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Abstract. We study an inventory control problem of a perishable product with a fixed short shelf
life in Dutch retail practice. The demand is non-stationary during the week but stationary over the
weeks, with mixed LIFO and FIFO withdrawal. The supermarket uses a service level requirement.
A difficulty is that the age-distribution of products in stock is not always known. Hence, the challenge
is to derive practical and efficient order policies that deal with situations where this information is
either available or lacking. We present the optimal policy in case the age distribution is known, and
compare it with benchmarks from literature. Three heuristics have been developed that do not require
product age information, to align with the situation in practice. Subsequently, the performance of
the heuristics is evaluated using demand patterns from practice. It appears that the so-called STIP
heuristic (S for Total estimated Inventory of Perishables) provides the lowest cost and waste levels.
Key words: perishable, inventory, service level, order policy.

1. Introduction

Supermarket managers face a trade-off between risking to lose both revenue and goodwill
by not having products available when demand arises on the one hand, and discarding
surplus products, due to out-dating, on the other hand (Gruen et al., 2002). Food waste
is mainly a result of retailer and consumer behaviour (Parfitt et al., 2010). Food waste
occurs in two ways; either in markdowns when products are still saleable but approach
the end of their shelf life or appear less attractive, or in garbage when products are no
longer (re)saleable, usable or edible. In Europe, the total food loss and waste is 31% of
the initial production from which 6.1% occurs during food processing, packaging and
distribution (HLPE, 2014). Leberorger and Schneider (2014) report a food loss rate of
fruit and vegetables of 4.19% in an Austrian food retail company from September 2011 to
August 2012. For dairy products, the food loss rate was 1.14%, and for bread and pastry –
2.84%.

Generally, retailers rather build up more stock than risk a stock-out (Thyberg and Ton-
jes, 2016). Moreover, availability of fresher items significantly affects consumer choice
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on where to shop (Wyman, 2013). Furthermore, the demand rate is influenced by product
availability and freshness (Sebatjane and Adetunji, 2021). So, there is simply a business
incentive for retailers to overstock. This is not without risk. Waste represents a loss of
business and a risk for already small margins (Cicatiello et al., 2017). Reducing the an-
nual food waste will result in benefits for companies, consumers and the environment in
terms of money, volume, energy and sustainability. Retailers are therefore very keen to
implement strategies to reduce food waste. To illustrate this, members of the Consumer
Goods Forum promised in 2015 to halve the food they waste by 2025 (The Consumer
Goods Forum, 2015). This motivates looking for order policies that may help to reduce
food waste and at the same time reduce costs for retailers. Many recent studies, such as
(Herbon, 2017) and (Buisman et al., 2019), focus on discounting and adapting prices
when the product approaches the expiration date, as a way of waste reduction. However,
the competitive strategy of the retailer we study focuses on availability of fresh produce for
fixed prices, without discounting, applying strict service level requirements. This relates
to waste prevention. In the case of dynamic pricing, profit maximization and waste reduc-
tion do not necessarily go along, while in our case cost minimization and waste reduction
are equivalent.

The Dutch retailer case studied in this paper enhances a highly perishable product
inventory system with a fixed shelf life of three days on delivery at the store, noticeable
by its best-before or use-by date. The supermarket is replenished every day which implies
the retailer has items of different ages in stock. In many practical retail situations, the
checkout system only registers the number of items sold but not their age, see Pantsar
(2019). Consequently, the retailer is facing an order decision without knowledge of the
age-distribution of the remaining items in stock. The observed total number of items in
stock may be different from the inventory status according to the checkout system, due
to damaged items and the occurrence of more waste than expected based on supply and
demand data of the supermarket. In order to minimize waste, supermarkets prefer and
stimulate customers to pick the oldest items first (FIFO, First In First Out), by putting
those items in front on the shelf. However, practitioners in Dutch retail estimate that about
40% of the customers search for the freshest items and pick according to LIFO (Last In
First Out).

Competition among supermarkets stimulates the aim to have fresh produce available.
The product availability of a supermarket can be observed by the number of days the
items are in-stock (not out-of-stock) in a supermarket. To monitor and ensure product
availability, supermarkets generally set a target service level. In case of lost demand and
periodic review of inventory levels, a so-called α-service level is most suitable. On the
other hand, a supermarket aims at limiting product waste. By appropriate order policies,
waste prevention can be improved.

Literature discusses several approaches in case the cash registering enhances the age
of the sold products. This means that the age of items that remain in stock is known. In this
paper, we will derive the optimal policy for this situation. However, we found that in retail
practice the age is often not registered. This means that only the total number of items
in stock is known after the products that expired their shelf life have been thrown out.
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Therefore, our aim is to derive practical heuristics in case the age distribution of the stock
is unknown to approximate the situation in practice more accurately.

This paper is organised as follows. Section 2 describes the retail situation and a stochas-
tic dynamic model of the situation. Section 3 discusses various approaches to determine
the order quantity and Section 4 shows the results of numerical experiments based on
practical data for the approaches. A discussion of findings and conclusions can be found
in Section 5.

2. Model of the Retail Situation Inventory Control

To be able to model the stochastic dynamics for this problem, it is necessary to first identify
the underlying characteristics of the practical situation. These characteristics are discussed
in Section 2.1 and the model in Section 2.2.

2.1. Description of the Retail Situation

In this study, a period t in the model is a day at the store, from opening until closing
time. In the retail practice of perishable products, mostly the order quantity Qt of today
is delivered the next day, so the lead time is L = 1 day. The used symbols are presented
in Table 1. In the model the sequence of events is as follows:

1. Store opening;
2. Delivery of quantity Qt−1;
3. Ordering of quantity Qt ;
4. Demand during the day from a mixed LIFO and FIFO withdrawal, ageing of remaining

items in stock and disposal of wasted items, at store closure.

At the moment of the order decision, the previous order has arrived, so there is no out-
standing order. The order quantity is based on the on-hand inventory and the expected

Table 1
Table with used symbols.

Indices
t Day of the week, t = 1, . . . , 7
b Age of item in stock, b = 1, . . . , M , M = 3
L Lead time, L = 1

Data
c Purchasing cost per item
μt Expected demand day t

dt Random demand day t , Poisson distributed
α Service level requirement as probability
λ Probability a client selects according to LIFO
St Order up-to level day t

Variables
Qt Order quantity day t

Ibt Number of items in stock of age b at the end of day t
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demand during the replenishment cycle. At the end of day t , the inventory level Ibt is re-
alized for items of all ages b. So, items from quantity Qt−1 delivered on day t have age
b = 1 at the end of day t . Items with an age reaching the shelf life b = M , are waste and
removed from the shelf at the end of the day. In case of waste, the purchasing cost is lost.
The time horizon T is 7 days with t = 1 being Monday. Inventory at the end of Sunday
(T = 7) transfers to Monday morning.

The demand is independently Poisson distributed with expectation μt for day t . When
demand is higher than the inventory level, sales are lost and the inventory level will be zero.
Moreover, we consider a mixed LIFO-FIFO withdrawal, where the number of customers
buying LIFO is binomially distributed.

2.2. Stochastic Model

The general reorder decision problem can be formulated as a stochastic optimization
model that minimizes purchasing cost and fulfils the service level constraint. For this spe-
cific model, minimization of cost and minimization of waste coincide.

min

{
E(T C) :=

T∑
t=1

E(cQt)

}
. (1)

Let x+ := max{x, 0}. The total inventory balance for all ages is given by

M∑
b=1

Ibt =
( M−1∑

b=1

Ib,t−1 + Qt−1 − dt

)+
, (2)

where t − 1 = 0 corresponds to T = 7. Period t starts with the inventory levels at the end
of period t −1 of ages b = 1, . . . ,M−1. Items of age M are waste. The starting inventory
is added to the delivered quantity Qt−1 and demand in period t is subtracted to give the end
inventory. The service level requirement is put on the probability that sufficient material
is available to fulfil demand:

P

(
dt �

M−1∑
b=1

Ib,t−1 + Qt−1

)
� α. (3)

This means that we consider a minimal service level constraint as studied by Chen and
Krass (2001), where for every day, on average, the service level has to be met.

The company we cooperated with in this study viewed demand dt for this type of fresh
products as Poisson distributed. A part of the customers pick the freshest items first. The
distribution of demand into LIFO and FIFO follows a binomial distribution B(dt , λ), with
a fraction 0 � λ � 1 of customers that choose the items according to LIFO. This means
that the LIFO inventory dynamics is followed for LIFO demand binomially drawn from
B(dt , λ) and the rest of the customers follow the FIFO dynamics, where demand is fulfilled
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first by the oldest items before the fresher items. LIFO dynamics is modelled as

I1t = (Qt−1 − dt )
+, t = 1, . . . , T (4)

and

Ibt =
(

Ib−1,t−1 −
(

dt − Qt−1 −
b−2∑
j=1

Ij,t−1

)+)+
, t = 1, . . . , T , b = 2, . . . ,M.

(5)

In the FIFO dynamics, first the older items are picked:

I1t = Qt−1 −
(

dt −
M−1∑
b=1

Ib,t−1

)+
, t = 1, . . . , T (6)

and

Ibt =
(

Ib−1,t−1 −
(

dt −
M−1∑
j=b

Ij,t−1

)+)+
, t = 1, . . . , T , b = 2, . . . ,M. (7)

The model should keep track of the end of the week balance, where

Ib0 = IbT and Q0 = QT . (8)

Moreover, order quantities and inventory cannot be negative:

Qt � 0, t = 1, . . . , T , (9)
Ibt � 0, t = 1, . . . , T , b = 1, . . . ,M. (10)

3. Order Policies

First of all, we have to distinguish the situation that the age of the products in stock is
known versus a practical situation where this is not the case. In the first case, the order
quantity Qt as a policy is a function of the vector (Qt−1, I1,t−1, I2,t−1, . . . , IM−1,t−1).
When the distribution is not known, the order quantity is a function of the total available
inventory Qt−1 + ∑M−1

b=1 Ib,t−1. A specific case of the latter is the so-called base-stock
policy (BSP), where an order-up-to level S determines the order quantity Q. The current
situation asks for a day dependent order-up-to level St for each day t of the week. The
order quantity in terms of an order-up-to policy is determined by

Qt =
(

St − Qt−1 −
M−1∑
b=1

Ib,t−1

)+
. (11)
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Given a required α-service level, the value St for which the in-stock probability is α is a
value St ∈ {0, 1, 2, 3, . . .}. Standard textbooks like Chopra and Meindl (2016) cover the
derivation of the order-up-to level in a periodic review system taking demand during lead
time L and the replenishment cycle into account. The values for S can easily be derived
using an Excel or Matlab search routine. In our case, we should determine the minimum
value St for which

P(dt + dt+1 � St ) � α.

Specifically for the Poisson distribution, this is a value St for which

P(dt + dt+1 � St ) = eμt+μt+1

St∑
j=0

(μt + μt+1)
j

j ! � α. (12)

We will discuss two approaches from literature for the known age distribution in Sec-
tion 3.1, derive the optimal order quantity in Section 3.2 and deal with the practical situ-
ation of not having this information in Section 3.3.

3.1. EWA, EWAss Heuristics if Oldest Items in Stock are Known

Broekmeulen and Van Donselaar (2009) proposed the so-called Estimated Withdrawal and
Ageing (EWA) heuristic, where knowledge of the number of oldest items, which is going
to expire during lead time, is known as part of the total inventory. Notice that the lead time
is L = 1. So in that case, the number of items to expire during lead time is IM−1,t−1. The
order quantity is determined by an order-up-to level containing a safety stock, which is
corrected for expected waste. Broekmeulen and Van Donselaar (2009) used a fixed safety
stock, optimized by simulation. Kiil et al. (2018) determine the safety stock using the
standard deviation of forecast errors during lead time and replenishment cycle times a
safety factor. Their modified EWAss policy uses a smaller buffer stock consisting of the
maximum of either the safety stock, or the expected waste. In our implementation, we
calculate the safety stock SS in the order-up-to level by

SSt = St − μt − μt+1. (13)

3.2. The Optimal Order Quantity Q∗, if Oldest Items in Stock are Known

Due to the lead time of one day, the optimal order quantity Q∗ can be determined if
the number IM−1,t−1 of oldest items in stock at the beginning of the day is known. This
means that we can derive a table Q∗(Qt−1 + ∑M−2

b=1 Ib,t−1, IM−1,t−1) of optimal order
quantities. For the ease of notation, consider the fresh inventory X = Qt−1+∑M−2

b=1 Ib,t−1

and old inventory Z = IM−1,t−1. The optimal order quantity Q∗(X,Z, t) follows from
minimizing order quantity Qt , such that the leftover x of the amount in stock at the end
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of the day plus the ordered quantity Qt fulfils the demand dt+1 with a required service
level α:

X∑
x=0

Px(x|X,Z, t) × P(dt+1 � x + Qt) � α. (14)

To find this quantity requires deriving the probability function of the conditional loss
function

Px(x|X,Z, t) = P

( M−1∑
b=1

Ibt = x|X,Z, t

)
. (15)

This is not straightforward, as one not only has to take the probability distribution of dt

into account, but also the binomial distribution of LIFO demand. Consider a realization
D of demand dt and y the LIFO demand. The boundary of the probability mass function
of the loss is the probability that there is no left-over

Px(0|X,Z, t)

= P(dt � X + Z) +
X+Z−1∑
D=X

D∑
y=X

(
D

y

)
λy(1 − λ)(D−y)P (dt = D). (16)

The probability mass for obtaining a left-over of 1 � x � X is

Px(x|X,Z, t)

= P(y = X − x) =
X+Z−x∑
D=X−x

(
D

X − x

)
λ(X−x)(1 − λ)(D−X+x)P (dt = D).

(17)

A practical way to derive the values of the probability distribution of x is to enumerate all
events of demand realizations dt = 0, . . . , X + Y − 1 and of the binomial event y of the
LIFO demand with their probability of occurrence. Then one accumulates the probability
on the event on the outcome x. After generating the corresponding probability distribution
and minimizing Qt in (14), one obtains the optimal daily ordering table Q∗(X,Z, t) for
the case that the retailer not only knows the total inventory level X+Z, but also how many
items Z = IM−1,t−1 expire at the end of the day.

3.3. Heuristic Policies if the Age Information is Unknown

We developed three heuristics for the order quantity based on the knowledge of the total
inventory for the case that the age of the items in stock is not known.

• An easy way to deal with lack of knowledge of the oldest items in stock is to simu-
late the system using the table of Q∗ and derive the corresponding average rounded
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value for order-up-to levels St . Basically, we simulate the system with knowledge of
the oldest items in stock and measure the realizations Xt and Zt of the inventory sys-
tem and average observations of the revealed order-up-to level St = Qt + Xt + Zt

using Qt = Q∗(X,Z, t) for each day t of the week. The computational procedure re-
quires simulating the optimal Q∗ with the known age distribution only once. We call
this heuristic S for Total estimated Inventory of Perishables, STIP.

• In the Expected Waste heuristic SEW, the order quantity Qt is determined by (11) using
order-up-to level St from (12) corrected by an expected waste estimate considering a
mixed expected LIFO-FIFO demand and the inventory dynamics. If a stock-out occurs,
i.e. the supermarket is out of stock, the policy takes as order quantity Qt = St . This
means that the computation of the order quantity is based on predefined values following
from probability theory.

• In the S_Augmented heuristic, we also use order-up-to level policy (12). However, the
order-up-to levels St have been defined by simulating the system and incrementing the
values if service levels are not reached. The actual order quantity Qt is determined by
(11), but in case a stock-out occurs, the policy takes as order quantity Qt = St . In a
simulation-optimization approach, if the average service level (SL) in a simulation is
below the target on day t , the order-up-to level of of day t − 1 is incremented by one
unit. The new order-up-to levels St are input in a new simulation run, until for all days
the target SL is met. The result is a vector (S1, S2, . . . , S7) of order-up-to levels that
meets the SL requirement.

4. Numerical Evaluation

We evaluate the described order policies. The design of experiments is described in Sec-
tion 4.1, followed by the obtained results in Section 4.2. In Section 4.3 we discuss some
computational aspects.

4.1. Design of Experiments

All approaches are evaluated in a rolling horizon simulation of 10,000 weeks using pseudo
random samples from the Poisson – and the binomial distribution. The expected demand
μt varies during the week. A base demand pattern is taken from observed data in a practical
retail case regarding iceberg lettuce. To evaluate the effect of larger numbers, a double
base pattern has been designed. A pattern with higher peaks on Wednesday and Saturday
provides more challenge to fulfil the service level and has therefore been included. The
target service level is taken as α = 90%. The evaluated three demand patterns are depicted
in Fig. 1. Table 2 provides the exact numbers of the expected values in order to be able to
repeat the experiments.

The variable purchasing cost is c = 1 per unit. As a result, the average total cost
per week is equal to the average order quantity per week. The practitioners in retail we
consulted, estimate a LIFO fraction of about 0.4 to be realistic. For the base demand
pattern, we vary the fraction of LIFO demand λ ∈ {0, 0.4, 0.6} for all schedules. To show
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Fig. 1. Evaluated expected demand patterns during the week. Day 1 corresponds to Monday.

Table 2
Expected Poisson demand.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Period t 1 2 3 4 5 6 7

Base μt 3.5 2.3 3.0 2.8 4.5 4.2 2.0
Double base μt 7.0 4.6 6.0 5.6 9.0 8.4 4.0
Peaks μt 2.6 2.9 4.4 2.0 3.6 8.5 5.9

the effect of partly LIFO demand on the order policies and the average amount of waste,
also the situation of only FIFO withdrawal and a LIFO fraction of 0.6 are investigated for
the base demand pattern. The other demand patterns are evaluated for a LIFO fraction of
λ = 0.4, for all schedules.

4.2. Results

Table 3 summarizes the results for the base demand pattern for all described approaches.
It shows the average total cost (avgTC) and the average total waste (avgTW) per week.
To observe the feasibility of the policy with respect to the minimal service level (SL)
constraint, the attained SL is measured for each day. We provide the minimum of these
values over the days of the week (minSL) in the table. The policies using information
about the oldest items in stock are supposed to do better than the heuristic policies that do
not use this information. As expected, one can observe that the costs and the number of
wasted items increase when the fraction of LIFO demand increases.

Table 4 compares all approaches for the three demand patterns with a LIFO fraction of
λ = 0.4. From the measured performance indicators in Tables 3 and 4, it is surprising to
observe that the policies STIP, SEW and S_augmented, which do not require age informa-
tion, perform even better than the EWA policy. In this case, EWAss has also lower costs
and waste than the EWA approach, validating the claim of Kiil et al. (2018). However, in
case of the double base demand, the EWA approach outperforms the EWAss approach,
which does not consistently meet the service level constraint due to a lowest attained SL
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Table 3
Results for base demand with LIFO fractions λ ∈ {0, 0.4, 0.6}. Average total cost, total waste and minimum

service level in the week.

Knowledge oldest items in stock

Policy EWA EWAss Q∗

λ avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL

0 23.19 1.59 0.92 23.05 1.53 0.93 22.65 1.20 0.92
0.4 24.87 3.25 0.93 24.21 2.86 0.91 24.05 2.63 0.93
0.6 26.22 4.55 0.94 24.94 3.69 0.90 25.05 3.63 0.92

Age items in stock unknown

Policy STIP SEW S_augmented
λ avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL

0 22.77 1.34 0.91 23.14 1.56 0.93 24.00 2.66 0.90
0.4 23.91 2.68 0.91 24.56 3.07 0.92 25.00 3.69 0.90
0.6 24.57 3.47 0.89 25.59 4.16 0.91 26.00 4.60 0.91

Table 4
Results for 3 demand patterns with LIFO fraction λ = 0.4. Average total cost, total waste and minimum

service level in the week.

Pattern
policy

Base demand Double base demand Peaks demand
avgTC avgTW minSL avgTC avgTW minSL avgTC avgTW minSL

EWA 24.87 3.25 0.93 46.01 2.49 0.93 33.04 3.92 0.92
EWAss 24.21 2.86 0.91 45.63 2.33 0.88 32.24 3.39 0.90
Q∗ 24.05 2.63 0.93 45.36 2.06 0.92 32.15 3.25 0.92
STIP 23.91 2.86 0.91 45.41 2.19 0.89 32.05 3.32 0.89
SEW 24.56 3.07 0.92 45.71 2.35 0.90 32.53 3.60 0.89
S_augmented 24.31 2.95 0.91 45.72 2.39 0.91 32.49 3.63 0.92

of 0.88. Q∗ gives the optimal order policy when age information is available. One might
expect a reached SL of 0.90 in this approach, but the measured SL is higher due to the
small numbers of discrete demand. However, the over achievement may also be related
to the conditional character of the order policy as described by Pauls-Worm and Hendrix
(2015).

The SEW approach quickly generates easy-to-calculate order quantities with feasible
results. The only exception occurs for the peak demand pattern where a minimum average
SL of 0.89 is reached for one of the days. The STIP approach, which corresponds to lowest
costs and waste and reasonable service levels, fails to reach the target SL of 90% for the
double base demand and peaks demand patterns, reaching an average SL of 0.89 for one
of the days, which is still close to the target level.

4.3. Computational Aspects

The evaluated approaches include four new approaches to determine order policies. The
existing policies – EWA Broekmeulen and Van Donselaar (2009) and EWAss Kiil et al.



On Order Policies for a Perishable Product in Retail 281

(2018) policy – require knowledge of the oldest items in stock. As a benchmark, we eval-
uated the newly derived optimal quantity Q∗ policy.

The EWA, EWAss and SEW approaches offer easy and fast calculation rules to de-
termine the order quantity. Like the determination of table Q∗, they require computation
based on probability theory. Basically, the complexity would increase linearly with the
considered horizon T . However, in the practical retail setting, the stationary behaviour
captures one week. The STIP approach follows from simulating the Q∗ policy only once.
However, the complexity of the simulation-optimization S_augmented approach depends
also on the number of iterations of increments to reach a solution which is feasible in
terms of service level. Computing time is hard to compare among the implemented meth-
ods, because different software and processors were used. The computational speed also
depends on the way of programming.

For the investigated experiments, determination of Q∗ requires for all experiments
about 7.5 s. The S_augmented heuristic needs 4.5 s to 9.0 s. These experiments were
performed in Matlab, on an Intel Core i7-4770 CPU, 3.40 GHz desktop processor.

5. Conclusion

The research question of this paper deals with the development and investigation of or-
der policies for a Dutch retail situation with a service level requirement where the age-
distribution of the inventory may be known or unknown. We investigated a retail situation
where a product has a fixed shelf life of three days upon delivery, demand is non-stationary
during the week, but stationary over the weeks, with a mixed LIFO-FIFO depletion and
a lead time of one day. For all patterns of expected demand, the policy that provides the
minimum amount of waste coincides with the one that minimizes expected cost. This is a
logical consequence in absence of the disposal cost or salvage value and not focusing on
a profit margin.

In case of having information of the oldest items in stock that are going to expire when
not sold, two heuristic approaches can be found in literature, EWA and EWAss . In this
paper, we derive the optimal order quantity as function of the state of inventory where the
LIFO-FIFO demand is described by a binomial distribution.

In case of not having age information, the developed S_augmented heuristic performs
best, it always meets the service level requirement and has lower costs than the SEW
approach and the benchmark EWA approach. The costs and waste in case of partly LIFO
demand are slightly higher than those of the EWAss benchmark. However, the benchmark
approaches from literature take the age-distribution of the inventory into account. The
STIP approach provides the lowest costs and lowest waste, but in some cases it does not
reach the target service level of 0.90, providing an attained SL of 0.89 on one day of the
week.

Future research deals with the derivation of heuristics for the practical cases where the
shop cannot be delivered on all days of the week. This means that a varying replenishment
cycle length has to be taken into account.
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