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Abstract. This paper proposes a new multi-criteria group decision-making (MCGDM) method uti-
lizing q-rung orthopair fuzzy (qROF) sets, improved power weighted operators and improved power
weighted Maclaurin symmetric mean (MSM) operators. The power weighted averaging operator
and power weighted Maclaurin symmetric mean (MSM) operator used in the existing MCGDM
methods have the drawback of being unable to distinguish the priority order of alternatives in some
scenarios, especially when one of the qROF numbers being considered has a non-belongingness
grade of 0 or a belongingness grade of 1. To address this limitation of existing MCGDM meth-
ods, four operators, namely qROF improved power weighted averaging (qROFIPWA), qROF im-
proved power weighted geometric (qROFIPWG), qROF improved power weighted averaging MSM
(qROFIPWAMSM) and qROF improved power weighted geometric MSM (qROFIPWGMSM), are
proposed in this paper. These operators mitigate the effects of erroneous assessment of information
from some biased decision-makers, making the decision-making process more reliable. Following
that, a group decision-making methodology is developed that is capable of generating a reasonable
ranking order of alternatives when one of the qROF numbers considered has a non-belongingness
grade of 0 or a belongingness grade of 1. To investigate the applicability of the proposed approach,
a case study is also presented and a comparison-based investigation is used to demonstrate the su-
periority of the approach.
Key words: q-rung orthopair fuzzy sets, improved power weighted operators, improved power
weighted Maclaurin symmetric mean (MSM) operators, group decision-making.
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1. Introduction

Fuzzy sets (FSs) (Zadeh, 1965) were initiated primarly due to the consideration of ambigu-
ous human evaluations when dealing with realistic problems. Alternatively, the FSs doc-
trine can manage the reality beyond computational observation and comprehension, that
is ambiguity, partial belongingness, inaccuracy and sharpless limits (Zhan et al., 2022).
Later on, intuitionistic FSs (Atanassov, 1986) were introduced as a generalization of FSs
to tackle problems that have deficient data. Since IFSs were proposed, many scholars have
conducted in-depth studies (Chen and Chang, 2016; Chen et al., 2016; Garg, 2017b, 2019;
Kumar and Chen, 2021; Mishra et al., 2019, 2020; Zeng et al., 2019; Zou et al., 2020).
Yet, the relevance of intuitionistic FS is restricted because of given limitation, which is
the sum of belongingness grade (BG) μ and non-belongingness grade (NBG) ν cannot
surpass one, that is μ + ν � 1. However, it was later discovered that the aforesaid limi-
tation is not satisfied based on expert preferences for complicated decision-making diffi-
culties. For example, if an expert favours BG 0.7 and NBG 0.5 during the usage of IFSs,
at that point, obviously, their sum surpasses 1. To overcome this sort of circumstance,
Yager (2013a; 2013b) pioneered the notion of Pythagorean FSs with BG μ and NBG
ν complying with the condition μ2 + ν2 � 1. As a result, Pythagorean FSs are pre-
ferred over intuitionistic FSs for expressing ambiguous data. Numerous studies have been
conducted based on Pythagorean FSs. Yager and Abbasov (2013) developed a decision-
making (DM) approach with Pythagorean fuzzy (PF) sets. An extension of TOPSIS tool
under PF sets setting was realized by Zhang and Xu (2014) to resolve DM issues. Ma
and Xu (2016) presented the symmetric PF weighted aggregation operators (AOs). Garg
(2016a) defined some new generalized PF information AOs and applied them to DM prob-
lems. Garg (2016b) also presented a DM process based on correlation coefficients of PF
sets. A confidence level-based methodology was presented by Garg (2017a) with PF in-
formation. Peng et al. (2017) built up a series of PF information measures and applied
them in DM. Garg (2018) developed generalized geometric interactive AOs based on PF
sets and Einstein operations. Mardani et al. (2018) extensively reviewed decision mak-
ing methods based on fuzzy aggregation operators. Nguyen et al. (2019) introduced PF
exponential similarity measures to tackle pattern recognition problems. Nie et al. (2019)
provided a DM strategy with PFSs using Shapley fuzzy measures and the partitioned nor-
malized weighted Bonferroni mean operator. Jana et al. (2019a) used PF Dombi oper-
ators to tackle MADM problems. Rani et al. (2019) presented a VIKOR approach with
entropy and divergence measures of PFSs. To assess waste treatment technologies, Rani et
al. (2020) again proposed a new DM framework. Ejegwa (2021) proposed a generalized
tri-parametric correlation coefficient for PF sets.

The q-rung orthopair fuzzy (qROF) set, introduced by Yager (2017), reserves the con-
straint that the sum of qth power of the BG and the NBG must be the value in [0, 1], i.e.
0 � μq + νq � 1. Clearly, qROF sets are extended versions of intuitionistic FSs (for
q = 1) and PF sets (for q = 2). For the last couple of years, information aggregation has
been a popular topic due to its significance and close connection to the issues of multi-
criteria group decision-making (MCGDM) under the qROF setting. The qROF weighted
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averaging and geometric (qROFWA and qROFWG, respectively) were announced by Liu
and Wang (2018). Based on the ideas of certainty and possibility, Yager and Alajlan (2017)
recommended approximate reasoning on qROFSs. Peng et al. (2018) proposed exponen-
tial operators and acquired satisfactory outputs after using them in the assessment of the
teaching management system. In a qROFSs context, Yager et al. (2018) managed strong
coordination between probability, certainty, believability, and faith. Liu and Liu (2018)
proposed qROF weighted BM operators and used them for MCGDM problems. Wei et al.
(2018) introduced qROF weighted Heronian mean AOs in DM issues. Jana et al. (2019b)
proposed qROF Dombi weighted averaging and geometric operators for aggregating crite-
ria values. Mi et al. (2019) settled a multi-criteria DM (MCDM) issue utilizing a qROFS-
VIKOR strategy. Xing et al. (2019a) proposed a new group of weighted AOs to amassed
qROF data which takes part in the rearrangement of BG and NBG in qROFNs as per dif-
ferent principles. Qin et al. (2019a) presented Archimedean Muirhead mean (MM) AOs
of qROFNs and furthermore indicated its conceivable application in settling MCGDM
problem. In view of association operations and dual Hamy mean (HM) operation, Xing
et al. (2019b) introduced qROF interaction dual HM AO to solve a MCGDM problem.
Qin et al. (2019b) built up the Archimedean power partitioned MM of qROFNs to tackle
the MCGDM strategy. Zhong et al. (2019) introduced qROF Dombi power partitioned
weighted Heronian mean (HEM) AO to decrease the negative impact of some criteria
degrees during the aggregation process. Darko and Liang (2020) built up some qROF
Hamacher AOs to extend EDAS technique for solving MCDM concern. Yang and Pang
(2020) developed qROF Bonferroni mean (BM) Dombi operators for a site selection prob-
lem. Yang et al. (2020) developed an online shopping structure for utilizing the qROF
interaction weighted HEM operator. Joshi and Gegov (2020) conveyed the commonality
level of DEs with considered elements for starting appraisals on qROF setting and sug-
gested some AOs to combine the required information. Liu and Wang (2020) introduced
qROF generalized MSM operator (qROFGMSM) and qROF generalized geometric MSM
operator (qROFGGMSM), which might access BGs and NBGs in the range [0, 1], respec-
tively, and admit different criteria. Using qROF-MULTIMOORA methodology and qROF
Dombi-Prioritized weighted AOs, Aydemir and Gunduz (2020) solved a MCDM problem.
Garg and Chen (2020) presented qROF weighted neutrality operators by using the notion
of proportional distribution procedures of the BGs and NBGs. Liu et al. (2022a) developed
group decision-making tool using linguistic qROF generalized point weighted AOs.

1.1. Research Motivation

The interrelationship between multiple criteria can be seen in different realistic situations.
Many of the existing studies (Liu and Wang, 2018; Jana et al., 2019b; Liu and Wang, 2019;
Garg and Chen, 2020) cannot tackle this situation. Although few operators (Liu and Liu,
2018; Yang and Pang, 2020) have been developed earlier, none of them is capable of han-
dling this situation as they consider dependency between two criteria only. Although the
Archimedean Muir-head mean operator (Qin et al., 2019a) and generalized MSM oper-
ator (Liu and Wang, 2018) can meet this requirement, they fail to eliminate the impact
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of extreme evaluating criteria values from some biased experts with diverse preference
attitudes. To address such circumstances, Liu et al. (2020) proposed qROF power MSM
operator. The method of Liu et al. (2020) has the constraint that it fails to distinguish the
priority orders of alternatives in certain cases, specifically when among the qROF num-
bers considered one qROF number has a non-belongingness grade that equals to 0 (or a
belongingness grade that equals to 1). Thus, it is essential to develop a novel MCGDM ap-
proach to overcome the limitation of the existing method (Liu et al., 2020) and the existing
power weighted MSM operator (Liu et al., 2020).

1.2. Contributions

To overcome the shortcomings of Liu et al.’s (2020) method, in this paper, the followings
have been incorporated:

1. Some new operational laws are presented in order to fair treatment of belongingness
and non-belongingness grades.

2. Four new operators, namely qROF improved power weighted averaging and geometric
(qROFIPWA and qROFIPWG, resp.) operators, qROF improved power weighted aver-
aging and geometric MSM (qROFIPWAMSM and qROFIPWGMSM, resp.) operators
are developed.

3. A novel DM approach is developed based on the proposed operators. This proposed
approach can resolve the limitations of Liu et al. (2020).

4. To show the efficiency of the proposed methodology, a personnel selection problem is
considered under qROF setting.

5. A detailed comparative investigation is demonstrated to validate the superiority of the
proposed model.

The rest of the paper is arranged as given below:
Some essential concepts related to qROF sets are briefly discussed in Section 2. Sec-

tion 3 presents some new operations between qROF numbers. This section also puts
forward the qROFPWA operator, qROFIPWG operator, qROFIPWAMSM operator and
qROFIPWGMSM operator along with their characteristics. In Section 4, a decision-
making methodology using the developed operators is provided. A case study of personnel
selection problem is demonstrated in Section 5 to show the applicability of the developed
approach. The solution of the case study, effect of the parameter and comparative study
are also demonstrated in this section. Section 6 concludes the paper along with future
research directions.

2. Preliminaries

2.1. q-Rung Orthopair Fuzzy Sets (qROFSs)

Some important concepts on qROFNs, basic operations between qROFNs and qROF
weighted neutral AOs are highlighted as follows:
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Definition 1 (Yager, 2017). Let U be the discourse set. Then a qROFS � on U is given
by

� = {〈
t,�(t),∇(t)

〉 : t ∈ U
}
,

where �(t) and ∇(t) represent the BG and NBG, respectively, of t ∈ U with the constraint
0 � �(t), ∇(t) � 1 and 0 � (�(t))q + (∇(t))q � 1, (q � 1).

Next, the hesitancy grade of t ∈ U in � is given by π(t) = q
√

1 − (�(t))q − (∇(t))q .
Obviously, 0 � π(t) � 1. Also, Yager (2017) called the pair 〈�(t),∇(t)〉 a qROFN. For
easiness, the symbol � = 〈�,∇〉 is used to signify a qROFN. Suppose �U denotes the
collection of all qROFNs over U .

Definition 2 (Liu and Wang, 2018). Let � = 〈�,∇〉 be a qROFN. Then the score value
of � is defined by

V (�) = �q − ∇q . (1)

Clearly, −1 � Sc(�) � 1. It should be mentioned that the score value cannot be effec-
tively utilized to separate numerous qROFNs for the situation when score values become
identical. As a result, when comparing qROFNs, it is not recommended to rely solely on
their score values. To manage such an issue, Liu and Wang (2018) proposed the idea of
accuracy value of a qROFN.

Definition 3 (Liu and Wang, 2018). Let � = 〈�,∇〉 be a qROFN. Then the accuracy
value of � is given by

A(�) = �q + ∇q . (2)

According to the score function and accuracy function, a comparison scheme of
qROFNs is given as follows:

Definition 4 (Liu and Wang, 2018). Let �1 = 〈�1,∇1〉 and �2 = 〈�2,∇2〉 be two
qROFNs. Then

(1) If V (�1) > V (�2), then �1 � �2;
(2) If V (�1) = V (�2), then

(i) if A(�1) > A(�2), then �1 � �2;
(ii) if A(�1) = A(�2), then �1 = �2.

Definition 5 (Liu and Wang, 2018). Let �1 = 〈�1,∇1〉 and �2 = 〈�2,∇2〉 be two
qROFNs and λ > 0. Then the basic operations are defined by
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(i) �1 ⊗ �2 = 〈
q

√
1 − (

1 − �
q

1

)(
1 − �

q

2

)
,∇1∇2

〉
, (3)

(ii) �1 ⊗ �2 = 〈
�1�2,

q

√(
1 − (

1 − ∇q

1

)(
1 − ∇q

2

))〉
, (4)

(iii) λ�1 = 〈 q

√
1 − (

1 − �
q

1

)λ
,∇λ

1

〉
, (5)

(iv) �λ
1 = 〈

�λ
1,

q

√
1 − (

1 − ∇q

1

)λ〉
. (6)

Definition 6. (Liu et al., 2020). Let �1 = 〈�1,∇1〉 and �2 = 〈�2,∇2〉 be two qROFNs.
Then the normalized Hamming distance between them is expressed as:

Dist(�1,�2) = 1

2

(∣∣�q

1 − �
q

2

∣∣+ ∣∣∇q

1 − ∇q

2

∣∣+ ∣∣πq

1 − π
q

2

∣∣). (7)

2.2. Power Averaging Operator (PAO)

The PAO, discovered by Yager (2001), can relegate weights to the aggregated elements’
values by means of processing the degree of support among the elements. The conven-
tional definition of PAO is given by:

Definition 7 (Yager, 2001). Let b1, b2, . . . , bn be a collection of crisp values. Then the
power averaging operator (PAO) of these numbers is defined as follows:

PA(b1, b2, . . . , bn) =
∑n

i=1(1 + ψ(bi))bi∑n
i=1(1 + ψ(bi))

, (8)

where ψ(bi) = ∑n
j=1,j 
=i Supp(bi, bj ).

Here, Supp(bi, bj ) denotes the support of bi from bj and has the three axioms as

(i) 0 � Supp(bi, bj ) � 1,
(ii) Supp(bi, bj ) = Supp(bj , bi),

(iii) Supp(bi, bj ) � Supp(bk, br ) provided |bi−bj | < |bk−br |, where 1 � i, j, k, r � n.

3. qROF Improved Power Weighted Operators

3.1. New Operations Between qROFNs

A few new operations are introduced between qROFNs and the basic laws are investigated.

Definition 8. Let �1 = 〈�1,∇1〉 and �2 = 〈�2,∇2〉 be two qROFNs and λ > 0. Then
we define:
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(i) �1⊕̃�2 =
〈

q

√√√√1 −
2∏

r=1

(
1 − �

q
r

)
,

q

√√√√ 2∏
r=1

(
1 − �

q
r

)−
2∏

r=1

(
1 − �

q
r − ∇q

r

)〉 ; (9)

(ii) �1⊗̃�2 =
〈

q

√√√√ 2∏
r=1

(
1 − ∇q

r

)−
2∏

r=1

(
1 − �

q
r − ∇q

r

)
,

q

√√√√1 −
2∏

r=1

(
1 − ∇q

r

)〉 ; (10)

(iii) λ�1 =
〈

q

√
1 − (

1 − �
q

1

)λ
,

q

√(
1 − �

q

1

)λ − (
1 − �

q

1 − ∇q

1

)λ〉; (11)

(iv) �λ
1 =

〈
q

√(
1 − ∇q

1

)λ − (
1 − �

q

1 − ∇q

1

)λ
,

q

√
1 − (

1 − ∇q

1

)λ〉
. (12)

To understand the superiority of the developed operations, four examples are consid-
ered as follows:

Example 1. Let us consider two qROFNs �1 = 〈0.4, 0.7〉 and �2 = 〈0.8, 0〉. Then
using the basic operational laws (Liu and Wang, 2018) of qROFNs, we have �1 ⊕ �2 =
〈0.8352, 0〉, which means that the non-zero non-belongingness grade has no impact on the
output. This makes the operation ‘⊕’ unreasonable. But based on the proposed operations
‘⊕̃’ and ‘⊗̃’, we have �1⊕̃�2 = 〈0.8352, 0.42〉 and �1⊗̃�2 = 〈0.6196, 0.7〉.

Example 2. Let us consider two qROFNs �1 = 〈1, 0〉 and �2 = 〈0.8, 0.5〉. Then using
the basic operational laws (Liu and Wang, 2018) of qROFNs, we have �1 ⊕ �2 = 〈1, 0〉,
which means that the belongingness grade which is not equals to ‘1’ has no impact on
the output. This again makes the operation ‘⊕’ unreasonable. But based on the proposed
operation ‘⊗̃’, we get �1⊗̃�2 = 〈0.8660, 0.5〉.

Example 3. Let us consider two qROFNs �1 = 〈0, 0.7〉 and �2 = 〈0.8, 0.3〉. Then
using the basic operational laws (Liu and Wang, 2018) of qROFNs, we have,�1 ⊗ �2 =
〈0, 0.7320〉, which means that the non-zero belongingness grade has no impact on the
output. This makes the operation ‘⊗’ unreasonable. But based on the proposed operations
‘⊕̃’ and ‘⊗̃’, we have �1⊕̃�2 = 〈0.8, 0.4714〉 and �1⊗̃�2 = 〈0.5713, 0.7320〉.

Example 4. Let us consider two qROFNs �1 = 〈0, 1〉 and �2 = 〈0.6, 0.6〉. Then using
the basic operational laws (Liu and Wang, 2018) of qROFNs, we have �1 ⊗ �2 = 〈0, 1〉,
which means that the non-belongingness grade which is not equals to ‘1’ has no impact on
the output. This again makes the operation ‘⊗’ unreasonable. But based on the proposed
operation ‘⊕̃’, we have �1⊕̃�2 = 〈0.6, 0.8〉.

From the above four examples, it is clear that our proposed operations are more sensi-
ble.

Theorem 1. Let �1 = 〈�1,∇1〉 and �2 = 〈�2,∇2〉 be two qROFNs and λ, λ1, λ2 > 0.
Then:

(i) �1⊕̃ �2 = �2⊕̃�1;
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(ii) �1⊗̃ �2 = �2⊗̃ �1;
(iii) λ(�1⊕̃�2) = λ�1⊕̃ λ�2;
(iv) (�1⊗̃ �2)

λ = �λ
1⊗̃ �λ

2 ;
(v) (λ1 + λ2)�1 = λ1�1⊕̃ λ2�1;

(vi) �
λ1+λ2
1 = �

λ1
1 ⊗̃ �

λ2
1 .

Proof. Follows from Definition 8.

3.2. qROF Improved Power Weighted Averaging Operators

In this paper, qROF improved power weighted averaging (qROFIPWA) and qROF im-
proved power weighted averaging MSM (qROFIPWAMSM) operators are developed as
follows.

Definition 9. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the qROFIPWA operator is
defined by:

qROFIPWA(�1,�2, . . . , �n) =
n⊕̃

r=1

	r(1 + ψ(�r))∑n
r=1 	r(1 + ψ(�r))

�r . (13)

In Eq. (13), 	r(1+ψ(�r ))∑n
r=1 	r(1+ψ(�r ))

is called the power weight of �r , where 	r is the weight
of �r satisfying 	r � 0 and

∑n
r=1 	r = 1. To keep things simple, 
r is used denote the

power weight of �r . Then Eq. (13) can be re-written as:

qROFIPWA(�1,�2, . . . , �n) =
n⊕̃

r=1


r�r. (14)

Theorem 2. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the aggregated value
qROFIPWA(�1,�2, . . . ,�n) is also a qROFN and

qROFIPWA(�1,�2, . . . , �n)

=
〈(

1 −
n∏

r=1

(
1 − �

q
r

)
r

) 1
q

,

( n∏
r=1

(
1 − �

q
r

)
r −
n∏

r=1

(
1 − �

q
r − ∇q

r

)
r

) 1
q

〉
.

(15)

Proof. Straightforward.

The following Theorems readily follow from Theorem 2.

Theorem 3 (Idempotency). Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U with �r = �0(r =
1(1)n). Then, qROFIPW(�1,�2, . . . , �n) = �0.
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Theorem 4 (Boundedness). Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . If �− =
〈minr �r,

q
√

maxr (�
q
r + ∇q

r ) − minr �
q
r 〉 and �+ = 〈maxr �r, �〉, then we have �− ≺

qROFIPWA(�1,�2, . . . , �n) ≺ �+, where

� =
{

0, if minr (�
q
r + ∇q

r ) � maxr �
q
r ,

q
√

minr (�
q
r + ∇q

r ) − maxr �
q
r , if minr (�

q
r + ∇q

r ) � maxr �
q
r .

Theorem 5 (Monotonicity). Let �r = 〈�r,∇r 〉 and �′
r = 〈�′

r ,∇′
r 〉(r = 1(1)n) ∈ �U

such that �r � �′
r , ∇r � ∇′

r . Then,

qROFIPWA(�1,�2, . . . , �n) ≺ qROFIPWA(�′
1,�

′
2, . . . , �

′
n).

Definition 10. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the qROFIPWAMSM
operator is defined by:

qROFIPWAMSM(p)(�1,�2, . . . , �n) =
(

1
ncp

⊕
1�t1<t2<···<tp�n

( p⊗
j=1

(n
tj �tj )

)) 1
p

,

(16)

where t1, t2, . . . , tp � 0, p is a parameter, ncp stands for binomial coefficient,
(t1, t2, . . . , tp) denotes a p-tuple combination of (1, 2, . . . , n).

In Eq. (16), 
tj = 	tj
(1+ψ(�tj

))∑n
t=1 	tj

(1+ψ(�tj
))

is called the power weight of �tj , where 	k is

the weight of �k satisfying 	k � 0 and
∑n

k=1 	k = 1.

Theorem 6. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the aggregated value
qROFIPWAMSM(p)(�1,�2, . . . , �n) is also a qROFN and

qROFIPWAMSM(p)(�1,�2, . . . , �n)

=
〈((

1 −
( ∏

1�t1<t2<···<tp�n

(
1 −

p∏
j=1

(
1 − (

1 − (�tj )
q
)n
tj

+ (
1 − (�tj )

q − (∇tj )
q
)n
tj

)+
p∏

j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp

+
( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

r

−
(( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

p
) 1

q

,
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1 −

(
1 −

( ∏
1�t1<t2<···<tp�n

(
1 −

p∏
j=1

(
1 − (

1 − (�tj )
q
)n
tj

+ (
1 − (�tj )

q − (∇tj )
q
)n
tj

)+
p∏

j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp

+
( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

p
) 1

q
〉
. (17)

Proof. Added in the Supplementary material.

The following Theorems readily follow from Theorem 6.

Theorem 7 (Idempotency). For �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U with �r = �0(r =
1(1)n), qROFIPWAMSM(p)(�1,�2, . . . , �n) = �0.

Theorem 8 (Boundedness). Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . If �− = 〈minr �r,
q
√

maxr (�
q
r + ∇q

r ) − minr �
q
r 〉 and �+ = 〈maxr �r, �〉, then we have, �− ≺

qROFIPWAMSM(�1,�2, . . . , �n) ≺ �+, where

� =
{

0, if minr (�
q
r + ∇q

r ) � maxr �
q
r ,

q
√

minr (�
q
r + ∇q

r ) − maxr �
q
r , if minr (�

q
r + ∇q

r ) � maxr �
q
r .

Theorem 9 (Monotonicity). Let �r = 〈�r,∇r 〉 and �′
r = 〈�′

r ,∇′
r 〉(r = 1(1)n) ∈

�U such that �r � �′
r , ∇r � ∇′

r . Then, qROFIPAWMSM(p)(�1,�2, . . . , �n) ≺
qROFIPWAMSM(p)(�′

1,�
′
2, . . . ,�

′
n).

3.3. qROF Improved Power Weighted Geometric Operators

This paper develops qROF improved power weighted geometric (qROFIPWG) operator
and qROF improved power weighted geometric MSM (qROFIPWGMSM) operator as
follows:

Definition 11. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the qROFIPWG operator is
defined by:

qROFIPWG(�1,�2, . . . ,�n) =
n⊗̃

r=1

�
r
r . (18)

In Eq. (18), 
r = 	r(1+ψ(�r ))∑n
r=1 	r(1+ψ(�r ))

is called the power weight of �r , where 	r is the
weight of �r satisfying 	r � 0 and

∑n
r=1 	r = 1.
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Theorem 10. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the aggregated value
qROFIPWG(�1,�2, . . . , �n) is also a qROFN and

qROFIPWG(�1,�2, . . . , �n)

=
〈( n∏

r=1

(
1 − ∇q

r

)
r −
n∏

r=1

(
1 − �

q
r − ∇q

r

)
r

) 1
q

,

(
1 −

n∏
r=1

(
1 − ∇q

r

)
r

) 1
q

〉
.

(19)

Proof. Straightforward.

The following Theorems readily follow from Theorem 10.

Theorem 11. (Idempotency) Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U such that �r =
�0(r = 1(1)n), then we have qROFIPWG(�1,�2, . . . , �n) = �0.

Theorem 12. (Boundedness) Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . If �− =
〈minr ∇r ,

q
√

maxr (�
q
r + ∇q

r ) − minr ∇q
r 〉 an �+ = 〈maxr ∇r , �〉, then we have �− ≺

qROFIPWG(�1,�2, . . . , �n) ≺ �+, where

� =
{

0, if minr (�
q
r + ∇q

r ) � maxr ∇q
r ,

q
√

minr (�
q
r + ∇q

r ) − maxr ∇q
r , if minr (�

q
r + ∇q

r ) � maxr ∇q
r .

Theorem 13. (Monotonicity) Let �r = 〈�r,∇r 〉 and �′
r = 〈�′

r ,∇′
r 〉(r = 1(1)n) ∈

�U such that �r � �′
r , ∇r � ∇′

r . Then, qROFIPWG(�1,�2, . . . , �n) ≺
qROFIPWG(�′

1,�
′
2, . . . , �

′
n).

Definition 12. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the qROFIPWGMSM
operator is defined by:

qROFIPWGMSM(p)(�1,�2, . . . , �n) = 1

p

( ⊗̃
1�t1<t2<···<tp�n

( p⊕̃
j=1

�

tj

tj

)) 1
ncp

,

(20)

where t1, t2, . . . , tp � 0, p is a parameter, ncp stands for binomial coefficient, (t1, t2,
. . . , tp) denotes a p-tuple combination of (1, 2, . . . , n).

In Eq. (20), 
tj = 	tj
(1+ψ(�tj

))∑n
t=1 	tj

(1+ψ(�tj
))

is called the power weight of �tj , where 	k is

the weight of �k satisfying 	k � 0 and
∑n

k=1 	k = 1.

Theorem 14. Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . Then the aggregated value
qROFIPWGMSM(p)(�1,�2, . . . , �n) is also a qROFN and
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qROFIPWGMSM(p)(�1,�2, . . . , �n)

=
〈(

1 −
(

1 −
( ∏

1�t1<t2<···<tp�n

(
1 −

p∏
j=1

(
1 − (

1 − (∇tj )
q
)n
tj

+ (
1 − (�tj )

q − (∇tj )
q
)n
tj

)+
p∏

j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp

+
( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

p
) 1

q

,

((
1 −

( ∏
1�t1<t2<···<tp�n

(
1 −

p∏
j=1

(
1 − (

1 − (∇tj )
q
)n
tj

+ (
1 − (�tj )

q − (∇tj )
q
)n
tj

)+
p∏

j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp

+
( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

p

−
(( ∏

1�t1<t2<···<tp�n

( p∏
j=1

(
1 − (�tj )

q − (∇tj )
q
)n
tj

)) 1
ncp
) 1

p
) 1

q
〉
. (21)

Proof. Similar to Theorem 6.

The following Theorems readily follow from Theorem 14.

Theorem 15. (Idempotency) Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U such that �r =
�0(r = 1(1)n), then we have qROFIPWGMSM(p)(�1,�2, . . . , �n) = �0.

Theorem 16. (Boundedness) Let �r = 〈�r,∇r 〉(r = 1(1)n) ∈ �U . If �− =
〈minr ∇r ,

q
√

maxr (�
q
r + ∇q

r ) − minr ∇q
r 〉 and �+ = 〈maxr ∇r , �〉, then we have �− ≺

qROFIPWGMSM(p)(�1,�2, . . . , �n) ≺ �+, where

� =
{

0, if minr (�
q
r + ∇q

r ) � maxr ∇q
r ,

q
√

minr (�
q
r + ∇q

r ) − maxr ∇q
r , if minr (�

q
r + ∇q

r ) � maxr ∇q
r .

Theorem 17 (Monotonicity). Let �r = 〈�r,∇r 〉 and �′
r = 〈�′

r ,∇′
r 〉(r = 1(1)n) ∈

�U such that �r � �′
r , ∇r � ∇′

r . Then qROFIPWGMSM(p)(�1,�2, . . . , �n) ≺
qROFIPWGMSM(p)(�′

1,�
′
2, . . . , �

′
n).
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4. Group Decision Making Methodology

Suppose m different alternatives Xi(i = 1(1)m) need to be assessed over n distinct at-
tributes Lj (j = 1(1)n). Assume a set of l experts Dd(d = 1(1)l) with weights ηd(d =
1(1)l) with ηd � 0 and

∑l
d=1 ηd = 1 for the assessment of considered alternatives. The

initial assessment result of the expert Dd(d = 1(1)l) is specified in terms of qROFNs
�

(d)
ij = 〈�(d)

ij ,∇(d)
ij 〉 subject to 0 � �

(d)
ij , ∇(d)

ij � 1 and 0 � (�
(d)
ij )q + (∇(d)

ij )q � 1.
To find the best-suited alternative(s), the introduced operators are applied to propose

a MCGDM methodology relating to the qROF data with the steps acquired as follows:

Step 1: The initial assessment results of experts are: �d = [�(d)
ij ]m×n = [〈�(d)

ij ,∇(d)
ij 〉]m×n

(d = 1(1)l).

Step 2: Normalize the decision matrices �d = [�(d)
ij ]m×n(d = 1(1)l).

The Normalized decision matrix is: �̃d = [�̃(d)
ij ]m×n = [〈�̃(d)

ij , ∇̃(d)
ij 〉]m×n(d = 1(1)l)

where:

�̃
(d)
ij =

{ 〈�(d)
ij ,∇(d)

ij 〉 if Cj is of benefit-type,

〈∇(d)
ij ,�

(d)
ij 〉 if Cj is of cost-type.

(22)

Step 3: Find Supp(�̃
(d)
ij , �̃

(s)
ij )(d, s = 1(1)l; d 
= s) based on the following formula:

Supp
(
�̃

(d)
ij , �̃

(s)
ij

) = 1 − Dist
(
�̃

(d)
ij , �̃

(s)
ij

)(
d, s = 1(1)l; d 
= s

)
, (23)

where Dist(�̃(d)
ij , �̃

(s)
ij ) is the Hamming distance between the qROFNs [20].

Step 4: Compute ψ(�̃
(d)
ij ) by

ψ
(
�̃

(d)
ij

) =
l∑

s=1,s 
=d

Supp
(
�̃

(d)
ij , �̃

(s)
ij

)(
i = 1(1)m; j = 1(1)n; d = 1(1)l

)
. (24)

Step 5: Calculate the power weights 

(d)
ij (i = 1(1)m; j = 1(1)n; d = 1(1)l) associated

with the qROFNs �̃
(d)
ij by utilizing the weights ηd of DEs Dd(d = 1(1)l), where



(d)
ij = ηd(1 + ψ(�̃

(d)
ij ))∑l

d=1 ηd(1 + ψ(�̃
(d)
ij ))

. (25)

Step 6: Construct aggregated normalized qROF decision matrix �∗ = [�ij ]m×n =
[〈�ij ,∇ij 〉]m×n.
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The operator qROFIPWA or qROFIPWG can be applied for aggregating normalized
qROFNs.

qROFIPWA
(
�̃

(1)
ij , �̃

(2)
ij , . . . , �̃

(l)
ij

)
=
〈(

1 −
l∏

d=1

(
1 − (

�̃
(d)
ij

)q)
(d)
ij

) 1
q

,

( l∏
d=1

(
1 − (

�̃
(d)
ij

)q)
(d)
ij −

l∏
d=1

(
1 − (

�̃
(d)
ij

)q − (∇̃(d)
ij

)q)
(d)
ij

) 1
q
〉
, (26)

qROFIPWG
(
�̃

(1)
ij , �̃

(2)
ij , . . . , �̃

(l)
ij

)
=
〈( l∏

d=1

(
1 − (∇̃(d)

ij

)q)
(d)
ij −

l∏
d=1

(
1 − (

�̃
(d)
ij

)q
,−(∇̃(d)

ij

)q)
(d)
ij

) 1
q

,

(
1 −

l∏
d=1

(
1 − (∇̃(d)

ij

)q)
(d)
ij

) 1
q
〉
. (27)

Step 7: Calculate the supports Supp(�ij ,�iy)(j, y = 1(1)n; j 
= y) based on the fol-
lowing formula:

Supp(�ij ,�iy) = 1 − Dist(�ij ,�iy)
(
j, y = 1(1)n; j 
= y

)
, (28)

where Dist(�ij ,�iy) is the Hamming distance between the qROFNs (Liu et al., 2020).

Step 8: Compute the values ψ(�ij ) using the formula given by:

ψ(�ij ) =
n∑

y=1,y 
=j

Supp(�ij ,�iy)
(
i = 1(1)m; j = 1(1)n

)
. (29)

Step 9: Calculate the power weights 
ij (i = 1(1)m; j = 1(1)n) associated with the
qROFNs �ij by utilizing the weights ηd of DEs Dd(d = 1(1)l), where


ij = 	j(1 + ψ(�ij ))∑n
j=1 	j(1 + ψ(�ij ))

(
i = 1(1)m; j = 1(1)n

)
. (30)

Step 10: Construct the final aggregated qROF decision matrix �̂ = [�i]m×1 =
[〈�i,∇i〉]m×1.

The final aggregated qROF decision matrix is constructed based on the qROFIPWAMSM
or qROFIPWGMSM operator.
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�i = qROFIPWAMSM(p)(�i1,�i2, . . . , �in)

=
(

1
ncp

⊕
1�t1<t2<···<tp�n

( p⊗
j=1

(n
itj �itj )

)) 1
p

, (31)

�i = qROFIPWGMSM(p)(�i1,�i2, . . . , �in)

= 1

p

( ⊗̃
1�t1<t2<···<tp�n

( p⊕̃
j=1

�
n
itj

itj

)) 1
ncp

. (32)

Step 11: Estimate the score values of �i(i = (1)m) by utilizing Definition 2.
If two score values Sc(�i) and Sc(�u) are same, then accuracy values (Definition 3)

should be computed.

Step 12: Obtain the priority order of alternatives Ai(i = 1(1)m) indicated by the Defini-
tion 4 and subsequently choose the optimal one.

5. Application of the Proposed Methodology

5.1. Problem Description

Personnel selection plays a significant role for tracking down the adequate information
quality for an organization/industry. Personnel selection is the most common way of pick-
ing the people who match the capabilities needed to play out a characterized work in the
most ideal manner. A personnel selection problem can be viewed as a MCGDM problem
due to the fact that a group of experts and many attributes are considered in the selec-
tion process of suitable personnel. qROFS theory can be considered as an essential tool
to provide an efficient decision framework to tackle personnel selection problems. Now,
let’s think about an Engineering Institute (Under Graduate level), which desires to ap-
point a Placement officer for ‘Training and Placement Cell’. Suppose five candidates Xi

(i = 1(1)5) are shortlisted for personal interview based on their scores of written tests.
A team of three experts (Principal, Director and HR manager) is formed to assess the
five candidates on the grounds of industry experience (L1), communication skill (L2),
networking skill (L3), and academic qualifications (L4).

5.2. Problem Solution

Step 1: Present the initial assessments of each expert as: �d = [�(d)
ij ]5×4 =

[〈�(d)
ij ,∇(d)

ij 〉]5×4(d = 1(1)3) (Table 1).
For each of the remaining steps, q = 2 is taken since the least value of q that satisfies

(�
(d)
ij )q + (∇(d)

ij )q � 1 is ‘2’.

Step 2: Since all the criteria are of benefit type, normalization is not required. Hence,
�d = [�(d)

ij ]5×4 = [〈�(d)
ij ,∇(d)

ij 〉]5×4 = [〈�̃(d)
ij , ∇̃(d)

ij 〉]5×4 = [�̃(d)
ij ]5×4 = �̃d (d =

1(1)l).
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Table 1
Initial assessment results of the experts.

Expert Alternative L1 L2 L3 L4

D1 X1 〈0.2, 0.6〉 〈0.4, 0.6〉 〈0.4, 0.3〉 〈0.5, 0.6〉
X2 〈0.6, 0.5〉 〈0.6, 0.5〉 〈0.5, 0.4〉 〈0.5, 0.2〉
X3 〈0.8, 0.2〉 〈0.5, 0.2〉 〈0.5, 0.3〉 〈0.4, 0.3〉
X4 〈0.5, 0.6〉 〈0.3, 0.5〉 〈0.5, 0.2〉 〈0.5, 0.2〉
X5 〈0.5, 0.3〉 〈0.4, 0.7〉 〈0.6, 0.4〉 〈0.6, 0.6〉
X1 〈0.4, 0.6〉 〈0.2, 0.2〉 〈0.5, 0.4〉 〈0.4, 0.6〉

D2 X2 〈0.5, 0.1〉 〈0.6, 0.4〉 〈0.5, 0.5〉 〈0.4, 0.3〉
X3 〈0.7, 0.3〉 〈0.4, 0.2〉 〈0.4, 0.1〉 〈0.5, 0.4〉
X4 〈0.5, 0.4〉 〈0.5, 0.7〉 〈0.5, 0.6〉 〈0.3, 0.8〉
X5 〈0.6, 0.4〉 〈0.3, 0.3〉 〈0.6, 0.3〉 〈0.4, 0.2〉
X1 〈0.7, 0.7〉 〈0.5, 0.4〉 〈0.2, 0.4〉 〈0.4, 0.6〉

D3 X2 〈0.4, 0.2〉 〈0.5, 0.4〉 〈0.6, 0.3〉 〈0.5, 0.1〉
X3 〈0.5, 0.3〉 〈0.4, 0.2〉 〈0.4, 0.3〉 〈0.6, 0.4〉
X4 〈0.3, 0.5〉 〈0.5, 0.4〉 〈0.5, 0.2〉 〈0.8, 0.2〉
X5 〈0.4, 0.6〉 〈0.6, 0.3〉 〈0.4, 0.4〉 〈0.6, 0.1〉

Step 3: The supports are calculated as Supp(�̃
(d)
ij , �̃

(s)
ij ) (d, s = 1(1)l; d 
= s) using

Eq. (23). For sake of simplicity, Sds(d 
= s; d, s = 1(1)3) is used here to represent
Supp(�̃

(d)
ij , �̃

(s)
ij ) (d, s = 1(1)l; d 
= s) and, consequently, the following matrices are

obtained:

[S12]5×4 = [S21]5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.88 0.56 0.84 0.91
0.65 0.91 0.91 0.91
0.85 0.91 0.83 0.84
0.8 0.6 0.68 0.4
0.82 0.53 0.93 0.48

⎤⎥⎥⎥⎥⎥⎦ ,

[S13]5×4 = [S31]5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.42 0.8 0.88 0.91
0.59 0.8 0.89 0.97
0.61 0.91 0.91 0.73
0.73 0.84 1 0.61
0.73 0.6 0.8 0.65

⎤⎥⎥⎥⎥⎥⎦ ,

[S23]5×4 = [S32]5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.54 0.67 0.79 1
0.91 0.89 0.84 0.91
0.76 1 0.92 0.89
0.84 0.67 0.68 0.4
0.8 0.73 0.8 0.8

⎤⎥⎥⎥⎥⎥⎦ .

Step 4: According to Eq. (24), the values ψ(�̃
(d)
ij ) (i = 1(1)5; j = 1(1)4; d = 1(1)3)

are calculated as given by the following matrices:
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[
ψ
(
�̃

(1)
ij

)]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
1.3 1.36 1.72 1.82

1.24 1.71 1.8 1.88
1.46 1.82 1.74 1.57
1.53 1.44 1.68 1.01
1.55 1.13 1.73 1.13

⎤⎥⎥⎥⎥⎥⎦ ,

[
ψ
(
�̃

(2)
ij

)]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
1.42 1.23 1.63 1.91
1.56 1.8 1.75 1.82
1.61 1.91 1.75 1.73
1.64 1.27 1.36 0.8
1.62 1.26 1.73 1.28

⎤⎥⎥⎥⎥⎥⎦ ,

[
ψ
(
�̃

(3)
ij

)]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.96 1.47 1.67 1.91
1.5 1.69 1.73 1.88

1.37 1.91 1.83 1.62
1.57 1.51 1.68 1.01
1.53 1.33 1.6 1.45

⎤⎥⎥⎥⎥⎥⎦ .

Step 5: According to Eq. (25), the weights ηd(d = 1(1)3) of DEs are utilized to calculate
the power weights 


(d)
ij (i = 1(1)5; j = 1(1)4; d = 1(1)3) associated with the qROFNs

and the following matrices are obtained:

[



(1)
ij

]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.355722 0.353671 0.356354 0.342887
0.322236 0.346041 0.354751 0.352941
0.344746 0.342887 0.346647 0.339883
0.342685 0.357397 0.367555 0.365265
0.346871 0.334005 0.354217 0.328414

⎤⎥⎥⎥⎥⎥⎦ ,

[



(2)
ij

]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.427751 0.381931 0.393786 0.404378
0.420879 0.408609 0.398190 0.394958
0.418018 0.404378 0.397614 0.412620
0.408669 0.379996 0.369906 0.373832
0.407307 0.405018 0.404819 0.401762

⎤⎥⎥⎥⎥⎥⎦ ,

[



(3)
ij

]
5×4 =

⎡⎢⎢⎢⎢⎢⎣
0.216527 0.264397 0.249859 0.252736
0.256884 0.245348 0.247059 0.252101
0.237237 0.252736 0.255738 0.247497
0.248645 0.262607 0.262539 0.260903
0.245822 0.260977 0.240964 0.269824

⎤⎥⎥⎥⎥⎥⎦ .

Step 6: According to the qROFIPWA operator expressed by Eq. (26), the matrices �̃d =
[�̃(d)

ij ]5×4(d = 1(1)3) are aggregated (taking q = 2) to form an integrated decision matrix
�∗ = [�ij ]5×4, as shown in the following Table 2.

Step 7: The supports are calculated as Supp(�ij ,�iy)(j, y = 1(1)4; (j 
= y) using
Eq. (28). For sake of simplicity, the symbol Sjy(j 
= y; j, y = 1(1)4) is used to represent
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Table 2
Aggregated normalized decision matrix.

Alternative L1 L2 L3 L4

X1 〈0.457546, 0.727680〉 〈0.377018, 0.456022〉 〈0.411592, 0.370298〉 〈0.438196, 0.600809〉
X2 〈0.516059, 0.345696〉 〈0.578450, 0.442128〉 〈0.528034, 0.422266〉 〈0.464399, 0.226244〉
X3 〈0.710191, 0.264441〉 〈0.438196, 0.200154〉 〈0.438588, 0.246261〉 〈0.500551, 0.375744〉
X4 〈0.461582, 0.510394〉 〈0.443096, 0.594864〉 〈0.5, 0.425597〉 〈0.578171, 0.513749〉
X5 〈0.526362, 0.432299〉 〈0.437910, 0.502261〉 〈0.562724, 0.362961〉 〈0.534898, 0.427268〉

Supp(�ij ,�iy) (j, y = 1(1)4; j 
= y) and the following values are obtained:

S12 = S21 = (0.612624, 0.784901, 0.535690, 0.842471, 0.909825),

S13 = S31 = (0.639889, 0.840685, 0.556273, 0.931132, 0.815082),

S14 = S41 = (0.662497, 0.784869, 0.565558, 0.926220, 0.896442),

S23 = S32 = (0.934186, 0.843704, 0.847702, 0.842471, 0.815082),

S24 = S42 = (0.781172, 0.716582, 0.789510, 0.842471, 0.896442),

S34 = S43 = (0.808437, 0.772366, 0.810093, 0.846851, 0.815082).

Step 8: According to Eq. (29) the values ψ(�ij ) (i = 1(1)5; j = 1(1)4) are calculated,
as presented in the following matrix:

ψ =

⎡⎢⎢⎢⎢⎢⎣
1.915011 2.327982 2.382513 2.252106
2.410456 2.345187 2.456756 2.273818
1.657522 2.172903 2.214069 2.165161
2.699824 2.527413 2.620454 2.615542
2.621349 2.621349 2.445245 2.607966

⎤⎥⎥⎥⎥⎥⎦ .

Step 9: The power weights 
ij (i = 1(1)5; j = 1(1)4) are calculated using Eq. (30).
These values are presented in the following matrix:


 =

⎡⎢⎢⎢⎢⎢⎣
0.1804 0.1030 0.3140 0.4026
0.2028 0.0995 0.3083 0.3894
0.1726 0.1030 0.3131 0.4112
0.2041 0.0973 0.2996 0.3990
0.2033 0.1016 0.2901 0.4050

⎤⎥⎥⎥⎥⎥⎦ .

Step 10: Based on the qROFIPWAMSM operator expressed by Eq. (31), the final aggre-
gated qROFNs are derived (taking q = 2, r = 2), as given by:

�1 = 〈0.44483774, 0.564039033〉,
�2 = 〈0.509610528, 0.351422694〉,
�3 = 〈0.532907336, 0.302081533〉,
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�4 = 〈0.531043417, 0.491528853〉,
�5 = 〈0.536489152, 0.414240749〉.

Step 11: The scores Vi = V (�i)(i = 1(1)5) are calculated by utilizing Eq. (1), as follows:

V1 = −0.1202, V2 = 0.1362, V3 = 0.1927, V4 = 0.0404, V5 = 0.1162.

Step 12: Since V3 > V2 > V5 > V4 > V1, the priority order is X3 � X2 > X5 > X4 >

X2, hence, the most suitable alternative is X3.
If the proposed qROFIPWG operator is applied in Step 6 and the proposed

qROFIPWGMSM operator is applied in Step 10, then the following values are obtained:

V1 = −0.0788, V2 = 0.1435, V3 = 0.1823, V4 = −0.0452, V5 = 0.1156.

Since V3 > V2 > V5 > V4 > V1, the priority order of the alternatives is X3 � X2 >

X5 > X4 > X2, hence, the optimal choice is X3.

5.3. Effects of the Parameter ‘p’ on Ranking Orders

Here, all possible values of p are considered in the proposed MCGDM technique to get
the solution of the case study, as discussed in Section 5.1 (taking q = 2). To illustrate the
impact of ‘p’ upon priority order, qROFIPWA operator is used in Step 6 and the proposed
qROFIPWAMSM operator is used in Step 10. The related score values of alternatives and
their priority position for various values of ‘p’ (taking q = 2) are presented in Table 3. To
illustrate the effect of ‘p’ upon priority order, qROFIPWG operator is utilized in Step 6
and the proposed qROFIPWGMSM operator is used in Step 10. The related score val-
ues of alternatives and their priority position for various values of ‘p’ (taking q = 2)
are presented in Table 4. With the increasing value of p increases, the priority order of
alternatives changes in couple of cases due to the fact that the developed methodology
considers interrelationships among criteria, but the best alternative (A3) remains unal-
tered for any value of p when q = 2. For the case study presented in Section 5.1, four
criteria are considered. So, maximum possible integral value of p is 4. When p = 1, all
the criteria are independent. For p = 2, pairs of criteria are dependent, and for p = 3,
any of the three criteria will be interrelated. But for p = 4, all the four criteria will be
dependent. Depending on the given number of dependent criteria, expert/decision-maker
will choose appropriate value of the parameter p.

Table 3
Effects of the parameter p when the operators qROFIPWA and qROFIPWAMSM are used.

Parameter Score value Ranking order
p = 1 V1 = −0.1497, V2 = 0.1332, V3 = 0.1849, V4 = 0.0222, V5 = 0.1092 X3 � X2 > X5 > X4 > X2
p = 2 V1 = −0.1202, V2 = 0.1362, V3 = 0.1927, V4 = 0.0404, V5 = 0.1162 X3 � X2 > X5 > X4 > X2
p = 3 V1 = −0.1040, V2 = 0.1388, V3 = 0.2002, V4 = 0.0579, V5 = 0.1242 X3 � X2 > X5 > X4 > X2
p = 4 V1 = −0.0641, V2 = 0.0307, V3 = 0.0484, V4 = −0.0109, V5 = 0.0199 X3 � X2 > X5 > X4 > X2
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Table 4
Effects of the parameter p when the operators qROFIPWG and qROFIPWGMSM are used.

Parameter Score value Ranking order
p = 1 V1 = 0.0173, V2 = 0.0043, V3 = 0.0014, V4 = 0.0020, V5 = −0.0017 X1 � X2 > X4 > X3 > X5
p = 2 V1 = −0.0788, V2 = 0.1435, V3 = 0.1823, V4 = −0.0452, V5 = 0.1155 X3 � X2 > X5 > X4 > X2
p = 3 V1 = −0.1772, V2 = 0.0349, V3 = 0.1132, V4 = −0.1631, V5 = 0.0176 X3 � X2 > X5 > X4 > X2
p = 4 V1 = −0.1280, V2 = 0.0609, V3 = 0.0883, V4 = −0.0983, V5 = 0.0538 X3 � X2 > X5 > X4 > X2

5.4. Comparative Analysis with Existing Methods

To verify the effectiveness of our developed methodology based on the developed opera-
tors, an investigation has been conducted for the purpose of comparison between the exist-
ing methods of Jana et al. (2019b) and qROF Dombi weighted averaging (qROFDWA) op-
erator; Wei et al. (2018) and qROF generalized weighted Heronian mean (qROFGWHM)
operator and qROF generalized weighted geometric Heronian mean (qROFGWGHM) op-
erator; Liu and Liu (2018) and qROF weighted Bonferroni mean (qROFWBM) operator;
Yang and Pang (2020) and qROF weighted Bonferroni Dombi averaging (qROFWBMDA)
operator; Liu and Wang (2018) and qROF weighted averaging (qROFWA) operator; Garg
and Chen (2020) and qROF weighted neutrality (qROFWN) operator, and Liu et al. (2020)
with qROF power weighted MSM (qROFPWMSM) operator. These methods are applied
to the same case study presented at the beginning of Section 5. In Table 5, priority values
of the considered alternatives are presented along with their ranking order. From Table 5,
it is found that the ranking order obtained by our proposed method is exactly the same as
obtained by other existing methods (Liu and Liu, 2018; Liu and Wang, 2018; Wei et al.,
2018; Jana et al., 2019b; Yang and Pang, 2020; Garg and Chen, 2020; Liu et al., 2020).
Hence, the developed methodology based on the proposed operators is effective and fea-
sible.

5.5. Comparative Analysis Based on Biasness of Experts

When evaluating alternatives in a realistic decision-making environment, experts may at-
tempt to manipulate some initial data due to an inclination or biasness toward a particular
alternative. As a result, the ranking order of alternatives may change. To reflect the actual
situation, the case study presented in Section 5.1 must be modified in order to demon-
strate the biased nature of experts. Assume that expert D2 prefers alternative X2 and has
some reservations about alternative X3 to an extent that the criteria value �̃

(2)
31 changes to

〈0.1, 0.1〉 from 〈0.7, 0.3〉 and the criteria value �̃
(2)
24 changes to 〈0.4, 0.2〉 from 〈0.4, 0.3〉

due to biased nature of the expert D2. The remaining assessment values remain the same
as shown in Tables 1. The outcomes from various existing methods are recorded in Table 6
(for q = 2).

Table 6 shows that changing the criteria values has a significant effect on the ranking
order of alternatives for the related existing methods (Liu and Wang, 2018; Wei et al.,
2018; Jana et al., 2019b; Garg and Chen, 2020). The priority order of alternatives acquired
by Jana et al. (2019b) with qROFDWA operator is changed from X3 � X2 > X5 > X4 >

X2 to X2 � X3 > X5 > X1 > X4 such that best alternative is transformed from the



qROF Improved Power Weighted Operators for Solving Group Decision-Making Issues 613

Table 5
Comparison: existing vs. proposed (taking q = 2).

Method Score value Ranking order

Jana et al. (2019b) with
qROFDWA operator

V1 = −0.0212, V2 = 0.1885, V3 = 0.2743,
V4 = 0.0522, V5 = 0.1233

X3 � X2 � X5 � X4 � X1

Wei et al. (2018) with
qROFGWHM operator

V1 = −0.2942, V2 = −0.0703, V3 = −0.0272,
V4 = −0.1913, V5 = −0.1324

X3 � X2 � X5 � X4 � X1

Wei et al. (2018) with
qROFGWGHM operator

V1 = 0.0884, V2 = 0.3162, V3 = 0.3317,
V4 = 0.2660, V5 = 0.3294

X3 � X2 � X5 � X4 � X1

Liu and Liu (2018) with
qROFWBM operator

V1 = −0.7144, V2 = −0.5922, V3 = −0.5780,
V4 = −0.6416, V5 = −6163

X3 � X2 � X5 � X4 � X1

Yang and Pang (2020) with
qROFWBMDA operator

V1 = −0.4993, V2 = −0.2204, V3 = −0.0846,
V4 = −0.4227, V5 = −0.2986

X3 � X2 � X5 � X4 � X1

Liu and Wang (2018) with
qROFWA operator

V1 = −0.0919, V2 = 0.1568, V3 = 0.2051,
V4 = 0.0309, V5 = 0.1130

X3 � X2 � X5 � X4 � X1

Garg and Chen (2020) with
qROFWNA operator

V1 = 0.5931, V2 = 0.7337, V3 = 0.7525,
V4 = 0.6783, V5 = 0.7411

X3 � X2 � X5 � X4 � X1

Liu et al. (2020) with
qROFPWMSM operator

V1 = −0.1154, V2 = 0.1143, V3 = 0.1656,
V4 = 0.0348, V5 = 0.0934

X3 � X2 � X5 � X4 � X1

Proposed method with
qROFIPWA operator and
qROFIPWAMSM operator

V1 = −0.1202, V2 = 0.1362, V3 = 0.1927,
V4 = 0.0404, V5 = 0.1162

X3 � X2 � X5 � X4 � X1

Proposed method with
qROFIPWG operator and
qROFIPWGMSM operator

V1 = −0.0788, V2 = 0.1435, V3 = 0.1823,
V4 = −0.0452, V5 = 0.1156

X3 � X2 � X5 � X4 � X1

Table 6
Comparison: existing vs. proposed (taking q = 2).

Method Score value Ranking order

Jana et al. (2019b) with
qROFDWA operator

V1 = −0.0343, V2 = 0.2170, V3 = 0.2042,
V4 = 0.0133, V5 = 0.1445

X2 � X3 � X5 � X1 � X4

Wei et al. (2018) with
qROFGWHM operator

V1 = −0.2538, V2 = −0.0407, V3 = −0.0642,
V4 = −0.2449, V5 = −0.1066

X2 � X3 � X5 � X4 � X1

Wei et al. (2018) with
qROFGWGHM operator

V1 = 0.1324, V2 = 0.3172, V3 = 0.3312,
V4 = 0.2084, V5 = 0.3526

X5 � X3 � X2 � X4 � X1

Liu and Liu (2018) with
qROFWBM operator

V1 = −0.7144, V2 = −0.5845, V3 = −0.5640,
V4 = −0.6416, V5 = −6163

X3 � X2 � X5 � X4 � X1

Yang and Pang (2020) with
qROFWBMDA operator

V1 = −0.4570, V2 = −0.1966, V3 = −0.0703,
V4 = −0.44442, V5 = −0.2833

X3 � X2 � X5 � X4 � X1

Liu and Wang (2018) with
qROFWA operator

V1 = −0.0405, V2 = 0.1789, V3 = 0.1774,
V4 = −0.0122, V5 = 0.1350

X2 � X3 � X5 � X4 � X1

Garg and Chen (2020) with
qROFWNA operator

V1 = 0.5930, V2 = 0.7395, V3 = 0.7113,
V4 = 0.6782, V5 = 0.7410

X5 � X3 � X2 � X4 � X1

Liu et al. (2020) with
qROFPWMSM operator

V1 = −0.1154, V2 = 0.1161, V3 = 0.1556,
V4 = 0.0348, V5 = 0.0934

X3 � X2 � X5 � X4 � X1

Proposed method with
qROFIPWA operator and
qROFIPWAMSM operator

V1 = −0.1202, V2 = 0.1422, V3 = 0.1645,
V4 = 0.0404, V5 = 0.1162

X3 � X2 � X5 � X4 � X1

Proposed method with
qROFIPWG operator and
qROFIPWGMSM operator

V1 = −0.0788, V2 = 0.1523, V3 = 0.1562,
V4 = −0.0452, V5 = 0.1155

X3 � X2 � X5 � X4 � X1
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Table 7
Initial assessment results of the experts.

Expert Alternative L1 L2 L3 L4

D1 X1 〈0.5, 0〉 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0.5, 0〉
X2 〈0.7, 0.2〉 〈0.51, 0〉 〈0.5, 0.1〉 〈0.6, 0.2〉
X3 〈0.3, 0.2〉 〈0.38, 0.4〉 〈0.6, 0〉 〈0.4, 0.3〉
X4 〈0.5, 0〉 〈0.502, 0.4〉 〈0.5, 0.3〉 〈0.5, 0〉
X5 〈0.6, 0.1〉 〈0.3, 0〉 〈0.6, 0.2〉 〈0.6, 0.3〉
X1 〈0.5, 0.3〉 〈0.5, 0〉 〈0.6, 0.3〉 〈0.6, 0.3〉

D2 X2 〈0.6, 0〉 〈0.6, 0.3〉 〈0.206, 0.2〉 〈0.4, 0〉
X3 〈0.4, 0.3〉 〈0.7, 0〉 〈0.35, 0.2〉 〈0.6, 0.4〉
X4 〈0.45, 0.4〉 〈0.5, 0.2〉 〈0.6, 0〉 〈0.5, 0.2〉
X5 〈0.4, 0〉 〈0.6, 0.3〉 〈0.4, 0.4〉 〈0.6, 0〉
X1 〈0.5, 0.3〉 〈0.6, 0.3〉 〈0.5, 0〉 〈0.6, 0.3〉

D3 X2 〈0.6, 0.1〉 〈0.49, 0.2〉 〈0.7, 0〉 〈0.2, 0.2〉
X3 〈0.7, 0〉 〈0.6, 0.2〉 〈0.71, 0.4〉 〈0.4, 0〉
X4 〈0.5, 0.3〉 〈0.7, 0〉 〈0.5, 0.2〉 〈0.6, 0.1〉
X5 〈0.62, 0.3〉 〈0.6, 0.3〉 〈0.3, 0〉 〈0.4, 0.2〉

alternative X3 to the alternative X2. The best alternative is changed from the alternative
X3 to the alternative X2 and the ranking order is changed from X3 � X2 > X5 >

X4 > X2 to X2 � X3 > X5 > X4 > X1 if the approach of Wei et al. (2018) is used
with qROFGWHM operator. In addition, the priority order generated by Wei et al. (2018)
with qROFGWGHM operator is changed from X3 � X2 > X5 > X4 > X2 to X5 �
X3 > X2 > X4 > X1 and the best alternative is transformed from the alternative X3

to the alternative X5. The best alternative changes from X3 to X2 and the related ranking
output changes from X3 � X2 > X5 > X4 > X2 to X2 � X3 > X5 > X4 > X1

when the method of Liu and Wang (2018) is utilized with qROFWA operator. Moreover,
the ranking order generated by Garg and Chen (2020) with qROFNWA operator changes
from X3 � X2 > X5 > X4 > X2 to X5 � X3 > X2 > X4 > X1, and the best alternative
changes from X3 to X5. Thus the existing methods (Wei et al., 2018; Liu and Wang, 2018;
Jana et al., 2019b; Garg and Chen, 2020) are unreasonable for the reason that the best
alternative changes due to the biased nature of the expert D2. However, the methods of
Liu and Liu (2018) with qROFWBM operator, Yang and Pang (2020) with qROFWBMDA
operator and Liu et al. (2020) with qROFPWMSM) operator and the developed approach
still have rational and unaltered ranking of the alternatives. The methods of Liu and Liu
(2018), Yang and Pang (2020), Liu et al. (2020) and the developed approach can diminish
the impact of unreasonable assessment criteria values from a biased expert.

To show the disadvantages of the methods of Liu and Liu (2018), Yang and Pang
(2020), Liu et al. (2020), the same case study is considered with the initial assessment
matrix, as given in Table 7. The ranking outcomes are presented in Table 8. From this
table, it follows that the priority order of alternatives, as given by Liu and Liu (2018), are
unreasonable due to the fact that they fail to distinguish the priority of alternatives. The
method of Yang and Pang (2020) and the proposed approach continue to have a reasonable
ranking, and the best alternative remains the same for these two approaches. This implies
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Table 8
Comparison: proposed vs. existing methods (Liu and Liu, 2018; Liu et al., 2020; Yang and Pang, 2020) (taking

q = 2).

Method Score value Ranking order

Liu and Liu (2018) with
qROFWBM operator

V1 = 0.019, V2 = 0.019, V3 = 0.019,
V4 = 0.019, V5 = 0.019

X1 = X2 = X3 = X4 = X5

Yang and Pang (2020) with
qROFWBMDA operator

V1 = −0.0749, V2 = 0.0459, V3 = −0.0633,
V4 = −0.0262, V5 = −0.0352

X2 � X4 � X5 � X3 � X1

Liu et al. (2020) with
qROFPWMSM operator

V1 = 0.264, V2 = 0.264, V3 = 0.264,
V4 = 0.264, V5 = 0.264

X1 = X2 = X3 = X4 = X5

Proposed method with
qROFIPWA operator and
qROFIPWAMSM operator

V1 = 0.2204, V2 = 0.2458, V3 = 0.2010,
V4 = 0.2327, V5 = 0.2278

X2 � X4 � X5 � X1 � X3

Proposed method with
qROFIPWG operator and
qROFIPWGMSM operator

V1 = 0.2165, V2 = 0.2463, V3 = 0.2031,
V4 = 0.2297, V5 = 0.2257

X2 � X4 � X5 � X1 � X3

Table 9
Initial assessment results of the experts.

Expert Alternative L1 L2 L3 L4

D1 X1 〈1, 0〉 〈0.4, 0.4〉 〈0.4, 0.3〉 〈1, 0〉
X2 〈0.7, 0.2〉 〈0.1, 0〉 〈0.5, 0.1〉 〈0.6, 0.2〉
X3 〈1, 0〉 〈0.5, 0.4〉 〈1, 0〉 〈0.4, 0.3〉
X4 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.5, 0.3〉 〈1, 0〉
X5 〈0.6, 0.1〉 〈1, 0〉 〈0.6, 0.2〉 〈0.6, 0.3〉
X1 〈0.5, 0.3〉 〈1, 0〉 〈0.6, 0.3〉 〈0.6, 0.3〉

D2 X2 〈1, 0〉 〈0.6, 0.3〉 〈1, 0〉 〈0.4, 0.5〉
X3 〈0.4, 0.3〉 〈0.7, 0.2〉 〈0.4, 0.2〉 〈1, 0〉
X4 〈0.5, 0.4〉 〈1, 0〉 〈0.6, 0.3〉 〈0.5, 0.4〉
X5 〈1, 0〉 〈0.6, 0.3〉 〈1, 0〉 〈0.6, 0.4〉
X1 〈0.5, 0.3〉 〈0.6, 0.3〉 〈1, 0〉 〈0.6, 0.3〉

D3 X2 〈1, 0〉 〈0.5, 0.2〉 〈0.7, 0.2〉 〈1, 0〉
X3 〈0.7, 0.2〉 〈1, 0〉 〈0.8, 0.2〉 〈0.4, 0.5〉
X4 〈1, 0〉 〈0.7, 0.1〉 〈1, 0〉 〈0.6, 0.1〉
X5 〈0.6, 0.3〉 〈0.6, 0.3〉 〈0.3, 0.5〉 〈1, 0〉

that both approaches are capable of mitigating the effects of unreasonable assessment
criteria values provided by a biased expert.

The same case study was examined again using the initial assessment matrix, as shown
in Table 9. Table 10 exhibits the ranking results. According to Table 10, the ranking results
of the alternatives obtained by Liu et al. (2020) are unreasonable because they fail to
distinguish the priority of alternatives. The results obtained by Yang and Pang (2020) and
using the proposed approach still have a reasonable ranking and the best alternative does
not change for these two approaches. This suggests that both the approaches can mitigate
the effects of unreasonable assessment criteria values from a biased expert.
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Table 10
Comparison: proposed vs. existing methods (Liu et al., 2020; Yang and Pang, 2020) (taking q = 2).

Method Score value Ranking order

Yang and Pang (2020) with
qROFWBMDA operator

V1 = 0.6133, V2 = 0.8372, V3 = 0.6602,
V4 = 0.5890, V5 = 0.6265

X2 � X3 � X5 � X1 � X4

Liu et al. (2020) with
qROFPWMSM operator

V1 = V2 = V3 = V4 = V5 = 1. X1 = X2 = X3 = X4 = X5

Proposed method with
qROFIPWG operator and
qROFIPWGMSM operator

V1 = 0.5623, V2 = 0.7078, V3 = 0.6156,
V4 = 0.5533, V5 = 0.5863

X2 � X3 � X5 � X1 � X4

Table 11
Initial assessment results.

Alternative L1 L2 L3 L4

X1 〈0.5, 0〉 〈0.4, 0.4〉 〈0.4, 0.3〉 〈0.5, 0.6〉
X2 〈0.7, 0.2〉 〈0.5, 0〉 〈0.5, 0.1〉 〈0.6, 0.4〉
X3 〈0.3, 0.6〉 〈0.3, 0.4〉 〈0.6, 0〉 〈0.4, 0.3〉
X4 〈0.5, 0〉 〈0.7, 0.5〉 〈0.5, 0.3〉 〈0.5, 0.8〉
X5 〈0.6, 0.5〉 〈0.3, 0〉 〈0.6, 0.4〉 〈0.6, 0.3〉

Table 12
Comparison: proposed vs. Yang and Peng’s method (Yang and Pang, 2020) (taking q = 2).

Method Score value Ranking order

Yang and Pang (2020) with
qROFWBMDA operator

Cannot be determined due to division by zero Cannot be generated

Proposed method with
qROFIPWA operator and
qROFIPWAMSM operator

V1 = 0.0443, V2 = 0.2818, V3 = 0.0709,
V4 = 0.0453, V5 = 0.2666

X2 � X5 � X3 � X4 � X1

Proposed method with
qROFIPWG operator and
qROFIPWGMSM operator

V1 = −0.0014, V2 = 0.2545, V3 = 0.0589,
V4 = −0.0926, V5 = 0.1826

X2 � X5 � X3 � X1 � X4

It is known that when all experts give the same assessment values and if all the ex-
perts have the same importance, then a MCGDM problem reduces to a MCDM problem.
Suppose the initial assessment matrix for the case study is given in Table 11. Table 12
shows the scores and priorities of the alternatives. The results revealed that the method of
Yang and Pang (2020) failed to generate score values and alternative preference order, as
well as to solve certain decision-making problems, rendering it inefficient. However, the
developed methodology is capable of producing accurate ranking of alternatives.

In real decision-making problems, the interrelationship between criteria can be seen.
Methods of Wei et al. (2018), Liu and Liu (2018) and Yang and Pang (2020) can consider
the dependency of two criteria, but they do not consider interrelationships between mul-
tiple criteria. There may be a situation in which all of the considered criteria are indepen-
dent, and these methods are not appropriate for dealing with this type of decision-making
problem, and may generate irrational preference of alternatives. Although the method of
Garg and Chen (2020) is capable of mitigating the impact of some unreasonable assessing
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criteria values from some biased decision-makers and taking into account the dependency
among multiple criteria, it fails to distinguish the priority orders of alternatives in some
circumstances, as shown in Tables 7 and 8, respectively.

6. Conclusions

This paper presents a qROFS-based decision-making model to resolve the drawbacks
of the existing methods. To develop the model, four operators, namely qROFIPWA,
qROFIPWG, qROFIPWAMSM and qROFIPWGMSM, are proposed in this paper. The
main advantages of the last two operators are: (1) they reduce the effects of outrageous
assessing information from some biased experts, (ii) they consider the interrelationship
among multiple number of criteria. A group decision-making methodology is developed
based on these operators. The developed method can generate sensible ranking order of
alternatives when among the qROF numbers considered, one qROF number has a (i) non-
belongingness grade that equals to 0, or a (ii) belongingness grade that equals to 1. For
the verification of feasibility of the proposed MCGDM method, one case study regarding
personnel selection is considered. The superiority of the developed MCGDM approach is
shown by comparison with existing approaches. The proposed method has two limitations:
(i) it does not address the process of reaching consensus for large-scale decision-making,
and (ii) it does not address the hesitancy of choosing membership and non-membership
values. To address these issues, hesitant q-ROF based large scale decision-making with
consensus reaching process can be developed in the future by extending the proposed
operators. The proposed methodology can also be used to solve other decision-making
problems and can be further extended by incorporating hesitant, probabilistic hesitant,
linguistic, and probabilistic linguistic concepts.

Supplementary Material

Proof of Theorem 6, which we provided you in the main manuscript.
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