
INFORMATICA, 2023, Vol. 34, No. 3, 557–576 557
© 2023 Vilnius University
DOI: https://doi.org/10.15388/23-INFOR519

Multi-Querying: A Subsequence Matching
Approach to Support Multiple Queries

Wen LIU1,2, Mingrui MA3, Peng WANG4,∗
1 Artificial Intelligence and Smart Mine Engineering Technology Center,

Xinjiang Institute of Engineering, Urumqi, China
2 Xinjiang Sunshine Diantong Technology Co., Ltd, Urumqi, China
3 School of Information Science and Engineering, XinJiang University, XinJiang, China
4 School of Computer Science, Fudan University, Shanghai, China
e-mail: 627952@qq.com, 119345263@qq.com, pengwang5@fudan.edu.cn

Received: August 2022; accepted: May 2023

Abstract. The widespread use of sensors has resulted in an unprecedented amount of time series
data. Time series mining has experienced a particular surge of interest, among which, subsequence
matching is one of the most primary problem that serves as a foundation for many time series data
mining techniques, such as anomaly detection and classification. In literature there exist many works
to study this problem. However, in many real applications, it is uneasy for users to accurately and
clearly elaborate the query intuition with a single query sequence. Consequently, in this paper, we
address this issue by allowing users to submit a small query set, instead of a single query. The multi-
ple queries can embody the query intuition better. In particular, we first propose a novel probability-
based representation of the query set. A common segmentation is generated which can approximate
the queries well, in which each segment is described by some features. For each feature, the corre-
sponding values of multiple queries are represented as a Gaussian distribution. Then, based on the
representation, we design a novel distance function to measure the similarity of one subsequence
to the multiple queries. Also, we propose a breadth-first search strategy to find out similar sub-
sequences. We have conducted extensive experiments on both synthetic and real datasets, and the
results verify the superiority of our approach.
Key words: multiple queries, subsequence matching, time series mining, fault diagnosis.

1. Introduction

In recent years, the plummet in the cost of sensors and storage devices has resulted in mas-
sive time series data being captured and has substantially driven the need for the analysis
of time series data. Among various analysis and applications, the problem of subsequence
matching is of primordial importance, which serves as the foundation for many other data
mining techniques, such as anomaly detection (Boniol and Palpanas, 2020; Boniol et al.,
2020; Wang et al., 2022), and classification (Wang et al., 2018; Abanda et al., 2019; Iwana
and Uchida, 2020; Boniol et al., 2022).

∗Corresponding author.

https://doi.org/10.15388/23-INFOR519

558 W. Liu et al.

Fig. 1. EOG pattern.

Specifically, given a long time series X, for any query series Q, the subsequence match-
ing problem finds the K number of subsequences from X most similar to Q (top-K query),
or finds subsequences whose distance falls within the threshold ε (range query). In the last
two decades, plenty of works have been proposed for this problem. Most existing works
find results based on the strict distance, like Euclidean distance and Dynamic Time Warp-
ing. Among them are scanning-based approaches (Li et al., 2017; Rakthanmanon et al.,
2012) and index-based ones (Linardi and Palpanas, 2018; Wu et al., 2019).

Another type of works define the query in a more flexible way. Query-by-Sketch
(Muthumanickam et al., 2016) and SpADe (Chen et al., 2007) approximate the query
with a sequence of line segments, and find subsequences that can be approximated in a
similar way.

Nevertheless, in many real applications, users are unable to accurately and clearly elab-
orate the query intuition with a single query sequence. Specifically, users may have dif-
ferent strictness requirements for different parts of the query. We illustrate it with the
following two examples.

Case study 1. In the field of wind power generation, Extreme Operating Gust (EOG) (Hu
et al., 2018) is a typical gust pattern which is a phenomenon of dramatic changes of wind
speed in a short period. Early detection of EOG can prevent the damage to the turbine.
A typical pattern of EOG, as Q and S1 in Fig 1, has three physical phases, where its cor-
responding shape contains a slight decrease (1–100), followed by a steep rise and a steep
drop (101–200), and a rise back to the original value (200–300). Users usually emphasize
the steep increase/decrease in the second part, which means S1 is more preferred com-
pared to S2 in Fig 1. However, if the analyst submits query Q, S2 is more similar to Q

under either ED or DTW distance.

Case study 2. During the high-speed train’s work time, the sensor will continuously collect
vibration data for monitoring. When the train passes by some source of interference, the
value of sensors will increase sharply, and return to a normal value after some time, as Q,
S1 and S2 in Fig 2. However, if Q is issued as a query, subsequence S3 is more similar to it,
which is an unexpected result. By combining Q, S1 and S2 together, we can learn that the
pattern occurrences may have variable durations and distinct amplitudes. The most strict
constraint is that the pattern should include an almost upright rise and an almost upright
fall.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 559

Fig. 2. Signal interference pattern.

The above examples clearly demonstrate the limitation of the single query mechanism.
Although a single query can express the shape the user is interested with, it is not enough
to express the extent of time shifting and amplitude scaling, as well as the error range.

To solve this problem, in this paper, we propose a multiple query approach. Compared
to a single query, submitting a small number of queries together can express the query
intuition more accurately. Consider the example in Fig. 2: if users take Q, S1 and S2 as the
query set, it indicates that the user can show more tolerance in realtion to the subsequence
length and the value range, but less in relation to the slope of the increasing and decreasing
part. Moreover, submitting multiple queries is also a natural solution in the real-world
applications. For example, in the above case of train monitoring, analysts hope to find out
all interfered subsequences, and then correct them. The analyst will go through a small
part of the long sequence. Once coming across a few interfered subsequences, he/she can
submit them together in order to find more instances.

We first propose a probability-based representation of the multiple queries. Then, we
design a novel distance function to measure the similarity of one subsequence to the mul-
tiple queries. In the end, a breadth-first search algorithm is proposed to find out the desired
subsequences. To the best of our knowledge, this is the first work to study how to express
the query intuition.

Our contributions can be summarized as follows:
• We analyse the problem of expressing the query intuition, and propose a multi-query

mechanism to solve this problem.
• We present a probability-based representation of the multiple queries, as well as the

corresponding distance between it and any subsequence.
• We present a breadth-first search algorithm to efficiently search for similar subse-

quences.
• We conduct extensive experiments on both synthetic and real datasets to verify the

effectiveness and efficiency of our approach.
The rest of the paper is organized as follows. The related works are reviewed in Sec-

tion 2. Section 3 introduces definitions and notations. In Section 4 and 5, we introduce
our approach in detail. Section 6 presents an experimental study of our approach using
synthetic and real datasets, and we offer conclusions in Section 7.

2. Related Work

In last two decades, the problem of subsequence matching has been extensively studied.
Existing approaches can be classified into two groups:

560 W. Liu et al.

Fixed Length Queries: Traditionally, to find out similar subsequences, two representa-
tive distance measures are adopted, Euclidean distance (ED) and Dynamic Time Warping
(DTW). ED computes the similarity by a one-to-one mapping while DTW allows dis-
alignment and thus supports time shifting. UCR Suite (Rakthanmanon et al., 2012) is
a well-known approach that supports both ED and DTW for subsequence matching and
proposes cascading lower bounds for DTW to accelerate search speed. FAST (Li et al.,
2017) is based on UCR Suite, and further proposes some lower bounds for the sake of effi-
ciency. Both UCR Suite and FAST have to scan the whole time series to conduct distance
computation. EBMS (Papapetrou et al., 2011), however, reduces the subsequence match-
ing problem to the vector matching problem, and identifies the candidates of matches by
the search of nearest neighbours in the vector space. Also, some index-based approaches
have been proposed for similarity search. Most of them build indexes based on summa-
rizations of the data series (e.g. Piecewise Aggregate Approximation (PAA) (Keogh et
al., 2001), or Symbolic Aggregate approXimation (SAX) (Shieh and Keogh, 2008)). Co-
conut (Kondylakis et al., 2018) overcomes the limitation that existing summarizations
cannot be sorted while keeping similar data series close to each other and proposes to
organize data series based on a z-order curve. To further reduce the index creation time,
adaptive indexing techniques have been proposed to iteratively refine the initial coarse
index, such as ADS (Zoumpatianos et al., 2016).

Variable Length Queries: For variable length queries, SpADe (Chen et al., 2007) pro-
poses a continuous distance calculation approach, which is not sensitive to shifting and
scaling in both temporal and amplitude dimensions. It scans data series to get local pat-
terns, and dynamically finds the shortest path among all local patterns to be the distance
between two sequences. Query-by-Sketch (Muthumanickam et al., 2016) proposes an in-
teractive approach to explore user-sketched patterns. It extracts shape grammar, a combi-
nation of basic elementary shapes, from the sketched series, and then applies a symbolic
approximation based on regular expressions. To better satisfy the user, Eravci and Fer-
hatosmanoglu (2013) attempts to improve the search results by incorporating diversity
in the results for relevance feedback. Relatively speaking, indexing for variable length
queries is more intractable. KV-matchDP (Wu et al., 2019) utilizes multiple varied-length
indexes to support normalized subsequence matching under either ED or DTW distance.
ULISSE (Linardi and Palpanas, 2018), by comparison, uses a single index to answer sim-
ilarity search queries of variable length. It organizes the series and their summaries in a
hierarchical tree structure called the ULISSE index.

In summary, up to now, no existing work has attempted to express the query intuition
via the multi-query mechanism.

3. Preliminaries

In this section, we begin by introducing all the necessary definitions and notations, fol-
lowed by a formal problem statement.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 561

3.1. Definition

In this work, we are dealing with time series. A time series X = (x1, x2, . . . , xN) is an
ordered sequence of real-valued numbers, where N = |X| is the length of X. A subse-
quence S, S′ or X[i, j] = (xi, xi+1, . . . , xj) (1 � i � j � n) denotes the continuous
sequence of length j −i+1 starting from the i-th position in X. Note that the subsequence
is itself a time series.

Given a time series X, a query sequence Q, and a distance function D, the problem
of subsequence matching is to find out the top-K subsequences from X, denoted as R =
{S1, S2, . . . , SK }, which are most similar to Q.

The two representative distance measures are Euclidean Distance (ED) and Dynamic
Time Warping (DTW). Formally, given two length-L sequences, S and S′, their ED and
DTW distance can be computed as the following:

Definition 1. Euclidean Distance: ED(S, S′) =
√∑L

i=1(si − s′
i)

2, where si and s′
i is the

value at i-th (1 � i � L) time stamp of S or S′ respectively.

Definition 2. Dynamic Time Warping:

DTW
(〈〉, 〈〉) = 0; DTW

(
S, 〈〉) = DTW

(〈〉, S′) = ∞;

DTW
(
S, S′) =

√√√√√√(
s1 − s′

1

)2 + min

⎧⎪⎨
⎪⎩

DTW
(
suf(S), suf

(
S′)),

DTW
(
S, suf

(
S′)),

DTW
(
suf(S), S′),

where 〈〉 indicates empty series and suf(S) = (s2, . . . , sL) is a suffix subsequence of S.

In this paper, instead of processing one single query, we attempt to find out subse-
quences similar to multiple queries. That is, given a set of queries,Q = {Q1,Q2, . . . ,QN },
our objective is to find out the top-K subsequences similar to queries in Q, denoted as R.

Since each query sequence varies in length, we do not impose a constraint on the length
of subsequences in R. In this way, we find out variable-length subsequences answering
multiple queries, which is worthy of wide use in real time series applications.

4. Query Representation and Distance Definition

In this section, we first present the probability-based representation of the query set, and
then propose a distance definition based on the representation.

562 W. Liu et al.

4.1. Query Representation

In this paper, instead of processing the queries in Q independently, we first represent them
by a unified formation, which is a multi-dimensional probability distribution. Then we
find target subsequences from X based on the representation.

In many real world applications, the meaningful query sequence can be approximately
represented as a sequence of line segments. Recall the EOG pattern in Fig. 1. The query
sequence Q can be approximated with 4 line segments. These line segments capture the
most representative characteristics in Q.

In response, we propose a two-step approach to represent the bundle of queries to-
gether. In the first step, we represent each single query Qi inQ individually by a traditional
segmentation in which each segment is described by some features. Then, in the second
step, we represent each feature as a Gaussian distribution over the values from multiple
queries.

4.1.1. Step One: Represent Each Single Query
In step one, we perform a traditional segmentation. We use a bottom-up approach to con-
vert the query Qi = (q1, q2, . . . , qf) into a piecewise linear representation, where qf is
the segment of single query Qi (1 � f � |Qi |). Initially, we approximate Qi with

⌊ |Qi |
2

⌋
line segments. The j -th line, Hj , connects q2j−1 and q2j . Next, we iteratively merge the
neighbouring lines. In each iteration, we merge the two neighbouring segments into one
new line segment that has the minimal approximation error. The merging process repeats
until we have m (a pre-set parameter) number of line segments. For each Qi , we obtain
its segmentation, denoted as (Q1

i ,Q
2
i , . . . ,Q

m
i) and its linear representation, denoted as

(H 1
i , H 2

i , . . . , Hm
i).

For each line segment H
j
i (1 � i � N and 1 � j � m), we represent it as a 4-di-

mension vector, f
j
i = (l

j
i , θ

j
i , v

j
i , ε

j
i), which corresponds to the length, slope, the value

of the starting point and MSE error of H
j
i , respectively. As a result, the query sequence

Qi is represented by a 4m-dimension vector, Fi = (f 1
i , f 2

i , . . . , f m
i).

4.1.2. Step Two: Represent Multiple Queries
After obtaining Fi’s (1 � i � N), we can generate the uniform representation of query
set Q, which is a multi-dimensional probability distribution. We first present the formal
distribution, and then give our approach to generate the specific distribution for Q.

Specifically, given query set Q, its representation, denoted as PQ, consists of 4m num-
ber of individual Gaussian distributions, each of which corresponds to a feature in f

j
i .

For each feature, we produce a Gaussian distribution to capture latent semantics, which
is determined by two parameters: the mean value and the standard deviation. The former
encodes the ideal value of the feature, while the latter provides an elastic range.

Formally, we denote the representation of Q as PQ = (P 1, P 2, . . . , P m), where P j =
(p

j
l , p

j
θ , p

j
v , p

j
ε) corresponds to the j -th line segments (H

j

1 ,H
j

2 , . . . , H
j
N). Take the slope

feature as an example, that is, p
j
θ is the Gaussian density function of the slope of the j -th

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 563

segment, denoted as

p
j
θ (x) = 1√

2πσ
j
θ

exp

(
− (x − μ

j
θ)

2

2(σ
j
θ)2

)
, (1)

where μ
j
θ (or σ

j
θ) is the mean value (or standard deviation) of the slope values of

(H
j

1 ,H
j

2 , . . . , H
j
N). Specifically, μ

j
θ =

∑N
i=1 θ

j
i

N
, σ

j
θ =

√
1
N

∑N
i=1(θ

j
i − μ

j
θ)

2. The mean
value μi

θ describes the slope the user prefers, and the standard deviation σ i
θ represents

how strictly the user stresses on this feature. Apparently, the smaller the value of σ i
θ is, the

stricter the user’s requirement.
Now we introduce our approach to generate PQ for the query set Q. We first get the

representations (l
j
i , θ

j
i , v

j
i , ε

j
i) that correspond to the features of the j -th line segment in

Qi . To get the specific Gaussian distribution P j = (p
j
l , p

j
θ , p

j
v , p

j
ε), we directly compute

the mean value and the standard deviation of the feature values of (H
j

1 ,H
j

2 , . . . , H
j
N).

Then, PQ = (P 1, P 2, . . . , P m).

4.2. Distance Definition

Given the fact that the query representation consists of 4m number of Gaussian distri-
butions rather than a sequence, the existing distance measures, like ED and DTW, are
inapplicable. In this paper, we propose a novel distance function D(S,Q) based on the
probability distribution.

Formally, to define the distance between subsequence S and the query representation
PQ, we first approximate S with m line segments. We indicate the segmentation as seg =
(S1, S2, . . . , Sm), where Sj (1 � j � m) denotes the j -th segment of S. Note that the
segment here infers subsequence rather than line segment. We extract four features, the
length lj , the slope θj , the value of the starting point vj , and the MSE error εj from the
linear representation of Sj . For ease of presentation, we represent all the j -th segments in
Q as Qj . That is, Qj = (Q

j

1,Q
j

2, . . . ,Q
j
N). Then the distance between Sj and Qj is

dist
(
Sj ,Qj

) = − log
(
p

j
l

(
lj

)
p

j
θ

(
θj

)
pj

v

(
vj

)
pj

ε

(
εj

))
, (2)

dist(Sj ,Qj) is the negative logarithm of the probability. The smaller the value, the more
similar Sj and Qj are. Accordingly, under segmentation seg, the distance between S and
the query set Q can be computed as

D(S,Q, seg) =
m∑

j=1

dist
(
Sj ,Qj

)
. (3)

Since S can be segmented by different segmentations, the value of D(S,Q, seg) may be
different. In this paper, we define the distance between S and Q as the minimal one among

564 W. Liu et al.

all possible segmentations, that is,

D(S,Q) = min
seg

D(S,Q, seg). (4)

5. Query Processing Approach

In this section, we introduce the search process. Obviously, it is exhaustive to find out the
best segmentation of all subsequences in the time series X. In response, we divide the
search process into two phases:

1. Candidate generation. Given the submitted query set Q, we utilize a Breadth-First
Search (BFS) strategy to find at most nc number of candidates from X, denoted as
CS.

2. Post-processing. All subsequences in CS will be verified and re-ordered by computing
its actual distance. Moreover, we dismiss the trivial match subsequences.

5.1. BFS-Based Search Process

We first introduce our search strategy to generate the candidate set CS with size not ex-
ceeding the parameter nc. We utilize an iterative approach, and generate the candidates
segment-by-segment. In the first round, we generate at most nc number of candidates
with only one segment. The candidate set is denoted as CS1 = {cs1, cs2, . . . , csnc }. Each
candidate, csi , is a triple 〈si , ei , di〉, in which si is its starting point and ei is its ending
point. So csi corresponds to the subsequence X[si, ei]. The third element di is distance
dist(cs1,Q

1). All candidates in CS1 are ordered based on the values of di ascendingly. In
other words, CS1 contains nc number of subsequences with smallest distance with Q1. We
discuss how to select top-nc candidates in the next section.

In the second round, we obtain candidate set CS2 by extending the candidates in CS1

with the second segment. Specifically, given any candidate subsequence cs = 〈s, e, d〉
in CS1, if we want to extend cs to cs′ with a length-L segment, the new candidate
cs′ = 〈s, e′, d ′〉 contains two segments: one corresponds to X[s, e] and the other to
X[e + 1, e + L]. Note that the new starting point s keeps unchanged, and the new ending
point e′ changes to e+L. Also, the new distance d ′ is updated to d+dist(X[e+1, e′],Q2).
Since from each candidate cs in CS1, we can extend it to multiple candidates by concate-
nating X[s, e] with variable length segments, we generate all possible candidates, compute
the distance and add top-nc candidates into CS2.

After m rounds, we obtain the candidate set CSm, which is the final candidate set CS.
Now each candidate in CS consists of m segments.

5.2. Candidate Generation

Now we introduce our approach to generate possible candidates in each round.
In the first round, we enumerate all subsequences X[s, e] from all possible starting

points, that is, we try all s’s within [1, n]. To avoid the low-quality candidates, we only

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 565

select subsequences with length satisfying the 3σ standard. Formally, given any starting
point s, the ending point e must satisfy e ∈ [μ1

l − 3σ 1
l , μ1

l + 3σ 1
l]. For each candidate

subsequence X[s, e], we compute the optimal linear approximation, y = θ ·x +b, as well
as the MSE error ε as follows,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θ = 12
∑

ix − 6(l + 1)
∑

x

l(l + 1)(l − 1)
,

b = 6
∑

ix − 2(2l + 1)
∑

x

l(1 − l)
,

ε =
∑

x2 + θ2
∑

i2 + lb2 − 2θ
∑

ix − 2b
∑

x + 2θb
∑

i,

(5)

where l = e−s+1 is the length of X[s, e]. After that, we compute dist(X[s, e],Q1). Also,
if only any other feature of a candidate (θ , v or ε) violates the 3σ standard, we ignore this
candidate. During enumerating different candidates, we maintain CS1 as a priority queue
to keep top-nc candidates.

In the j -th round (2 � j � m), we generate candidates by extending previous ones
in CSj−1. For each candidate cs = 〈s, e, d〉 in CSj−1, we try all possible segments next
to X[s, e] whose length falls within [μj

l − 3σ
j
l , μ

j
l + 3σ

j
l]. Similar with the first round,

we also dismiss the candidates violating the 3σ standard. When extending candidate cs =
〈s, e, d〉 to cs′ = 〈s, e′, d ′〉, except the new ending point e′, we also update the distance
as d ′ = d + dist(X[e + 1, e′],Qj).

5.3. Post-Processing

Note that the subsequences in CS are not approximated optimally. Here, an additional
refinement step has to be performed, where subsequences are verified and re-ordered using
the optimal segmentation. Specifically, we fetch the subsequences in CS, approximate each
subsequence cs with m line segments via a dynamic programming algorithm, and thus get
the actual distance D(cs,Q) under the new segmentation.

The objective of the segmentation is to minimize the distance between cs and Q. We
search the optimal segmentation from left to right sequentially on cs. We define E(i, j)

(1 � i � m and 1 � j � |cs|) to be the minimal distance between the prefix of cs

(i.e. cs = X[1, j]) and the prefix of Q with i segments (i.e. [Q1,Q2, . . . ,Qi]). We begin
by initializing E(1, j) to be dist(X[1, j],Q1). When computing E(i, j) (2 � i � m),
we consider all the possible segmentations of X[1, k] (i � k � j) with i − 1 segments,
compare the sum of E(i−1, k) and dist(X[k, j],Qk), and define E(i, j) to be the minimal
one. Formally, the dynamic programming equation is presented as the following

E(i, j) =

⎧⎪⎪⎨
⎪⎪⎩

dist(X[1, j],Q1), i = 1,

+∞, i > j,

min
i�k�j

(
E(i − 1, k) + dist

(
X[k, j],Qk

))
, otherwise.

(6)

566 W. Liu et al.

We re-compute the distance between each subsequence in CS and Q. Before re-ordering,
we have to dismiss the trivial match subsequences since candidates can overlap with each
other. Formally, given two candidates cs = X[s, e] and cs′ = X[s′, e′], if their overlap-
ping ratio, cs∩ cs′

cs∪ cs′ , exceeds min(0.8,
min(|Q|)
max(|Q|)), where the latter indicates the ratio between

the minimum length and the maximum length of queries Q, we dismiss the subsequence
with the larger distance.

Afterwards, we simply sort the remaining subsequences in CS according to D(cs,Q)

and select the K smallest as the final results R.

5.4. Optimization

In this section, we propose two optimization strategies to further accelerate the search
process.

5.4.1. Basic Aggregates Based Linear Representation Computation
In the search process, for each candidate, we adopt linear regression to find out the best
line segment y = θ · x + b in a least square sense using Eq. (5). It is noteworthy that θ , b,
and ε can be computed by some combination of three basic aggregates:

∑
x,

∑
x2 and∑

ix, with cost O(1), as proposed in Wasay et al. (2017). As long as we maintain these
three in-memory arrays to store these basic aggregates of time series X, linear regression
can be conducted in O(1) time for any subsequence in X.

However, to process extremely long sequences, the storage overheads are unaffordable.
As a consequence, we propose to split the time series into several blocks and conduct
subsequence matching within each block sequentially and summarize the results in the
end. Obviously, this approach reduces memory consumption while being accurate and
efficient.

5.4.2. Adjusting the Searching Order
Up to now, we have generated the candidates segment-by-segment sequentially. However,
different standard deviation of the feature values of different segments in Q will result
in different search space. For example, in Q, one segment has the standard deviation of
length σl = 5, while in other segment, σl = 10. According to the 3σ standard, the former
has 5 · 3 · 2 + 1 = 31 candidates, while the latter has 61 candidates. Obviously, we should
first search based on the latter. Specifically, we perform the search process in an optimized
order, where we first consider the segment whose standard deviation of the value of length
feature is the smallest, and then consider its neighbouring segments. Suppose there are 3
sets of line segments in Q, i.e. m = 3, their standard deviations of the value of length
feature are 2, 3, 1 respectively, that is, σ 1

l = 2, σ 2
l = 3, σ 3

l = 1. Then, in the search
process, we generate candidates from right to left sequentially.

5.5. Complexity Analysis

The overall process of our approach can be divided into two phases: query representation
and query processing.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 567

Before the two phases, we have to scan the whole time series X once to store the basic
aggregates. Its time cost is O(n), where n is the length of X.

Then, in the first phase, we scan all the queries and perform traditional piecewise lin-
ear approximations. Thanks to the basic aggregates, the time cost of conducting linear
regression is negligible. This phase is then O(N |Q|2) in time complexity, where N is the
number of queries. For ease of presentation, although multiple queries can vary in length,
we denote |Q| as the length of the queries.

In the second phase, we first assume wi = 6σ i
l + 1, where σ i

l is the standard deviation
of the length values of (H i

1,H
i
2, . . . , H

i
N). Suppose we generate candidates from left to

right sequentially; when considering the first segments, it requires O(w1n log(nc)) time
to maintain the candidate set. For the following i-th segments, the time complexity is
O(winc log(nc)). In the post-processing process, we have to verify and compute the actual
distance between Q and every subsequence cs in the candidate set. It takes O(ncm|cs|2)
time to conduct the dynamic programming algorithm for the nc candidates, where m is
the number of line segments. Moreover, the re-ordering process is at most O(nc log nc)

in time complexity.
Since wi is a constant, nc is proportional to n, and |cs| and |Q| is much smaller than n,

we can infer that the time complexity of our approach is O(n log(nc)) theoretically.

6. Experiments

In this section, we conduct extensive experiments to verify the effectiveness and efficiency
of our approach. All experiments are run on a PC with Intel Core i7-7700K CPU (8 cores
@ 4.2 GHz) and 16 GB RAM.

6.1. Datasets

6.1.1. Synthetic Datasets
We generate the synthetic sequence as follows. First, we generate a long random walk
sequence T . Then we embed in T some meaningful pattern instances, in which some are
taken as queries, and others as target results.

We generate two types of patterns, W-wave from the Adiac dataset in UCR archive
(Dau et al., 2019), and backward wave, common in stock series. For each pattern, we first
generate a seed instance and add some noise following a Gaussian distribution N(0, 0.05),
as shown in Fig. 3. Then we modify them to generate more instances. Specifically, we
adopt three types of variations, length, amplitude, and shape as follows.

• Length: It is obvious that the W-wave in Fig. 3(a) can be split into four segments.
For the middle two segments, we change the segment length with a scaling factor λ

by inserting or deleting some data points. In other words, for a length-l segment, the
length of the new segment is l · λ.

• Amplitude: Similar to the case of length scaling, we increase or decrease the amplitude
of the middle two segments in the W-wave. We still use a factor λ to control the extent.
Specifically, every value in new segment changes to v ·λ, where v is the original value.

568 W. Liu et al.

(a) W-wave

(b) Backward wave

Fig. 3. Two fundamental patterns.

Table 1
Influence of variations.

l θ v ε

Length
√ √

Amplitude
√ √ √

Shape
√ √ √

• Shape: For the backward wave shown in Fig. 3(b), we change the global shape of the
pattern by modifying the last two segments on both length and amplitude. To be more
specific, we change the segment length from l to l · λ, and the data values from v to
v · λ.

Note that the three types of variations will influence different features in the line segments.
We list them respectively in Table 1.

For each type of variation, we test our approach under different extents. Take the length
variation as an example. To generate a dataset, we first set a parameter r , which determines
the length variation range. Specifically, given r , we can only set the length scaling factor λ

within the range [1/(1+r), 1+r]. Obviously, the larger the value of r , the larger the length
scaling extent.

For each variation, given the fixed r , we pick out 50 values from the range [1/(1 +
r), 1 + r] as the value of λ. Then we generate 50 corresponding pattern instances, 40 of
which are randomly planted into the random walk long time series. The rest 10 instances
form the query set Q. A summary of the synthetic datasets is presented in Table 2.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 569

Table 2
A summary of the synthetic datasets.

Dataset Pattern Variation Length

1 W-wave Length 0.7 million
2 W-wave Amplitude 0.7 million
3 Backward wave Shape 0.4 million

6.1.2. Real Datasets
The real dataset is the train monitoring dataset, which is the time series collected by the
vibration sensor. Its total length is 15 million. There exist more than 100 interference sub-
sequences that vary in length and amplitude. The length of these subsequences is within
the range of 200 to 2500. Consequently, we maintain a query set of size 15 whose lengths
almost distribute uniformly between 200 and 2500. The rest ones are leaved as the target
results.

6.2. Counterpart Approaches

Note that it is difficult to find reasonable baselines to compare our approach to because
the existing methods are only devised for the case of a single query. Since no approach
can deal with multiple queries as a whole, we choose two representative subsequence
matching algorithms, UCR Suite (Rakthanmanon et al., 2012) and SpADe (Chen et al.,
2007), and then enable them to handle the problem of multiple queries. UCR Suite finds
the best normalized subsequences and supports both Euclidean distance and Dynamic
Time Warping (UCR-ED and UCR-DTW for short). SpADe finds the shortest path within
several local patterns, and is able to handle shifting and scaling both in temporal and
amplitude dimensions.

To make UCR-Suite (or SpADe) support multiple queries, we first find out top-K
similar subsequences for each query based on UCR-Suite (or SpADe). We then sort these
K · N number of subsequences in the ascending order of their distances (normalized by
the subsequence length) and pick out the top-K ones excluding any trivial results as final.
For UCR-Suite, we utilize both ED and DTW as the distance, denoted as UCR-ED and
UCR-DTW, respectively.

Let N be the number of queries in Q, we denote our approach and the other three
competitors as MQ-N , UCR-ED-N , UCR-DTW-N and SpADe-N , respectively. Note that
the three rivals have to scan the time series for N times. For fairness, we do not count I/O
time when comparing efficiency.

6.3. Results on Synthetic Datasets

In the first experiment, we compare our approach MQ with UCR-ED, UCR-DTW, and
SpADe on synthetic datasets. Both accuracy and efficiency are tested. To compare these
approaches extensively, we vary the parameter r for all three variations, length, amplitude
and shape. Specifically, for the length variation, we set the maximal scaling factor r from

570 W. Liu et al.

(a) Length scaling

(b) Amplitude scaling

(c) Shape scaling

Fig. 4. Accuracy comparisons under different variations.

0.25 to 0.7 with step 0.05. For the amplitude variation, we varied r in a range of 0.2 to
2 with step 0.2. For the shape variation, we changed r in a range of 0.05 to 0.5 with step
0.05.

We set the number of queries, N , as 5 and 10, respectively. The experimental re-
sults are then indicated by MQ-5, MQ-10, UCR-DTW-5, UCR-DTW-10, SpADe-5, and
SpADe-10.1 For MQ, we set the only parameter, the size of the candidate set nc, to be
0.05 · n, where n is the length of the time series X.

In each set of experiments, we attempt to find out the top-40 subsequences in the time
series. The accuracy is the ratio between the number of correct subsequences and 40.
Subsequence S is correct, if the overlapping ratio between S and certain planted instance
exceeds the tolerance parameter, ε = min

(
0.8,

min(|Q|)
max(|Q|)

)
.

1UCR-ED is omitted for its consistent inferiority to UCR-DTW.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 571

(a) Length scaling

(b) Amplitude scaling

(c) Shape scaling

Fig. 5. Efficiency comparisons under different variations.

The results are shown in Fig. 4 and Fig. 5, respectively. It can be seen that MQ out-
performs UCR-DTW and SpADe in both accuracy and efficiency under all variations.
The reason is that MQ summarizes common characteristics in multiple queries while the
other approaches are only able to find out the subsequences that are similar to certain given
query. As a consequence, when the number of query sequences N increases, UCR-DTW
and SpADe yield better results. Nevertheless, UCR-DTW-10 (or SpADe-10) is twice as
slow as UCR-DTW-5 (or SpADe-5) on average, which means with more query sequences
provided, UCR-DTW and SpADe can find out more satisfying subsequences, but at the
cost of efficiency. Instead, MQ captures latent semantics and thus demonstrates its supe-
riority in both accuracy and efficiency under different variations. The only exception is in
Fig. 4(c), where the accuracy of MQ sharply decreases when r = 0.4, which is mainly
because the undue scaling in shape will result in ambiguity of what users really want.

572 W. Liu et al.

(a) Accuracy vs. N

(b) Efficiency vs. N

Fig. 6. Comparison on real dataset.

6.4. Results on Real Datasets

In this experiment, we compare our approach with other ones as the number of query
sequences N varied on real dataset. We pick out queries from the query set of size 15
so that their lengths distribute uniformly. Note that no matter the value of N , we find out
top-100 subsequences from the real time series. The results are shown in Fig. 6.

It can be seen that in Fig. 6(a), the accuracy of MQ, UCR-ED, and UCR-DTW in-
creases when N increases while the accuracy of SpADe is consistently low. The reason
is that SpADe extracts local patterns by using a fixed size of sliding window, and conse-
quently, it fails to capture the query intuition. Moreover, it is noteworthy that when N = 6,
the accuracy of MQ has already exceeded 0.9, which means that MQ is able to find out
what users really want with only a small query set.

Figure 6(b) compares MQ and other approaches on efficiency. Obviously, MQ outper-
forms all other approaches, and its running time is insensitive to N since MQ summarizes
all the queries and searches for results in the time series only once. Due to the specific pat-
tern shape and the lack of abundant pruning strategies, UCR-ED is inferior to UCR-DTW
in terms of efficiency in this dataset.

6.5. Influence of Parameter nc

In this experiment, we investigate the influence of the parameter nc, the size of the can-
didate set. On the real dataset, we varied nc from 0.01 to 0.1, and the number of queries,
N was set to 3, 6, and 9 respectively.

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 573

(a) Accuracy vs. nc

(b) Efficiency vs. nc

Fig. 7. Influence of parameter nc .

Results are shown in Fig. 7. It can be seen that as nc gets larger, the accuracy of MQ
increases while the efficiency decreases. It is because once the query set is fixed, we can
maintain more candidates by enlarging the candidate set, i.e. increasing the value of nc at
the cost of more running time. Also, we can find that MQ has already achieved satisfying
results when nc = 0.05, so we set the default value of nc to 0.05 in previous experiments.
Generally, as shown in Fig. 7(a), the accuracy of MQ increases as the number of queries N

increases. The only exception is when nc = 0.01. The reason is that the standard deviation
of the query feature values experiences an increase as N increases, resulting in a larger
search space. The small candidate set then fails to maintain enough candidates, and thus
achieves poor results. Meanwhile, the changes in the search space cause the running time
to increase proportionally, as shown in Fig. 7(b).

7. Conclusions

In this paper, we have proposed a novel subsequence matching approach, Multi-querying,
to reflect the query intuition. Given multiple queries, we use a multi-dimensional proba-
bility distribution to represent them. Then, a breadth-first search algorithm is then applied
to finding out the top-K most similar subsequences. Extensive experiments have demon-
strated that Multi-querying outperforms the state-of-the-art algorithms in terms of accu-
racy and performance. To the best of our knowledge, this is the first study to introduce the
concept of multiple queries to express the query intuition.

574 W. Liu et al.

Funding

This work is supported by NSFC under grant 61962058, the Tianshan Talent of Xin-
jiang Uygur Autonomous Region – Young Top Talents in Science and Technology
(2022TSYCCY0008), Integration of Industry and Education-Joint Laboratory of Data
Engineering and Digital Mine (2019QX0035), Bayingolin Mongolian Autonomous Pre-
fecture Science and Technology Research Program (202117), Natural Science Foundation
of Xinjiang Uygur Autonomous Region (2019D01A30), and Scientific Research Program
of the Higher Education Institution of Xinjiang (XJEDU2018Y056).

References

Abanda, A., Mori, U., Lozano, J.A. (2019). A review on distance based time series classification. Data Mining
and Knowledge Discovery, 33(2), 378–412. https://doi.org/10.1145/3514221.3526183.

Boniol, P., Palpanas, T. (2020). Series2graph: Graph-based subsequence anomaly detection for time series. Pro-
ceedings of the VLDB Endowment, 13(12), 1821–1834. https://doi.org/10.14778/3407790.3407792.

Boniol, P., Linardi, M., Roncallo, F., Palpanas, T. (2020). Automated anomaly detection in large sequences. In:
2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, pp. 1834–1837.
https://doi.org/10.1109/ICDE48307.2020.00182.

Boniol, P., Meftah, M., Remy, E., Palpanas, T. (2022). DCAM: dimension-wise class activation map for explain-
ing multivariate data series classification. In: Proceedings of the 2022 International Conference on Manage-
ment of Data, SIGMOD ’22. Association for Computing Machinery, New York, NY, USA, pp. 1175–1189.
https://doi.org/10.1145/3514221.3526183.

Chen, Y., Nascimento, M.A., Ooi, B.C., Tung, A.K.H. (2007). SpADe: on shape-based pattern detection in
streaming time series. In: Proceedings of the 23rd International Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15–20, 2007, pp. 786–795. https://doi.org/10.1109/ICDE.
2007.367924.

Dau, H.A., Bagnall, A., Kamgar, K., Yeh, C.-C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Keogh, E.
(2019). The UCR time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6), 1293–1305. https://
doi.org/10.1109/JAS.2019.1911747.

Eravci, B., Ferhatosmanoglu, H. (2013). Diversity based relevance feedback for time series search. Proceedings
of the VLDB Endowment, 7(2), 109–120. https://doi.org/10.14778/2732228.2732230.

Hu, W., Letson, F., Barthelmie, R.J., Pryor, S.C. (2018). Wind gust characterization at wind turbine relevant
heights in moderately complex terrain. Journal of Applied Meteorology and Climatology, 57(7), 1459–1476.
https://doi.org/10.1175/JAMC-D-18-0040.1.

Iwana, B.K., Uchida, S. (2020). Time series classification using local distance-based features in multi-modal fu-
sion networks. Pattern Recognition, 97, 107024. https://doi.org/10.1016/j.patcog.2019.107024. https://www.
sciencedirect.com/science/article/pii/S0031320319303279.

Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S. (2001). Dimensionality reduction for fast similarity search
in large time series databases. Knowledge and Information Systems, 3(3), 263–286. https://doi.org/10.1007/
PL00011669.

Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T. (2018). Coconut: a scalable bottom-up approach for
building data series indexes. Proceedings of the VLDB Endowment, 11(6), 677–690. https://doi.org/10.14778/
3184470.3184472.

Li, Y., Tang, B., U, L.H., Yiu, M.L., Gong, Z. (2017). Fast subsequence search on time series data. In: Pro-
ceedings of the 20th International Conference on Extending Database Technology, EDBT 2017, Venice,
Italy, March 21–24, 2017, pp. 514–517. https://doi.org/10.5441/002/edbt.2017.58. https://openproceedings.
org/2017/conf/edbt/paper-369.pdf.

Linardi, M., Palpanas, T. (2018). Scalable, variable-length similarity search in data series: the ULISSE approach.
Proceedings of the VLDB Endowment, 11(13), 2236–2248. https://doi.org/10.14778/3275366.3284968.

Muthumanickam, P.K., Vrotsou, K., Cooper, M., Johansson, J. (2016). Shape grammar extraction for efficient
query-by-sketch pattern matching in long time series. In: 11th IEEE Conference on Visual Analytics Science

https://doi.org/10.1145/3514221.3526183
https://doi.org/10.14778/3407790.3407792
https://doi.org/10.1109/ICDE48307.2020.00182
https://doi.org/10.1145/3514221.3526183
https://doi.org/10.1109/ICDE.2007.367924
https://doi.org/10.1109/ICDE.2007.367924
https://doi.org/10.1109/JAS.2019.1911747
https://doi.org/10.1109/JAS.2019.1911747
https://doi.org/10.14778/2732228.2732230
https://doi.org/10.1175/JAMC-D-18-0040.1
https://doi.org/10.1016/j.patcog.2019.107024
https://www.sciencedirect.com/science/article/pii/S0031320319303279
https://www.sciencedirect.com/science/article/pii/S0031320319303279
https://doi.org/10.1007/PL00011669
https://doi.org/10.1007/PL00011669
https://doi.org/10.14778/3184470.3184472
https://doi.org/10.14778/3184470.3184472
https://doi.org/10.5441/002/edbt.2017.58
https://openproceedings.org/2017/conf/edbt/paper-369.pdf
https://openproceedings.org/2017/conf/edbt/paper-369.pdf
https://doi.org/10.14778/3275366.3284968

Multi-Querying: A Subsequence Matching Approach to Support Multiple Queries 575

and Technology, IEEE VAST 2016, Baltimore, MD, USA, October 23–28, 2016. IEEE Computer Society,
pp. 121–130. https://doi.org/10.1109/VAST.2016.7883518.

Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D. (2011). Embedding-based subsequence
matching in time-series databases. ACM Transactions on Database Systems, 36(3), 17–11739.

Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E.A.P.A., Westover, M.B., Zhu, Q., Zakaria, J.,
Keogh, E.J. (2012). Searching and mining trillions of time series subsequences under dynamic time warping.
In: The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’12,
Beijing, China, August 12–16, 2012. ACM, pp. 262–270. https://doi.org/10.1145/2339530.2339576.

Shieh, J., Keogh, E. (2008). ISAX: indexing and mining terabyte sized time series. In: Proceedings of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08. Association
for Computing Machinery, New York, NY, USA, pp. 623–631. https://doi.org/10.1145/1401890.1401966.

Wang, H., Li, C., Sun, H., Guo, Z., Bai, Y. (2018). Shapelet classification algorithm based on efficient subse-
quence matching. Data Science Journal, 17(6), 1–12. https://doi.org/10.5334/dsj-2018-006.

Wang, Q., Whitmarsh, S., Navarro, V., Palpanas, T. (2022). IEDeaL: a deep learning framework for detecting
highly imbalanced interictal epileptiform discharges. Proceedings of the VLDB Endowment, 16(3), 480–490.
https://doi.org/10.14778/3570690.3570698.

Wasay, A., Wei, X., Dayan, N., Idreos, S. (2017). Data canopy: accelerating exploratory statistical analysis. In:
Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14–19, 2017, ACM, pp. 557–572. https://doi.org/10.1145/3035918.3064051.

Wu, J., Wang, P., Pan, N., Wang, C., Wang, W., Wang, J. (2019). KV-match: a subsequence matching approach
supporting normalization and time warping. In: 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8–11, 2019. IEEE, pp. 866–877. https://doi.org/10.1109/ICDE.2019.00082.

Zoumpatianos, K., Idreos, S., Palpanas, T. (2016). ADS: the adaptive data series index. VLDB Endowment, 25(6),
843–866. https://doi.org/10.1007/s00778-016-0442-5.

https://doi.org/10.1109/VAST.2016.7883518
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/1401890.1401966
https://doi.org/10.5334/dsj-2018-006
https://doi.org/10.14778/3570690.3570698
https://doi.org/10.1145/3035918.3064051
https://doi.org/10.1109/ICDE.2019.00082
https://doi.org/10.1007/s00778-016-0442-5

576 W. Liu et al.

W. Liu received the BS degree in computer science from Xinjiang Normal University,
Xinjiang, in 2004, and the PhD degree in computer science from Dalian University of
Technology, Dalian, China, in 2009. He is currently a professor in College of Control
Engineering, Xinjiang Institute of Engineering. His research interests include database,
stream data processing, and cloud computing.

M. Ma received the BS degree in computer science from Xinjiang Normal University,
Xinjiang, in 2004, and the MS degree in computer science from Dalian University of
Technology, Dalian, China, in 2012. He is currently a PhD student of computer science at
Xinjiang University. His research interests include database and cloud computing.

P. Wang received the BS degree in mathematics from Nankai University, Tianjin, China,
in 2001, and the PhD degree in computer science from Fudan University, Shanghai, China,
in 2007. He is currently a professor in School of Computer Science, Fudan University. His
research interests include database and stream data processing.

	Introduction
	Related Work
	Preliminaries
	Definition

	Query Representation and Distance Definition
	Query Representation
	Step One: Represent Each Single Query
	Step Two: Represent Multiple Queries

	Distance Definition

	Query Processing Approach
	BFS-Based Search Process
	Candidate Generation
	Post-Processing
	Optimization
	Basic Aggregates Based Linear Representation Computation
	Adjusting the Searching Order

	Complexity Analysis

	Experiments
	Datasets
	Synthetic Datasets
	Real Datasets

	Counterpart Approaches
	Results on Synthetic Datasets
	Results on Real Datasets
	Influence of Parameter nc

	Conclusions

