aspects
of the complex picture fuzzy set (CPFS) environment. Recently, Akram et al. (2021c) in-
troduced the theory of CSFSs to handle the two-dimensional data where we consider the
degrees of positive-membership, neutral-membership, negative-membership and refusal
that lie inside a complex unit circle. According to this theory, the sum of squares of their
amplitude (and phase terms) can not exceed 1. In this way, lots of decision-making prob-
lems, consisting of the mentioned data, became solvable by using the developed MCGDM
methods.

One of the most critical steps in MCDM/MCGDM techniques is to determine the
weights of the criteria because the weights directly affect the ranking of the alterna-
tives. For this reason, many methods have been developed to calculate criterion weights.
Some of these are subjective and some are weighting methods based on an objective point
of view. Methods such as AHP (Saaty, 1980), Analytic Network Process (ANP) (Saaty,
1996), Step-Wise Weight Assessment Ratio Analysis (SWARA) (Keršuliene et al., 2010),
Full Consistency Method (FUCOM) (Pamucar et al., 2018) and Level Based Weight
Assessment (LBWA) (Žižović and Pamucar, 2019) are among the subjective weight-
ing methods in which the preferences of DMs are taken into account. In some objec-
tive weighting methods such as Entropy (De Luca and Termini, 1972), CRiteria Impor-
tance Through Intercriteria Correlation (CRITIC) by Diakoulaki et al. (1995), Best Worst
Method (BWM) (Rezaei, 2015) and Method based on the Removal Effects of Criteria
(MEREC) by Keshavarz-Ghorabaee et al. (2021), the mathematical model is solved with-
out considering the ideas of the DMs.
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Entropy is the random measurement of the uncertainty in a process or the amount
of information produced. It is also relevant to questions about how to measure the un-
certainty of the entropy fuzzy environment. Many authors (De Luca and Termini, 1972,
1977; Xuecheng, 1992; Fan and Xie, 1999) introduced the axiom construction of FS en-
tropy. Hung and Yang (2006) extended these ideas to construct the concept of the fuzzy
entropy of IFSs. Thaoa and Smarandache (2019) extended the fuzzy entropy of Hung and
Yang (2006) to PFSs. Many authors (Thaoa and Smarandache, 2019; Rani et al., 2020b;
Alipour et al., 2021; Gül and Aydoğdu, 2021; Chaurasiya and Jain, 2022) gave the entropy
measure on PFS to solve many decision-making problems. Aydoğdu and Gül (2020) pro-
posed a novel entropy measure for SFSs and applied this entropy to solve the MCGDM
problems. Also, Naeem et al. (2022) and Aydoğdu et al. (2023) defined the new entropy
measure functions to calculate the weights of criteria objectively. In Table 1, one can find
some remarkable studies that are combined with the traditional methods and the men-
tioned objective and subjective weighting approaches.

1.1. Literature Review

The COPRAS method, introduced by Zavadskas et al. (1994), is used to assess the max-
imizing and minimizing index values where the effect of maximizing and minimizing
indexes of attributes on the assessment of the results is considered separately. The effec-
tiveness and usefulness of this method are based on the fact that this method is a compen-
satory method, attributes are independent and the qualitative attributes are converted into
the quantitative attributes. Since this method was presented by Zavadskas et al. (1994),
many authors established this approach on the different set theories with the objective/sub-
jective weighting of both weights of DMs and criteria by giving several applications in
the different real-life problems as seen in Table 2.

Nowadays, researchers are handling MCDM/MCGDM problems including uncertain
two-dimensional data. Especially, the CSFSs have drawn attention to their broader struc-
ture when comparing other set theories. Different approaches with several applications
in the CSF environment have been presented: Ali et al. (2020) introduced the complex
spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted Bon-
ferroni mean (CSFWBM) operators and presented the TOPSIS method on CSFSs based
on these operators. Then, Akram et al. (2021c) presented the complex spherical fuzzy
VIKOR (CSF-VIKOR) method by merging the grounds of VIKOR method and CSFSs
and applied this approach in the field of business related to an advertisement on Facebook.
As a continuation, Akram et al. (2021a) presented the complex spherical fuzzy TOPSIS
(CSF-TOPSIS) method that cumulates the novel features of CSFSs with the potential of
the TOPSIS method. Then they ranked the alternatives in an ascending order of revised
closeness index, evaluated by deploying normalized Euclidean distance. They also expli-
cated the adequacy of the CSF-TOPSIS method and conducted a comparative study with
CSF-TOPSIS and CSF-VIKOR. Akram et al. (2021b) and Zahid et al. (2022) presented the
CSF-ELECTRE I and CSF-ELECTRE II in the CSF environment and solved the problems
of “selection of network monitoring software” and “selection of the most efficient technol-
ogy to treat cadmium-contaminated water”, respectively. Moreover, Naeem et al. (2022)
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Table 1
Some combinations with traditional methods via objective and subjective weighting.

Obj. w. Some combined versions Given by Subj. w. Some combined versions Given by

MEREC MEREC-ARAS Rani et al. (2022) ANP ANP-TOPSIS Sakthivel et al. (2015)
MEREC MEREC-MULTIMOORA Mishra et al. (2022) ANP ANP-DEMATEL Yang et al. (2008)
MEREC MEREC-WASPAS Keshavarz-Ghorabaee (2021) ANP ANP-COPRAS Balali et al. (2021)
CRITIC CRITIC-CoCoSo Peng et al. (2020) AHP AHP-COPRAS Ecer (2014)
CRITIC CRITIC-WASPAS Keshavarz-Ghorabaee et al. (2017) AHP AHP-TOPSIS Anser et al. (2020)
BWM BWM-LBWA-CoCoSo Torkayesh et al. (2021) LBWA BWM-LBWA-CoCoSo Torkayesh et al. (2021)
BWM BWM-TOPSIS Gupta and Barua (2017) LBWA LBWA-WASPAS Pamucar et al. (2020)
Entropy Entropy-COPRAS-MULTIMOORA Alkan and Albayrak (2020) FUCOM FUCOM-MABAC Bozanic et al. (2020)
Entropy Entropy-WASPAS Aydoğdu and Gül (2020) FUCOM FUCOM-MARCOS Pamucar et al. (2021)
Entropy Entropy-ARAS Aydoğdu and Gül (2022) SWARA SWARA-COPRAS Rani et al. (2020a)
Entropy Entropy-TOPSIS Aydoğdu et al. (2023) SWARA SWARA-VIKOR Alimardani et al. (2013)

Table 2
Literature review for COPRAS method.

Given by Model Method Group Criteria weights Application area

Kumari and Mishra (2020) IFS COPRAS X Obj. (Entropy) Green supplier selection
Mishra et al. (2020) IFS SWARA-COPRAS X Subj. (SWARA) Select. of an optimal bioenergy production tech.
Schitea et al. (2019) IFS WASPAS-COPRAS-EDAS X Subj. Hydrogen mobility roll-up site selection
Buyukozkan and Gocer (2019) PyFS AHP-COPRAS X Subj. (AHP) Digital supply chain partner selection
Rani et al. (2020b) PyFS COPRAS X Obj. (Entropy) Pharmacological therapy select. for type-2 diabetes
Dorfeshan and Mousavi (2019) PyFS COPRAS-TOPSIS

√
Marble processing plants project

Chaurasiya and Jain (2022) PyFS COPRAS X Obj. (Entropy) Multi-criteria healthcare waste treatment problem
Thaoa and Smarandache (2019) PyFS COPRAS X Obj. (Entropy) Select. of teaching management system
Alipour et al. (2021) PyFS SWARA-COPRAS X Obj. (Entropy) Fuel cell and hydrogen components supplier select

X Subj. (SWARA)
Lu et al. (2021) PFS COPRAS

√
Obj. (CRITIC) Green supplier selection

Kahraman et al. (2020) PFS COPRAS-VIKOR-TOPSIS X Subj. (AHP) A state of the art survey
Omerali and Kaya (2022) SFS COPRAS

√
Subj. Selection of the augmented reality solution

Güner et al. (2022) SFS AHP-COPRAS
√

Subj. (AHP) Renewable energy selection
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Table 3
Literature review for the MCDM-MCGDM methods in the CSFSs.

Given by Model Method Group Criteria
weights

Application area

Ali et al. (2020) CSFS TOPSIS X Subj. Select. of organization to extend
the income

Akram et al. (2021b) CSFS ELECTRE-I X Subj. Select. of location for new branch
of a company

Akram et al. (2021a) CSFS TOPSIS
√

Subj. Select. of best water supply strategy
Akram et al. (2021c) CSFS VIKOR

√
Subj. Select. of the advertisement on

Facebook
Aldemir et al. (2021) CSFS TOPSIS based on

aggregation op.

√
Subj.

Zahid et al. (2022) CSFS ELECTRE-II
√

Subj. Selection of the tech. to treat
cad.-contam. water

Naeem et al. (2022) CSFS Aggregation
operators

√
Obj. Green supplier selection

Aydoğdu et al. (2023) CSFS TOPSIS based on
entropy

√
Obj. Select. of the advertisement on

Facebook

established an MCGDM method based on some aggregation operators and entropy mea-
sure function which is used to calculate the weights of criteria objectively, and applied this
method to the green supplier selection problem consisting of two-dimensional informa-
tion. Recently, Aydoğdu et al. (2023) established a novel CSF-TOPSIS based on entropy
method under the complex spherical fuzzy environment by calculating the weights of both
the DMs and criteria objectively with a novel entropy measure function. All mentioned
studies in the CSF environment are listed categorically in Table 3.

1.2. Motivation and Main Contribution

COPRAS method is used for the evaluation of the multi-criteria system of variables for
maximizing and minimizing the values. Since this method allows us to compare and also
check the final results of measuring easily, it is preferred more over the other existing meth-
ods. Also, this method allows being used to implement the comparison and evaluation of
variables described hierarchically without requiring such transformation as minimizing
the variables. On the other hand, CSFS theory is more powerful with its superior struc-
ture to those modern extensions of FS theory which can elaborate the two-dimensional
ambiguous information. By considering all positive sides, in this study, we establish a
novel method by considering respect to the advantages of CSFSs in describing uncertain
information, the useful structure of the COPRAS method in MCGDM problems and the
entropy measure which allows for determining the objective weights of the criteria. While
the proposed method determines the unknown criteria weights by using the entropy mea-
sure, it satisfies that the smaller entropy measure of a criterion among alternatives should
be imposed as the bigger weight to that criterion, and otherwise, the smaller weight to that
criterion. We can enlist the main objectives of the article as follows:
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1) We establish a novel improved COPRAS method in CSFS. In this method, a new for-
mula is developed to evaluate unknown weight information of both DMs and criteria
weights. These weights are calculated by using the entropy measure method to obtain
objective weights. For this reason, we propose a new entropy measure function and
explain why we need this entropy measure function and what kind of superiority it has
over the existing functions.

2) We solve the problem of “selection of the strategic supplier” by the proposed method
as an objective weight of DMs and criteria.

3) To explicate the adequacy of the proposed strategy and consistency of the result,
a comparison analysis and method analysis with the existing method are presented.

4) The versatility and decision-making skills of our proposed COPRAS method is not
only limited to two-dimensional data but also this method exhibits the same accuracy
when applied to one-dimensional data inclusive of spherical fuzzy data and picture
fuzzy data by taking their phase term equal to zero. Thus, the proposed methodology
is a flexible approach that competently manages both traditional and two-dimensional
uncertain information with precision.

5) The proposed COPRAS technique not only deals excellently with CSF information
but also can be successfully applied to the complex Pythagorean model and complex
intuitionistic model by taking their neutral-membership equal to zero.

6) The objective weight data of our proposed method is not limited to the COPRAS
methodology. Proposed objective criteria weighting schema and objective DMs’
weighting schema can be applied to different CSF-MCGDM methods with the same
example if their methods include subjective weighting data.

7) We compare this method with the CSF-TOPSIS based on entropy method given by
Aydoğdu et al. (2023), CSF-ELECTRE II method by Zahid et al. (2022) and based on
aggregation operators method by Naeem et al. (2022) in the CSF environment to show
the consistency of the proposed method. We also analyse the results obtained by using
the F-TOPSIS and SF-COPRAS methods in fuzzy and SF environments.

The rest of the paper is organized as follows. In Section 2, we recall some basic defini-
tions of CSFSs and necessary operators. We introduce a novel entropy measure for CSFS
in Section 3. Section 4 presents the improved COPRAS method with calculated objective
weights of both DMs and criteria. In Section 5, we give an application of the proposed
COPRAS method in a real-life problem related to the strategic supplier selection. The
results are compared with other methods such as F-TOPSIS, SF-COPRAS, CSF-TOPSIS
based on entropy, CSF-ELECTRE II and based on aggregation operators methods in CSF
environment in Section 6. The effectiveness of the proposed method is clarified with the
comparisons.

2. Preliminaries

In this section, we recall some fundamental definitions which will be used in the main
sections. Throughout this paper, X will denote the set of the universe.
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Definition 1 (Ali et al., 2020; Akram et al., 2021c). Let f, g, h : X → [0, 1], α, β, γ :
X → [0, 2π] and i = √−1. A CSFS over X is of the form

C = {(
x, f (x)eiα(x), g(x)eiβ(x), h(x)eiγ (x)

) ∣∣ x ∈ X
}

if the conditions f 2(x) + g2(x) + h2(x) � 1 and
(

α(x)
2π

)2 + (β(x)
2π

)2 + ( γ (x)
2π

)2 � 1

are satisfied for all x ∈ X. The functions f(x) = f (x)eiα(x), g(x) = g(x)eiβ(x) and
h(x) = g(x)eiγ (x) denote the positive-membership, neutral-membership and negative-
membership of x to C which are restricted to the unit circle and consists of two terms such
as amplitude term and phase term. The refusal function is given by

t (x) =
√

1 − f 2(x) − g2(x) − h2(x)e
i2π

√
1−

(
α(x)
2π

)2−
(

β(x)
2π

)2−
(

γ (x)
2π

)2

for all x ∈ X. We denote the collection of CSFSs over X with CSFS(X). The triplet
C = (f, g, h) is called a complex spherical fuzzy number (CSFN) where f = f eiα ,
g = geiβ , h = heiγ for f, g, h ∈ [0, 1], α, β, γ ∈ [0, 2π] satisfying f 2 + g2 + h2 � 1

and
(

α
2π

)2 + ( β
2π

)2 + ( γ
2π

)2 � 1.

Definition 2 (Akram et al., 2021c). The complement of the CSFS C is denoted by Cc

and given as follows

Cc = {(
x, h(x)eiγ (x), g(x)eiβ(x), f (x)eiα(x)

) ∣∣ x ∈ X
}
.

Definition 3 (Akram et al., 2021c). Let C = (
f eiα, geiβ, heiγ

)
, C1 = (

f1e
iα1, g1e

iβ1,

h1e
iγ1

)
, C2 = (

f2e
iα2, g2e

iβ2, h2e
iγ2

)
be three CSFNs and a � 0. Then the operations

between CSFNs are defined as follows:

1. C1 ⊕ C2 =
(√

f 2
1 + f 2

2 − f 2
1 f 2

2 e
i2π

√(
α1
2π

)2+
(

α2
2π

)2−
(

α1
2π

)2( α2
2π

)2

, g1g2e
i2π

(
β1
2π

)(
β2
2π

)
,

h1h2e
i2π

(
γ1
2π

)(
γ2
2π

))
,

2. C1 � C2 =

⎛
⎜⎜⎝ f1f2e

i2π
(

α1
2π

)(
α2
2π

)
,

√
g2

1 + g2
2 − g2

1g2
2e

i2π

√(
β1
2π

)2+
(

β2
2π

)2−
(

β1
2π

)2( β2
2π

)2

,√
h2

1 + h2
2 − h2

1h
2
2e

i2π

√(
γ1
2π

)2+
(

γ2
2π

)2−
(

γ1
2π

)2( γ2
2π

)2

⎞
⎟⎟⎠,

3. aC =
(√

1 − (
1 − f 2

)a
e
i2π

√
1−

(
1−

(
α

2π

)2)a

, gae
i2π

(
β

2π

)a

, hae
i2π

(
γ

2π

)a)
,

4. C a =
(
f ae

i2π
(

α
2π

)a

,

√
1 − (

1 − g2
)a

e
i2π

√
1−

(
1−

(
β

2π

)2)a

,√
1 − (

1 − h2
)a

e
i2π

√
1−

(
1−

(
γ

2π

)2)a)
.

Definition 4. (Akram et al., 2021c) Let C be a collection of the CSFNs and
(C1,C2, . . . ,Cn) ∈ Cn where Ck = (

fke
iαk , gke

iβk , hke
iγk

)
for all k = 1, 2, . . . , n and
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ω = (ω1, ω2, . . . , ωn)
T be the weight vector corresponding to (Ck)

n
k=1 such that ωk � 0

for all k and
∑n

k=1 ωk = 1. A mapping CSFWAω : Cn → C is said to be a complex
spherical fuzzy weighted average (CSFWA) operator and is defined by

CSFWAω(C1,C2, . . . ,Cn) = ω1C1 ⊕ ω2C2 ⊕ · · · ⊕ ωnCn =
n⊕

k=1

ωkCk. (1)

Theorem 1 (Akram et al., 2021c). Let (C1,C2, . . . ,Cn) ∈ Cn. Then the aggregated value
CSFWAω(C1,C2, . . . ,Cn) is also a CSFN and is calculated by

CSFWAω(C1,C2, . . . ,Cn)

=
n⊕

k=1

ωkCk =
⎛
⎜⎝

√
1 − ∏n

k=1

(
1 − f 2

k

)ωke
i2π

√
1−∏n

k=1

(
1−

(
αk
2π

)2)ωk

,∏n
k=1 g

ωk

k e
i2π

∏n
k=1

(
βk
2π

)ωk

,
∏n

k=1 h
ωk

k e
i2π

∏n
k=1

(
γk
2π

)ωk

⎞
⎟⎠ ,

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector corresponding to (Ck)

n
k=1 such that

ωk � 0 for all k and
∑n

k=1 ωk = 1.

Definition 5 (Akram et al., 2021a). Let C = (C1,C2, . . . ,Cn), C′ = (C ′
1,C

′
2, . . . ,C

′
n) ∈

Cn where Ck = (
fke

iαk , gke
iβk , hke

iγk
)

and C ′
k = (

f ′
ke

iα′
k , g′

ke
iβ ′

k , h′
ke

iγ ′
k

)
for all

k = 1, 2, . . . , n. Then the normalized Euclidean distance between C and C′ is defined as

dE

(
C,C′) =

[
1

3n

n∑
k=1

[(
f 2

k − (
f ′

k

)2)2 + (
g2

k − (
g′

k

)2)2 + (
h2

k − (
h′

k

)2)2

+ 1

16π4

{(
α2

k − (
α′

k

)2)2 + (
β2

k − (
β ′

k

)2)2 + (
γ 2
k − (

γ ′
k

)2)}]]1/2

.

Definition 6 (Akram et al., 2021d). Let C be the collection of the CSFNs and C ∈ C
where C = (

f eiα, geiβ, heiγ
)
.

(i) A score function SF : C → [0, 2] is defined as

SF(C ) = 1

3

(
4 + f 2 − g2 − h2 +

(
α

2π

)2

−
(

β

2π

)2

−
(

γ

2π

)2)
.

(ii) An accuracy function AF : C → [0, 2] is defined as

AF(C ) = 1

3

(
4 + f 2 + g2 + h2 +

(
α

2π

)2

+
(

β

2π

)2

+
(

γ

2π

)2)
.

Definition 7 (Akram et al., 2021d). C1,C2 ∈ C be two CSFNs. Then the ranking method
(comparison technique) is given as follows:

1. If SF(C1) < SF(C1), then C1 ≺ C2,
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2. If SF(C1) > SF(C2), then C1 
 C2,
3. SF(C1) = SF(C2), then

(a) AF(C1) < AF(C2), then C1 ≺ C2,
(b) AF(C1) > AF(C2), then C1 
 C2,
(c) AF(C1) = AF(C2), then C1 = C2.

3. Entropy on Complex Spherical Fuzzy Sets

In this section, we give a novel entropy to measure the fuzziness of CSFSs in the process
of decision-making.

Definition 8. Let C, C1 and C2 be CSFSs on X. A mapping E : CSFS(X) → [0, 1] is
said to be an entropy measure function on CSFS if E satisfies all of the conditions:

1. E(C) = 0 if C is acrisp set.
2. E(C) = 1 if f (xi) = g(xi) = h(xi) and α(xi) = β(xi) = γ (xi) for all xi ∈ X.
3. E(C) = E(Cc).
4. E(C1) � E(C2) if f 2

C1
(xi) � f 2

C2
(xi) � h2

C2
(xi) = h2

C1
(xi) � g2

C2
(xi) � g2

C1
(xi)

or f 2
C1

(xi) � f 2
C2

(xi) � h2
C2

(xi) = h2
C1

(xi) � g2
C2

(xi) � g2
C1

(xi) when α2
C1

(xi) �
α2
C2

(xi) � γ 2
C2

(xi) = γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) or α2
C1

(xi) � α2
C2

(xi) � γ 2
C2

(xi) =
γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) for all xi ∈ X.

Theorem 2. Let C be CSFSs on X. Consider the mapping E : CSFS(X) → [0, 1] given
by

E(C) = 1 − 1

4n

n∑
i=1

(∣∣f 2(xi) − h2(xi)
∣∣ + ∣∣f 2(xi) − g2(xi)

∣∣ + ∣∣h2(xi) − g2(xi)
∣∣

+ 1

4π2

(∣∣α2(xi) − γ 2(xi)
∣∣ + ∣∣α2(xi) − β2(xi)

∣∣ + ∣∣γ 2(xi) − β2(xi)
∣∣)).

Then the mapping E is an entropy measure function on CSFS (X).

Proof.

1. For a crisp set C (i.e. f (xi) = g(xi) = 0, h(xi) = 1, α(xi) = β(xi) = 0, γ (xi) = 2π

or f (xi) = 1, g(xi) = h(xi) = 0, α(xi) = 2π , β(xi) = γ (xi) = 0 for all i =
1, 2, . . . , n) we have E(C) = 0.

2. For all xi ∈ X, if f (xi) = g(xi) = h(xi) and α(xi) = β(xi) = γ (xi) then

E(C) = 1 − 1

4n

n∑
i=1

(∣∣f 2(xi) − f 2(xi)
∣∣ + ∣∣f 2(xi) − f 2(xi)

∣∣ + ∣∣h2(xi) − f 2(xi)
∣∣

+ 1

4π2

(∣∣α2(xi) − α2(xi)
∣∣ + ∣∣α2(xi) − α2(xi)

∣∣ + ∣∣α2(xi) − α2(xi)
∣∣)) = 1.



A Novel Entropy Measure with its Application to the COPRAS Method 689

3. It is obvious that E(C) = E(Cc) for all C ∈ CSFS(X).
4. There are four possibilities we have to consider. The first one isf 2

C1
(xi) � f 2

C2
(xi) �

h2
C2

(xi) = h2
C1

(xi) � g2
C2

(xi) � g2
C1

(xi) and α2
C1

(xi) � α2
C2

(xi) � γ 2
C2

(xi) =
γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) for all xi ∈ X. The second is f 2
C1

(xi) � f 2
C2

(xi) �
h2
C2

(xi) = h2
C1

(xi) � g2
C2

(xi) � g2
C1

(xi) and α2
C1

(xi) � α2
C2

(xi) � γ 2
C2

(xi) =
γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) for all xi ∈ X. The third is f 2
C1

(xi) � f 2
C2

(xi) �
h2
C2

(xi) = h2
C1

(xi) � g2
C2

(xi) � g2
C1

(xi) and α2
C1

(xi) � α2
C2

(xi) � γ 2
C2

(xi) =
γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) for all xi ∈ X. The last one is f 2
C1

(xi) � f 2
C2

(xi) �
h2
C2

(xi) = h2
C1

(xi) � g2
C2

(xi) � g2
C1

(xi) and α2
C1

(xi) � α2
C2

(xi) � γ 2
C2

(xi) =
γ 2
C1

(xi) � β2
C2

(xi) � β2
C1

(xi) for all xi ∈ X. In all these possibilities, we have∣∣f 2
C1

(xi) − h2
C1

(xi)
∣∣ � ∣∣f 2

C2
(xi) − h2

C2
(xi)

∣∣,∣∣f 2
C1

(xi) − g2
C1

(xi)
∣∣ � ∣∣f 2

C2
(xi) − g2

C2
(xi)

∣∣,∣∣h2
C1

(xi) − g2
C1

(xi)
∣∣ � ∣∣h2

C2
(xi) − g2

C2
(xi)

∣∣,∣∣α2
C1

(xi) − γ 2
C1

(xi)
∣∣ � ∣∣α2

C2
(xi) − γ 2

C2
(xi)

∣∣,∣∣α2
C1

(xi) − β2
C1

(xi)
∣∣ � ∣∣α2

C2
(xi) − β2

C2
(xi)

∣∣,∣∣γ 2
C1

(xi) − β2
C1

(xi)
∣∣ � ∣∣γ 2

C2
(xi) − β2

C2
(xi)

∣∣
for all xi ∈ X. Hence, we obtain∣∣f 2

C1
(xi) − h2

C1
(xi)

∣∣ + ∣∣f 2
C1

(xi) − g2
C1

(xi)
∣∣ + ∣∣h2

C1
(xi) − g2

C1
(xi)

∣∣
�

∣∣f 2
C2

(xi) − h2
C2

(xi)
∣∣ + ∣∣f 2

C2
(xi) − g2

C2
(xi)

∣∣ + ∣∣h2
C2

(xi) − g2
C2

(xi)
∣∣

and ∣∣α2
C1

(xi) − γ 2
C1

(xi)
∣∣ + ∣∣α2

C1
(xi) − β2

C1
(xi)

∣∣ + ∣∣γ 2
C1

(xi) − β2
C1

(xi)
∣∣

�
∣∣α2

C2
(xi) − γ 2

C2
(xi)

∣∣ + ∣∣α2
C2

(xi) − β2
C2

(xi)
∣∣ + ∣∣γ 2

C2
(xi) − β2

C2
(xi)

∣∣
for all xi ∈ X. This follows that

E(C1) = 1 − 1

4n

n∑
i=1

(∣∣f 2
C1

(xi) − h2
C1

(xi)
∣∣ + ∣∣f 2

C1
(xi) − g2

C1
(xi)

∣∣ + ∣∣h2
C1

(xi) − g2
C1

(xi)
∣∣

+ 1

4π2

(∣∣α2
C1

(xi) − γ 2
C1

(xi)
∣∣ + ∣∣α2

C1
(xi) − β2

C1
(xi)

∣∣ + ∣∣γ 2
C1

(xi) − β2
C1

(xi)
∣∣))

� 1 − 1

4n

n∑
i=1

(∣∣f 2
C2

(xi) − h2
C2

(xi)
∣∣ + ∣∣f 2

C2
(xi) − g2

C2
(xi)

∣∣ + ∣∣h2
C2

(xi) − g2
C2

(xi)
∣∣

+ 1

4π2

(∣∣α2
C2

(xi) − γ 2
C2

(xi)
∣∣ + ∣∣α2

C2
(xi) − β2

C2
(xi)

∣∣ + ∣∣γ 2
C2

(xi) − β2
C2

(xi)
∣∣))

= E(C2).

Consequently, we obtained E(C1) � E(C2) as desired.
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4. COPRAS Method Based on Entropy

In this section, we establish the COPRAS method to solve MCGDM problems in the com-
plex spherical fuzzy environment when the information of both weights of DMs and cri-
teria are completely unknown. With this aim, we calculate the weights of DMs based on
Euclidean distance and the weights of criteria based on the proposed new entropy measure.

Let A = {A1, A2, . . . , Ak} be the set of k alternatives, C = {C1, C2, . . . , Cm} be
the set of m criteria and E = {E1, E2, . . . , En} be the set of n experts (DMs) hired
for decision-making. Each expert Er evaluates the alternatives Ap with respect to Cq by
considering the influence of Cq on the alternatives Ap and by using the linguistic table
given in Table 4.

Then these values establish the complex spherical fuzzy decision matrix (CSFDM)

D(r) = (d
(r)
pq )k×m for all r ∈ {1, 2, . . . , n}, where dpq

(r) = (
f

(r)
Dpq

e
iα

(r)
Dpq , gDpq

(r)e
iβ

(r)
Dpq ,

hDpq
(r)e

iγDpq
(r))

. The CSFDM built by expert Er is represented as follows:

D(r) =

⎛
⎜⎜⎜⎜⎜⎝

(
f

(r)
D11

e
iα

(r)
D11 , g

(r)
D11

e
iβ

(r)
D11 , h

(r)
D11

e
iγ

(r)
D11

)
. . .

(
f

(r)
D1m

e
iα

(r)
D1m , g

(r)
D1m

e
iβ

(r)
D1m , h

(r)
D1m

e
iγ

(r)
D1m

)
(
f

(r)
D21

e
iα

(r)
D21 , g

(r)
D21

e
iβ

(r)
D21 , h

(r)
D21

e
iγ

(r)
D21

)
. . .

(
f

(r)
D2m

e
iα

(r)
D2m , g

(r)
D2m

e
iβ

(r)
D2m , h

(r)
D2m

e
iγ

(r)
D2m

)
.
.
. . . .

.

.

.(
f

(r)
Dk1

e
iα

(r)
Dk1 , g

(r)
Dk1

e
iβ

(r)
Dk1 , h

(r)
Dk1

e
iγ

(r)
Dk1

)
. . .

(
f

(r)
Dkm

e
iα

(r)
Dkm , g

(r)
Dkm

e
iβ

(r)
Dkm , h

(r)
Dkm

e
iγ

(r)
Dkm

)

⎞
⎟⎟⎟⎟⎟⎠ .

The procedure of the new COPRAS method based on entropy consists of the following
steps:

Step I: Since the CSFDM may have some benefit and cost types criteria, as a first step,
the information given by experts is normalized in the following way:

s(r)
pq =

⎧⎨
⎩

d
(r)
pq , for benefit criteria Cq,(
d

(r)
pq

)c
, for cost criteria Cq,

(2)

for all p = 1, 2, . . . , k, q = 1, 2, . . . , m and r = 1, 2, . . . , n, where (d
(r)
pq )c is the comple-

ment of d
(r)
pq . Hence, the normalized complex spherical fuzzy decision matrix (NCSFDM)

Table 4
Linguistic terms to evaluate the alternatives via criteria (Zahid et al., 2022).

Lingusitic terms CSFNs

Very good (VG)/Very important (VI)
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
Good (G)/Important (I)

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
Medium good (MG)/Medium important (MI)

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
Medium (M)

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
Medium poor (MP)/Medium unimportant (MUI)

(
0.54ei2π(0.53), 0.31ei2π(0.33), 0.62ei2π(0.65)

)
Poor (P)/Unimportant(UI)

(
0.47ei2π(0.46), 0.23ei2π(0.26), 0.73ei2π(0.76)

)
Very poor (VP)/Very unimportant (VUI)

(
0.33ei2π(0.31), 0.17ei2π(0.19), 0.82ei2π(0.83)

)
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Fig. 2. Flow chart of the CSF-COPRAS technique based on entropy.

D
(r)
N = (s

(r)
pq )k×m, where s

(r)
pq = (

f
(r)
pq eiα

(r)
pq , g

(r)
pq eiβ

(r)
pq , h

(r)
pqeiγ

(r)
pq

)
for all r ∈ {1, 2, . . . , n},

is written as follows:
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D(r)
N = (

s(r)
pq

)
k×m =

⎛
⎜⎜⎜⎜⎝

(
f

(r)
11 e

iα
(r)
11 , g

(r)
11 e

iβ
(r)
11 , h

(r)
11 e

iγ
(r)
11

)
. . .

(
f

(r)
1m

e
iα

(r)
1m, g

(r)
1m

e
iβ

(r)
1m, h

(r)
1m

e
iγ

(r)
1m

)
(
f

(r)
21 e

iα
(r)
21 , g

(r)
21 e

iβ
(r)
21 , h

(r)
21 e

iγ
(r)
21

)
. . .

(
f

(r)
2m

e
iα

(r)
2m, g

(r)
2m

e
iβ

(r)
2m, h

(r)
2m

e
iγ

(r)
2m

)
.
.
. . . .

.

.

.(
f

(r)
k1 e

iα
(r)
k1 , g

(r)
k1 e

iβ
(r)
k1 , h

(r)
k1 e

iγ
(r)
k1

)
. . .

(
f

(r)
km

e
iα

(r)
km , g

(r)
km

e
iβ

(r)
km , h

(r)
km

e
iγ

(r)
km

)

⎞
⎟⎟⎟⎟⎠ .

Step II: Consider the weights of the experts. There are two cases:

Case I: If the weights of experts are known, these values can be used. So this step is
skipped.

Case II: If the weights of the experts are completely unknown, it is not possible to establish
the final NCSFDM. So, the weights of the experts need to be determined. The weights of
the experts are calculated in the following way:

I: As a first substep, the group opinion (GO) matrix is obtained by using the CSFWA
operator of decision values in the NCSFDMs and the GO matrix is represented as follows:

GO =

⎛
⎜⎜⎜⎝

GO11 GO12 . . . GO1m

GO21 GO22 . . . GO2m

...
... . . .

...

GOk1 GOk2 . . . GOkm

⎞
⎟⎟⎟⎠ ,

where

GOpq =
n⊕

r=1

(
1

n
s(r)
pq

)

=
⎛
⎜⎝

√
1 − ∏n

r=1

(
1 − (

f
(r)
pq

)2) 1
n e

i2π

√
1−∏n

r=1

(
1−

(
α
(r)
pq
2π

)2) 1
n

,∏n
r=1

(
g

(r)
pq

) 1
n e

i2π
∏n

r=1

(
β
(r)
pq
2π

) 1
n

,
∏n

r=1

(
h

(r)
pq

) 1
n e

i2π
∏n

r=1

(
γ
(r)
pq
2π

) 1
n

⎞
⎟⎠ .

II: Determine the right ideal opinion (RIO) matrix and left ideal opinion (LIO) matrix as
follows:

RIO =

⎛
⎜⎜⎝

RIO11 RIO12 . . . RIO1m

RIO21 RIO22 . . . RIO2m
...

... . . .
...

RIOk1 RIOk2 . . . RIOkm

⎞
⎟⎟⎠ , LIO =

⎛
⎜⎜⎝

LIO11 LIO12 . . . LIO1m

LIO21 LIO22 . . . LIO2m
...

... . . .
...

LIOk1 LIOk2 . . . LIOkm

⎞
⎟⎟⎠ ,

where RIOpq = {
s
(r)
pq : maxr (SF (s

(r)
pq ))

}
and LIOpq = {

s
(r)
pq : minr (SF (s

(r)
pq ))

}
for all

p = 1, 2, . . . , k and q = 1, 2, . . . , m.

III: By using the normalized Euclidean distance function, calculate the distances of each
NCSFDMs D

(r)
N from GO, RIO and LIO, denoted by DGO(r), DRIO(r) and DLIO(r), re-
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spectively. The values DGO(r), DRIO(r) and DLIO(r) are obtained as follows:

DGO(r)
p =

[
1

3n

m∑
q=1

[((
f (r)

pq

)2 − (
f

(r)
GOpq

)2)2 + ((
g(r)

pq

)2 − (
g

(r)
GOpq

)2)2

+ ((
h(r)

pq

)2 − (
h

(r)
GOpq

)2)2 + 1

16π4

{((
α(r)

pq

)2 − (
α

(r)
GOpq

)2)2

+ ((
β(r)

pq

)2 − (
β

(r)
GOpq

)2)2 + ((
γ (r)
pq

)2 − (
γ

(r)
GOpq

)2)}]]1/2

,

DRIO(r)
p =

[
1

3n

m∑
q=1

[((
f (r)

pq

)2 − (
f

(r)
RIOpq

)2)2 + ((
g(r)

pq

)2 − (
g

(r)
RIOpq

)2)2

+ ((
h(r)

pq

)2 − (
h

(r)
RIOpq

)2)2 + 1

16π4

{((
α(r)

pq

)2 − (
α

(r)
RIOpq

)2)2

+ ((
β(r)

pq

)2 − (
β

(r)
RIOpq

)2)2 + ((
γ (r)
pq

)2 − (
γ

(r)
RIOpq

)2)}]]1/2

,

DLIO(r)
p =

[
1

3n

m∑
q=1

[((
f (r)

pq

)2 − (
f

(r)
LIOpq

)2)2 + ((
g(r)

pq

)2 − (
g

(r)
LIOpq

)2)2

+ ((
h(r)

pq

)2 − (
h

(r)
LIOpq

)2)2 + 1

16π4

{((
α(r)

pq

)2 − (
α

(r)
LIOpq

)2)2

+ ((
β(r)

pq

)2 − (
β

(r)
LIOpq

)2)2 + ((
γ (r)
pq

)2 − (
γ

(r)
LIOpq

)2)}]]1/2

for all p = 1, 2, . . . , k and r = 1, 2, . . . , n.

IV: The closeness indices (CI) (given by Yue, 2013) are calculated as follows:

CIr =
∑k

p=1 DRIO(r)
p + ∑k

p=1 DLIO(r)
p∑k

p=1 DGO(r)
p + ∑k

p=1 DRIO(r)
p + ∑k

p=1 DLIO(r)
p

(3)

for all r = 1, 2, . . . , n.

V: The weights of experts are computed as follows:

εr = CIr∑n
r=1 CIr

. (4)

Step III: The collective decision of all experts is obtained by merging the independent de-
cision of each expert with their weights via CSFWA operator and the aggregated complex
spherical fuzzy decision matrix (ACSFDM) D = (spq)k×m is constructed as follows:
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spq = CSFWAε

(
s(1)
pq , s(2)

pq , . . . , s(n)
pq

) =
n⊕

r=1

εrs
(r)
pq

=
⎛
⎜⎝

√
1 − ∏n

r=1

(
1 − (

f
(r)
pq

)2)εr e
i2π

√
1−∏n

r=1

(
1−

(
α
(r)
pq
2π

)2)εr

,∏n
r=1

(
g

(r)
pq

)εr e
i2π

∏n
r=1

(
β
(r)
pq
2π

)εr

,
∏n

r=1

(
h

(r)
pq

)εr e
i2π

∏n
r=1

(
γ
(r)
pq
2π

)εr

⎞
⎟⎠ .

Let us denote spq = (
fAp(cq)e

iαAp (cq)
, gAp(cq)e

iβAp (cq )
, hAp(cq)e

iγAp (cq )
)

for all p =
1, 2, . . . , k and q = 1, 2, . . . , m.

Step IV: Since the weight matrix of criteria shows the importance of each criterion, this
matrix should be constructed. There are two cases:

Case I: If the weights of criteria are known, these values can be used. So this step is
skipped.

Case II: If the weights of criteria are completely unknown, construct the weight ma-
trix of the criteria from ACSFDM by using the entropy measure function. Let ω

(r)
q =(

f
(r)
q eiα

(r)
q , g

(r)
q eiβ

(r)
q , h

(r)
q eiγ

(r)
q

)
be the CSF weight assigned to the criteria by expert Er .

Then the weights of the criteria ωq = (
fω(cq)eiαω(cq ), gω(cq)eiβω(cq ), hω(cq)eiγω(cq )

)
are

found using the following equation:

ωq = 1 − EC(cq)∑n
q=1 1 − EC(cq)

, (5)

where

EC(cq) = 1 − 1

4n

n∑
i=1

(∣∣f 2(xi) − h2(xi)
∣∣ + ∣∣f 2(xi) − g2(xi)

∣∣ + ∣∣h2(xi) − g2(xi)
∣∣

+ 1

4π2

(∣∣α2(xi) − γ 2(xi)
∣∣ + ∣∣α2(xi) − β2(xi)

∣∣ + ∣∣γ 2(xi) − β2(xi)
∣∣)).

Step V: Find the aggregated weighted complex spherical fuzzy decision matrix
(AWCSFDM) D′ = (s′

pq)k×m = (ωqspq)k×m by considering the ACSFDM and the
weight matrix � for criteria.

The s′
pq = (

f ′
Ap

(cq)e
iα′

Ap
(cq)

, g′
Ap

(cq)e
iβ ′

Ap
(cq)

, h′
Ap

(cq)e
iγ ′

Ap
(cq)) is calculated as fol-

lows:

s′
pq =

⎛
⎜⎜⎜⎝

√
1 − (

1 − f 2
Ap

(cq)
)fω(cq)

e
i2π

√
1−

(
1−

( αAp
(cq )

2π

)2)( αω(cq )

2π

)
,

gAp(cq)gω(cq )e
i2π

( βAp
(cq )

2π

)( βω(cq )

2π

)
, hAp(cq)hω(cq)e

i2π
( γAp

(cq )

2π

)( γω(cq )

2π

)
⎞
⎟⎟⎟⎠ .

Step VI: Since the elements of the AWCSFDM D′ are CSFN, the score matrix D∗ has to
be constructed using the score function. The score matrix D∗ = (s∗

pq)k×m is constructed
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as follows:

D∗ =

⎛
⎜⎜⎜⎝

s∗
11 s∗

12 . . . s∗
1m

s∗
21 s∗

22 . . . s∗
2m

...
... . . .

...

s∗
k1 s∗

k2 . . . s∗
km

⎞
⎟⎟⎟⎠ ,

where

s∗
pq = 1

3

(
4 + f ′

Ap
(cq)2 − (

g′
Ap

(cq)
)2 − (

h′
Ap

(cq)
)2

+
(α′

Ap
(cq)

2π

)2

−
(β ′

Ap
(cq)

2π

)2

−
(γ ′

Ap
(cq)

2π

)2)
(6)

for all p = 1, 2, . . . , k and q = 1, 2, . . . , m.

Step VII: Let CB and CC denote the set of benefit type and cost type criteria, respectively.
Maximizing index s(Pp) and minimizing index s(Rp) are obtained as follows:

s(Pp) = 1

|CB |
∑

q∈CB

s∗
pq (7)

and

s(Rp) = 1

|CC |
∑

q∈CC

s∗
pq (8)

for all q = 1, 2, . . . , m.

Step VIII: Calculate the relative weight of each alternative Qp as:

Qp = s(Pp) +
∑k

p=1 s(Rp)

s(Rp)
∑k

p=1
1

s(Rp)

(9)

for all p = 1, 2, . . . , k.

Step IX: Determine the priority order Prp by using the formula

Prp = Qp

max Qi
∗ 100 (10)

for all p = 1, 2, . . . , k.

Step X: If Prp � Prt , then the ranking alternatives Ap � At for all p, t = 1, 2, . . . , k.
Hence the alternative with the highest rank is the best solution for the problem.
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5. An Illustrative Example

Suppliers have always been an integral component of a company’s management policy;
however, the relationship between companies and their suppliers has traditionally been
distant. In today’s global economy of just-in-time (JIT) manufacturing and value-added
focus, there is a heightened need to change this adversarial relationship to one of cooper-
ation and seamless integration. JIT requires the vendor to manufacture and deliver to the
company the precise quantity and quality of material at the required time. Thus the perfor-
mance of the supplier becomes a key element in a company’s success or failure. In order
to attain the goals of low cost, consistently high quality, flexibility, and quick response,
companies have increasingly considered better supplier selection approaches. These ap-
proaches require cooperation in sharing costs, benefits, and expertise in attempting to un-
derstand one another’s strengths and weaknesses, which in turn leads to single sourcing,
supplier, and long-term partnerships. Since the supplier selection process encompasses
different functions (such as purchasing, quality, production, etc.) within a company, it is
a multi-objective problem, encompassing many tangible and intangible factors in a hier-
archical manner. The evaluation of intangible factors requires the assessment of expert
judgment, and the hierarchical structure requires decomposition and synthesis of these
factors (Bhutta and Huq, 2002).

Now, we consider the problem “selection of the strategic supplier selection” given
by Igoulalene et al. (2015) and solve this problem to demonstrate the applicability and
effectiveness of the proposed method. In this problem, the stakeholders (DMs) evaluate
the five suppliers given as A1, A2, A3, A4 and A5 according to the criteria “performance
strategy”, “quality of service”, “innovation” and “risk”. Therefore, we have the set of DMs
D = {E1, E2, E3}, the set of alternatives A = {A1, A2, A3, A4, A5} and the set of criteria
C = {c1, c2, c3, c4}, where c1 = performance strategy, c2 = quality of service, c3 = inno-
vation and c4 = risk. Also, the only cost type criteria is c4. Each expert Er (r = 1, 2, 3)

evaluates the alternatives Ap (p = 1, 2, . . . , 5) with respect to cq (q = 1, 2, 3, 4). The
relationship between alternatives and criteria according to each expert (E1, E2, E3) are
shown in Table 5 and the corresponding CSFN values are presented in Tables 6, 7 and 8.

Step I: In this example, c4 is the only cost type criteria. The NCSFDMs are constructed
by using Eq. (2) and NCSFDMs (D(1)

N , D
(2)
N , D

(3)
N ) are given in Tables 9, 10 and 11.

Step II: The objective weighs of experts are calculated using the following steps:

I: GO matrix is obtained using the CSFWA operator (Eq. (3)) and is shown in Table 12.

II: RIO and LIO matrices are shown in Tables 13 and 14.

III: DGO, DRIO and DLIO matrices are calculated using normalized Euclidean distance
function and shown in Table 15.

IV: By using equation (3), we obtain the closeness indices as CI1 = 0.7376, CI2 =
0.7610, CI3 = 0.7430.

V: The weights of experts are found using equation (4) as ε1 = 0.3291, ε2 = 0.3395,
ε3 = 0.3315.
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Table 5
Illustrative example (stakeholder preferences given in

Igoulalene et al., 2015).

Ai cj E1 E2 E3

A1 c1 G VG G
c2 MG G MG
c3 VG G VG
c4 G G G

A2 c1 MG G M
c2 M MG G
c3 G MG MG
c4 MG M MG

A3 c1 VG VG VG
c2 VG G VG
c3 VG VG G
c4 VG VG G

A4 c1 MG G G
c2 M M MG
c3 VG G G
c4 G MG MG

A5 c1 M MG MG
c2 MP M M
c3 G G MG
c4 M MG M

Table 6
CSFDMs established by expert E1.

D(1) c1 c2

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A5

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.54ei2π(0.53), 0.31ei2π(0.33), 0.62ei2π(0.65)

)
c3 c4

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A5

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)

Step III: The ACSFDM is calculated by considering the CSFDMs, which are given in
Table 9 and the ACSFDM is given in Table 16.

Step IV: The objective weights of the criteria are calculated by using the proposed
entropy-based approach. First, the entropy value of each criterion is calculated by apply-
ing Eq. (2). Then entropy is used in Eq. (5) for obtaining objective weights of the criteria
and these weights are given in Table 17.
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Table 7
CSFDMs established by expert E2.

D(2) c1 c2

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
c3 c4

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A5

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)

Table 8
CSFDMs established by expert E3.

D(3) c1 c2

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A2

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
c3 c4

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A3

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)

Table 9
NCSFDM of the expert E1.

D
(1)
N

c1 c2

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A5

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.54ei2π(0.53), 0.31ei2π(0.33), 0.62ei2π(0.65)

)
c3 c4

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.21ei2π(0.23), 0.17ei2π(0.15), 0.91ei2π(0.89)

)
A4

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A5

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.53ei2π(0.54), 0.45ei2π(0.47), 0.67ei2π(0.65)

)
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Table 10
NCSFDM of the expert E2.

D
(2)
N

c1 c2

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
c3 c4

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.53ei2π(0.54), 0.45ei2π(0.47), 0.67ei2π(0.65)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.21ei2π(0.23), 0.17ei2π(0.15), 0.91ei2π(0.89)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A5

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)

Table 11
NCSFDM of the expert E3.

D
(3)
N

c1 c2

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A2

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
c3 c4

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A3

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.53ei2π(0.54), 0.45ei2π(0.47), 0.67ei2π(0.65)

)

Table 12
GO matrices.

GO c1 c2

A1
(
0.86ei2π(0.85), 0.21ei2π(0.19), 0.29ei2π(0.32)

) (
0.77ei2π(0.75), 0.27ei2π(0.28), 0.41ei2π(0.44)

)
A2

(
0.75ei2π(0.74), 0.31ei2π(0.32), 0.43ei2π(0.46)

) (
0.75ei2π(0.74), 0.31ei2π(0.32), 0.43ei2π(0.46)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

)
A4

(
0.80ei2π(0.79), 0.25ei2π(0.25), 0.37ei2π(0.40)

) (
0.69ei2π(0.67), 0.39ei2π(0.41), 0.50ei2π(0.52)

)
A5

(
0.71ei2π(0.69), 0.34ei2π(0.36), 0.48ei2π(0.50)

) (
0.63ei2π(0.62), 0.40ei2π(0.42), 0.56ei2π(0.57)

)
c3 c4

A1
(
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.77ei2π(0.76), 0.27ei2π(0.28), 0.41ei2π(0.44)

) (
0.48ei2π(0.50), 0.34ei2π(0.36), 0.71ei2π(0.69)

)
A3

(
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

) (
0.26ei2π(0.29), 0.19ei2π(0.17), 0.88ei2π(0.87)

)
A4

(
0.86ei2π(0.85), 0.21ei2π(0.19), 0.29ei2π(0.32)

) (
0.42ei2π(0.45), 0.27ei2π(0.28), 0.76ei2π(0.74)

)
A5

(
0.80ei2π(0.79), 0.25ei2π(0.25), 0.37ei2π(0.40)

) (
0.51ei2π(0.52), 0.39ei2π(0.41), 0.69ei2π(0.67)

)
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Table 13
RIO matrices.

RIO c1 c2

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
c3 c4

A1
(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A4

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A5

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.53ei2π(0.54), 0.45ei2π(0.47), 0.67ei2π(0.65)

)

Table 14
LIO matrices.

LIO c1 c2

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

)
A2

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

)
A4

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

)
A5

(
0.67ei2π(0.65), 0.45ei2π(0.47), 0.53ei2π(0.54)

) (
0.54ei2π(0.53), 0.31ei2π(0.33), 0.62ei2π(0.65)

)
c3 c4

A1
(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.45ei2π(0.48), 0.30ei2π(0.31), 0.73ei2π(0.71)

)
A3

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.21ei2π(0.23), 0.17ei2π(0.15), 0.91ei2π(0.89)

)
A4

(
0.83ei2π(0.82), 0.23ei2π(0.22), 0.34ei2π(0.37)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A5

(
0.73ei2π(0.71), 0.30ei2π(0.31), 0.45ei2π(0.48)

) (
0.53ei2π(0.54), 0.45ei2π(0.47), 0.67ei2π(0.65)

)

Table 15
DGO, DRIO and DLIO matrices.

DGO A1 A2 A3 A4 A5

E1 0.1213 0.3204 0.1112 0.2494 0.2432
E2 0.2332 0.2106 0.1858 0.1538 0.1930
E3 0.1213 0.2587 0.2210 0.1856 0.2363

DRIO A1 A2 A3 A4 A5

E1 0.2766 0.4791 0.2171 0.3612 0.3175
E2 0.2171 0.4439 0.3070 0.3146 0.2277
E3 0.2766 0.3020 0.2171 0.2171 0.2695

DLIO A1 A2 A3 A4 A5

E1 0.2171 0.2774 0.3070 0.2171 0.2695
E2 0.2766 0.3497 0.2171 0.2805 0.4746
E3 0.2171 0.4727 0.3070 0.3612 0.3175
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Table 16
The ACSFDM.

D c1 c2

A1
(
0.86ei2π(0.85), 0.21ei2π(0.19), 0.29ei2π(0.31)

) (
0.77ei2π(0.75), 0.27ei2π(0.28), 0.41ei2π(0.44)

)
A2

(
0.76ei2π(0.74), 0.31ei2π(0.32), 0.43ei2π(0.46)

) (
0.75ei2π(0.74), 0.31ei2π(0.32), 0.43ei2π(0.46)

)
A3

(
0.91ei2π(0.89), 0.17ei2π(0.15), 0.21ei2π(0.23)

) (
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

)
A4

(
0.80ei2π(0.79), 0.25ei2π(0.25), 0.37ei2π(0.40)

) (
0.69ei2π(0.67), 0.39ei2π(0.41), 0.50ei2π(0.52)

)
A5

(
0.71ei2π(0.69), 0.34ei2π(0.36), 0.47ei2π(0.50)

) (
0.63ei2π(0.62), 0.40ei2π(0.42), 0.56ei2π(0.57)

)
c3 c4

A1
(
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

) (
0.34ei2π(0.37), 0.23ei2π(0.22), 0.83ei2π(0.82)

)
A2

(
0.77ei2π(0.75), 0.27ei2π(0.28), 0.41ei2π(0.44)

) (
0.48ei2π(0.50), 0.34ei2π(0.36), 0.71ei2π(0.69)

)
A3

(
0.89ei2π(0.87), 0.19ei2π(0.17), 0.25ei2π(0.27)

) (
0.26ei2π(0.29), 0.19ei2π(0.17), 0.88ei2π(0.87)

)
A4

(
0.86ei2π(0.85), 0.21ei2π(0.19), 0.29ei2π(0.31)

) (
0.42ei2π(0.45), 0.27ei2π(0.28), 0.76ei2π(0.74)

)
A5

(
0.80ei2π(0.79), 0.25ei2π(0.25), 0.37ei2π(0.40)

) (
0.51ei2π(0.52), 0.39ei2π(0.41), 0.69ei2π(0.67)

)

Table 17
Weights of criteria.

ω c1 c2 c3 c4

Eq 0.2802 0.4421 0.1876 0.3697
1 − Eq 0.7198 0.5578 0.8124 0.6303
ωq 0.2646 0.2051 0.2986 0.2317

Table 18
The AWCSFDM.

D′ c1 c2

A1
(
0.55ei2π(0.53), 0.66ei2π(0.66), 0.71ei2π(0.75)

) (
0.41ei2π(0.39), 0.77ei2π(0.78), 0.83ei2π(0.85)

)
A2

(
0.44ei2π(0.43), 0.73ei2π(0.75), 0.80ei2π(0.82)

) (
0.39ei2π(0.38), 0.79ei2π(0.80), 0.84ei2π(0.86)

)
A3

(
0.61ei2π(0.57), 0.62ei2π(0.62), 0.66ei2π(0.69)

) (
0.52ei2π(0.49), 0.71ei2π(0.71), 0.75ei2π(0.78)

)
A4

(
0.48ei2π(0.47), 0.69ei2π(0.70), 0.77ei2π(0.79)

) (
0.35ei2π(0.33), 0.83ei2π(0.84), 0.87ei2π(0.88)

)
A5

(
0.41ei2π(0.39), 0.75ei2π(0.77), 0.82ei2π(0.84)

) (
0.31ei2π(0.30), 0.83ei2π(0.85), 0.89ei2π(0.90)

)
c3 c4

A1
(
0.61ei2π(0.58), 0.61ei2π(0.60), 0.66ei2π(0.68)

) (
0.17ei2π(0.20), 0.71ei2π(0.67), 0.96ei2π(0.95)

)
A2

(
0.48ei2π(0.46), 0.68ei2π(0.69), 0.76ei2π(0.79)

) (
0.24ei2π(0.27), 0.78ei2π(0.76), 0.93ei2π(0.91)

)
A3

(
0.61ei2π(0.58), 0.61ei2π(0.60), 0.66ei2π(0.68)

) (
0.13ei2π(0.15), 0.68ei2π(0.63), 0.97ei2π(0.96)

)
A4

(
0.58ei2π(0.55), 0.62ei2π(0.62), 0.69ei2π(0.72)

) (
0.21ei2π(0.24), 0.74ei2π(0.71), 0.94ei2π(0.92)

)
A5

(
0.52ei2π(0.50), 0.66ei2π(0.67), 0.74ei2π(0.77)

) (
0.26ei2π(0.28), 0.81ei2π(0.79), 0.92ei2π(0.90)

)

Step V: After determining the weights of the criteria, the AWCSFDM D′ is calculated
using Eq. (6) and shown in Table 18.

Step VI: Table 18 gives the aggregated scores of each alternative which are represented
as CSFNs in the column. To calculate the real values, we defuzzify these CSFNs by using
Eq. (6) and so, we obtain the score matrix as given in Table 19.

Step VII, VIII, IX, X: Using Eq. (7) and Eq. (8), calculate s(Pp) and s(Rp). Finally, Qp

and Prp are obtained by using Eq. (9), Eq. (10) and shown in Table 20.
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Table 19
Score matrix D∗.

D∗ c1 c2 c3 c4

A1 0.8919 0.5810 1.0357 0.4101
A2 0.6699 0.5376 0.7791 0.3996
A3 1.0191 0.7958 1.0412 0.4185
A4 0.7636 0.4468 0.9705 0.4131
A5 0.6032 0.4082 0.8401 0.3855

Table 20
s(Pp), s(Rp), s(Qp) and Ranking of alternatives.

D∗ Pp Rp Qp Prp Rank

A1 0.8362 0.4101 1.2366 91.98 2
A2 0.6622 0.3996 1.0732 79.82 4
A3 0.9520 0.4185 1.3443 100 1
A4 0.7270 0.4131 1.1244 83.64 3
A5 0.6172 0.3855 1.0431 77.60 5

As a result, we can see that the order of ranking among seven alternatives is A3 >

A1 > A4 > A2 > A5, where “>” indicates the relation “preferred to”. Therefore, the
best choice would be A3 with the objective weights of DMs and criteria.

6. Comparative Analyses

6.1. Comparison with Some Existing Methods in Different Set Theories

In this subsection, we give comparative studies with the F-TOPSIS developed by Igoula-
lene et al. (2015) and SF-COPRAS by Omerali and Kaya (2022) to demonstrate the accu-
racy of the proposed entropy based CSF-COPRAS method.

Igoulalene et al. (2015) solved the MCGDM problem about “selection of the strategic
supplier” which consists of fuzzy values. For this problem, the authors have used the
consensus based neat OWA and TOPSIS method to calculate the ranking of alternatives.
They also have computed the weight of criteria objectively by using correlation coefficient
and standard deviation method. In the previous section, we solved the same problem with
our method and here we give the comparison by analysing the ranking result obtained
from the F-TOPSIS method.

On the other hand, we consider the MCGDM problem about “selection of the aug-
mented reality application” solved by Omerali and Kaya (2022). The authors solved this
problem by applying the COPRAS method in the SF environment. The difference between
this method and the method given Igoulalene et al. (2015) is that the weights of DMs and
criteria were taken into subjectively. We also solve this problem by using the proposed
method to show the comparison. We first convert the SF values in the problem “selection
of the augmented reality application” given by Omerali and Kaya (2022) to the CSF values
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Table 21
Comparison of the ranking of the results of problems given with different set theories.

Problem of the select. of the
strategic supplier

F-TOPSIS method given by
Igoulalene et al. (2015)

The proposed entropy based
CSF-COPRAS method

Used set theory FS CSFS
Weighting method Subjective DM weighting

Objective criteria weighting
Objective DM weighting
Objective criteria weighting

Ranking results A3 > A1 > A4 > A2 > A5 A3 > A1 > A4 > A2 > A5

Problem of the select. of the
augmented reality application

SF-COPRAS method given
by Omerali and Kaya (2022)

The proposed entropy based
CSF-COPRAS method

Used set theory SFS CSFS
Weighting method Subjective DM weighting

Subjective criteria weighting
Objective DM weighting
Objective criteria weighting

Ranking results A3 > A1 > A2 > A4 A3 > A1 > A4 > A2

by taking the phase terms as zero and then we solve this problem by using the proposed
method that allows to calculate the weights of criteria and experts objectively. We also
note that when solving this problem, we take the criteria c1 as cost type. When we analyse
the results of the proposed method and the SF-COPRAS method, we note that the best
result is the same whereas the other rankings (A2 and A4) are different. This difference
arises from the type of weighting method. In summary, as seen in Table 21, the best results
are the same in the proposed method with the methods where the problems are taken. This
shows the consistency of the decision-making skills of the proposed method.

6.2. Comparison with Some Existing Methods in CSFS Theory

The second analysis aims to compare the proposed methods with the existing methods in
CSF environment given by Zahid et al. (2022), Naeem et al. (2022) and Aydoğdu et al.
(2023). We first remark on the characteristic properties of these methods in Table 22.

As explained in Table 22, in the CSF-ELECTRE II method given by Zahid et al.
(2022), both weights of DMs and criteria are taken as subjective. However, in the method
based on aggregation operators presented by Naeem et al. (2022), the weights of crite-
ria are calculated objectively by using the entropy measure function whereas the weights
of DMs are subjective. In addition, in the CSF-TOPSIS based on entropy method given
by (Aydoğdu et al., 2023), both the weights of DMs and criteria are calculated objec-
tively. To compare the proposed method with the mentioned three methods, we consider

Table 22
Characteristic properties of the mentioned studies in CSF environment.

Given by Method Obj. DMs weights Obj. criteria weights

Zahid et al. (2022) CSF-ELECTRE II X X
Naeem et al. (2022) Based on aggregation op. X

√
Aydoğdu et al. (2023) CSF-TOPSIS based on entropy

√ √
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Table 23
Comparison of the ranking of the problems solved with CSF methods.

Problem Ranking given in related study Ranking the proposed method

Select. of the tech. to treat
cad.-contam. water (Zahid et al.,
2022)

A1 > A4 > A2 > A5 > A3 A1 > A4 > A2 > A5 > A3

Green supplier selection (Naeem et
al., 2022)

A1 > A4 > A7 > A6 > A5 >

A2 > A3

A1 > A4 > A6 > A2 > A5 >

A7 > A3

Select. of the advertisement on
Facebook (Aydoğdu et al., 2023)

A2 > A4 > A1 > A5 > A3 A2 > A1 > A4 > A3 > A5

the problems given in these studies and solve all of them by using the proposed method.
As a result, we show the rankings in Table 23.

Remark that the proposed method gives the same best alternatives as the other exist-
ing methods in the CSF environment. So it can be concluded that the proposed objective
weighting method can work with the different MCDM/MCGDM approaches and the rank-
ing results remain mostly the same.

6.3. Sensitivity Analysis and Comparison of Entropies

In this subsection, we first analyse the consistency of the proposed method by calculating
the criteria weights with the mentioned entropy measure functions. Then, we give a com-
parison between the entropy measures (EN and EA) given by Naeem et al. (2022) and
Aydoğdu et al. (2023) and the proposed entropy measure (E) to explain why we need to
construct this entropy measure.

Sensitivity analysis: The entropy measures EN and EA given by Naeem et al. (2022) and
Aydoğdu et al. (2023), respectively, are as follows:

EN(C ) = 1

(
√

2 − 1)n

n∑
k=1

(
f (xk)

2 + g(xk)
2 + h(xk)

2

+ 1

4π2

(
α(xk)

2 + β(xk)
2 + γ (xk)

2)),

EA(C ) = 1

n

n∑
k=1

1 − 2

5

(∣∣f (xk)
2 − h(xk)

2
∣∣ + ∣∣g(xk)

2 − 0.25
∣∣

+ 1

4π2

(∣∣α(xk)
2 − γ (xk)

2
∣∣ + ∣∣β(xk)

2 − π2
∣∣)),

where X = {x1, x2, . . . , xn} and C = {
(xk, f (xk)e

iα(xk), g(xk)e
iβ(xk), h(xk)e

iγ (xk))
∣∣

xk ∈ X
}
.

Now, we apply these entropy measures to the problem “green supplier selection” to
obtain the weights of criteria and then we show the weights of criteria in Fig. 3.

Also, we present the results of the same problem under the proposed method with the
existing and the novel entropy measure functions in Table 24. In conclusion, the same
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Fig. 3. Criteria weight under different entropies.

Table 24
Ranking results under different entropies.

Entropy Given by Ranking

EN Naeem et al. (2022) A3 > A1 > A4 > A2 > A5
EA Aydoğdu et al. (2023) A3 > A1 > A4 > A2 > A5
E Proposed method A3 > A1 > A4 > A2 > A5

ranking results are found in each setting. This result shows the robustness and validity of
the proposed entropy-based COPRAS method in the CSF environment.

Comparison of entropies: Based on the mathematical view and intuitive of human, if the
inequality C > C 2 > C 3 > C 4 is satisfied, then an entropy measure function E must
have the inequality

E(C ) > E
(
C 2) > E

(
C 3) > E

(
C 4). (11)

Here, we may treat C as “large”, C 2 as “very large”, C 3 as “quite very large” and C 4

as “very very large” in the sense of linguistic variables and the CSFSs C 2, C 3, C 4 are
calculated by using Definition 3. With this viewpoint, if we take X = {x1, x2, x3} and the
CSFS as

C = {(
x1, 0.19ei2π(0.85), 0.25ei2π(0.28), 0.23ei2π(0.26)

)
,(

x2, 0.33ei2π(0.28), 0.24ei2π(0.21), 0.10ei2π(0.55)
)
,(

x3, 0.52ei2π(0.41), 0.18ei2π(0.32), 0.5ei2π(0.14)
)}

,

we have

C 2 = {(
x1, 0.04ei2π(0.72), 0.35ei2π(0.39), 0.32ei2π(0.36)

)
,(

x2, 0.11ei2π(0.08), 0.33ei2π(0.29), 0.14ei2π(0.72)
)
,(

x3, 0.27ei2π(0.17), 0.25ei2π(0.44), 0.66ei2π(0.20)
)}

,
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Table 25
Entropy measure values.

C C 2 C 3 C 4

EN 0.7367 0.7886 1.0087 1.2325
EA 0.6952 0.7126 0.7149 0.7091
E 0.9396 0.8997 0.8516 0.8163

C 3 = {(
x1, 0.01ei2π(0.61), 0.42ei2π(0.47), 0.39ei2π(0.44)

)
,(

x2, 0.04ei2π(0.02), 0.40ei2π(0.36), 0.17ei2π(0.81)
)
,(

x3, 0.14ei2π(0.07), 0.31ei2π(0.53), 0.76ei2π(0.24)
)}

,

C 4 = {(
x1, 0.0013ei2π(0.52), 0.48ei2π(0.53), 0.44ei2π(0.49)

)
,(

x2, 0.01ei2π(0.01), 0.46ei2π(0.41), 0.20ei2π(0.87)
)
,(

x3, 0.07ei2π(0.03), 0.35ei2π(0.59), 0.83ei2π(0.28)
)}

.

Now, we calculate the entropy measure values of C , C 2, C 3, C 4 under the entropy mea-
sure functions EN , EA and E and again we show the results in Table 25.

According to Table 25, the values EN(C 3) and EN(C 4) are found greater than 1 un-
expectedly. Furthermore, it is seen that the entropy measure function EA does not satisfy
the equation (11) (since EA(C 2) < EA(C 3)). Also, since the values EA(C 2), EA(C 3)

and EA(C 3) are very close to each other, it can be concluded that this entropy measure
function can not measure sensitively enough. However, the proposed entropy measure E

not only satisfies the Equation 11 but also performs more sensitively. As a result, the be-
haviour of the entropy measure function E is reasonable from the viewpoint of structured
linguistic variables in the form of CSFSs.

6.4. Discussion and Research Implications

Consequently, in Section 6.1, we compare some existing methods given in some different
set theories with the proposed method and show the proposed method is consistent when
both weights of criteria and DMs are calculated objectively. In Section 6.2, the proposed
method is compared with the CSF-ELECTRE II method (given by Zahid et al., 2022) and
CSF-TOPSIS based on entropy method (given by Aydoğdu et al., 2023) that calculates
both weights of criteria and DMs objectively and also we compare the proposed method
with the method based on aggregation operators (given by Naeem et al., 2022) that cal-
culates these weights subjectively. These three methods were given in CSFS environment
and so we can verify that the proposed method is stable since the best alternative is the
same and the rankings are similar. Furthermore, one more confirmation to show the robust-
ness and validity is obtained as a result of the obtained rankings by changing the entropy
measure functions presented for sensitivity analysis in Section 6.3. Moreover, in this sub-
section, we show that the proposed entropy measure function is effective by comparing
the other existing entropy measure functions. All these comparisons demonstrate that the
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proposed method has superiority in solving MCGDM problems by calculating the weights
of criteria and DMs objectively in the CSF environment.

7. Conclusion

CSF is a broader and more dominant model than the existing set theories since this theory
does not only competently deal with two-dimensional information but also takes into ac-
count the doubtless and refusal part of the judgment as well as positive-membership and
negative-membership. The main contribution of the study is the introduction of a novel
improved COPRAS method under the CSF environment with unknown information about
the DMs and criteria weights. In this study, the data of the weights of criteria and DMs
are objectively determined. To obtain objective criteria weights, a new entropy measure is
given on CSFs and the entropy weight model is developed. In order to eliminate the subjec-
tive collective information during the implementation of the method, the CSF-COPRAS
method aggregates with the computed weights of the criteria weights of DMs to acquire
the final alternative rank. Then, to explain and show the validity of the proposed method,
a numerical example and comparative analyses are given. Moreover, the applied methods’
preference ranking of alternatives is compared with different MCDM and MCGDM ap-
proaches under different environments. The fact that the best alternative is the same in all
compared methods showed that the entropy-based CSF-COPRAS method is quite robust.
So, we have presented the proposed study as a more general model than all the compared
studies and have explained its advantages with method analysis. For future work, we aim
to investigate different types of entropy measure functions and apply these functions to
the different types of traditional MCGDM methods such as WASPAS, AHP, SWAM, etc.
Also, we plan to obtain some new kind of similarity measure for CSFs environment and
further, we will research to find the applications areas of these approaches to real-life
problems such as medical diagnosis, image detection and pattern recognition.
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