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1 Department of Information Systems, Faculty of Fundamental Sciences,
Vilnius Gediminas Technical University, Sauletekio av. 11, LT-10223 Vilnius, Lithuania

2 Institute of Data Science and Digital Technologies, Faculty of Mathematics and Informatics,
Vilnius University, Akademijos str. 4, LT-08412 Vilnius, Lithuania

e-mail: diana.kalibatiene@vilniustech.lt, jolanta.miliauskaite@mif.vu.lt,
dale.dzemydiene@mif.vu.lt, saulius.maskeliunas@mif.vu.lt

Received: September 2021; accepted: December 2021

Abstract. Nowadays, there is a lack of smart marine monitoring systems, which have possibilities
to integrate multi-dimensional components for monitoring and predicting marine water quality and
making decisions for their optimal operations with minimal human intervention. This research aims
to extend the smart coastal marine monitoring by proposing a solar energy planning and control
component. The proposed approach involves the adaptive neuro-fuzzy inference system (ANFIS)
for the wireless buoys, working online during the whole year in the Baltic Sea near the Lithuanian
coast. The usage of our proposed fuzzy solar energy planning and control components allows us to
prolong the lifespan of batteries in buoys, so it has a positive impact on sustainable development.
The novelty and advantage of the proposed approach lie in establishing the ANFIS-based model
to predict and control solar energy in a buoy for different lighting and temperature conditions de-
pending on the four year seasons and to make a decision to transfer the collected data. The energy
planning and consumption system for the wireless sensor network of buoys is carefully evaluated,
and its prototype is developed. The proposed approach can be practically used for environmental
monitoring, providing stakeholders with relevant and timely information for sound decision-making
about hydro-meteorological situations in coastal marine water.
Key words: marine water monitoring, buoys, adaptive neural fuzzy inference system (ANFIS),
fuzzy controller, wireless sensor network (WSN), Photovoltaic (PV) system, energy optimization.

1. Introduction

In recent years, increasing environmental pollution and human intervention into nature,
like wastewater, urbanization, mining, industrialization, and agriculture, have increased
the need to study and monitor these adverse effects in marine waters (Aghel et al., 2019;
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Delpla et al., 2015; Behmel et al., 2016). Consequently, smart marine water monitoring
methods with application of artificial intelligence (AI) methods for realization of decision-
making and analysis in the area of water quality monitoring, collecting of water samples
and water analysis are needful (Demetillo et al., 2019; Ullo and Sinha, 2020). Moreover,
those methods should be implemented into smart systems with combination of multi-
functional nodes for obtaining of final goals of marine water quality monitoring. In this
research, we understand a smart marine monitoring system as a system with additional AI
components. One of the important steps in developing of such complex smart systems is
the considering of the energy sources of these systems. Recently, a number of systems can
operate on the basis of solar energy, like Mofijur et al. (2019), Tao et al. (2021), Kumar et
al. (2020). Consequently, in this paper, we are emphasizing on the usage of solar energy
for a smart fuzzy system of marine water quality monitoring.

Therefore, the aim of this research is to develop the smart fuzzy inference based solar
energy planning and control component for coastal marine water monitoring. The usage
of the proposed smart fuzzy inference based solar energy planning and control component
(Smart-SolE) allows us to prolong the lifespan of batteries in buoys, so it has a positive
impact on sustainable development that responds to the main Sustainable Development
Goals (SDG) of Agenda’2030 (Colglazier, 2015), and Green Deal’2030 Strategy (Euro-
pean Commission, 2019).

Recently, researchers have used heuristic artificial intelligence-based algorithms that
can estimate and present the potential energy of system loads from nonlinear solar energy
(Sarkar et al., 2021). Liu et al. (2021) in their proposed method for power management
consider the effects of variation of temperature, radiation, output load, and use Type-3
fuzzy system. For future works, authors have left the issues of stability. Padmanaban et al.
(2019) have used a hybrid ANFIS-ABC swarm intelligent control for power point track-
ing in the photovoltaic (PV) system with grid integration, Mosavi et al. (2020) – Type-3
fuzzy system for energy/voltage management in PV/battery systems. González-Reolid et
al. (2018) have proposed BUSCAMOS-RobObs for water quality monitoring in lakes and
shallow coastal waters. Their proposed approach improves the autonomy in monitoring
water quality parameters and avoids the deployment of a large number of buoys. In order
to minimize the energy consumption, authors have used fuzzy goal management system,
which considers the state of batteries and the distance to alternative exploration areas to
select the next mission zone.

Recently, the fuzzy set theory has emerged as a powerful technique in the analysis and
decision making in water quality analysis of open resources and hydrology (Kambalimath
and Deka, 2020). It allows to consider the handling of vagueness (or ambiguity) in hy-
drology (Bogardi et al., 2004), like lack of data, nature causes (e.g. climate), imprecise
modelling of changing phenomenon of mixing and transitional waters, etc. A number of
authors in different areas of application have presented the suitability and applicability
of fuzzy set theory, like Zimmermann (2001), Tamir et al. (2015), Verma and Merigó
(2020), etc.

According to Ighalo et al. (2021), the Adaptive Neuro-Fuzzy Inference System
(ANFIS) and Artificial Neural Networks (ANN) are the most utilized AI models for water
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quality monitoring and assessment systems, which include the usage of solar energy, in the
last decade. The advantages of using AI methods in various monitoring and assessment
application areas are that they are faster and more efficient than linear mathematical or sta-
tistical methods, low-cost, can be used for real-time monitoring (Yetilmezsoy et al., 2011;
Ighalo et al., 2021; Demetillo et al., 2019), and ensure lower error values in prediction
(Karaboga and Kaya, 2019).

The usage of ontologies for marine sensor networks is expanding nowadays. The joint
World Wide Web Consortium (W3C) and Open Geospatial Consortium (OGC) Spatial
Data on the Web (SDW) Working Group developed a set of ontologies to describe sen-
sors, actuators, samplers, as well as their observation, actuation, and sampling activities.
The ontologies have been published both as a W3C recommendation and as an OGC
implementation standard. The set includes a lightweight core module called SOSA (Sen-
sor, Observation, Sampler, and Actuator), and a more expressive extension module called
SSN (Semantic Sensor Network). Together they describe systems of sensors and actua-
tors, observations, the used procedures, the subjects and their properties being observed
or acted upon, samples and the process of sampling, etc. (W3C, 2017; Haller et al., 2019).
The SOSA ontology was developed based on SSN ontology and taking into account the
changes in scope and target audience, technical developments, and lessons learned over
the past years. It provides a formal but lightweight general-purpose specification for mod-
elling the interaction between the entities involved in the acts of observation, actuation,
and sampling (Janowicz et al., 2019). Marine ecology ontology repository is presented in
Yun et al. (2015), which implements marine ecological knowledge navigation, term query,
knowledge retrieval and ecological crisis early warning. Moreover, ontologies are useful
in capturing domain causality as the internal domain model (Gudas, 2021), to eliminate
conceptual ambiguity and semantic gap in information security (Iqbal and Matulevičius,
2020), etc.

The proposals for developing of mobile buoy systems and integrating of different kinds
of sensors for hydro-meteorological monitoring purposes of marine water are presented
in works (Dzemydienė et al., 2021; Gricius et al., 2015; Lin et al., 2017). The hetero-
geneous sensors are implemented in the buoy system and can observe the water surface
elevations by providing the real-time tide and wave data in estuaries and coastal areas (Lin
et al., 2017; Zoss et al., 2018). The distributed system of autonomous buoys for scalable
deployment and monitoring of coastal waterbodies have had a dynamic cooperative array
of mobile buoys afforded with sensing capabilities (Dzemydienė and Radzevičius, 2020;
Zoss et al., 2018). The mobile buoy system, described in Helmi et al. (2014), can work re-
motely controlled by a computer which sends a series of commands to Intel Atom N2600
Board and microcontrollers over Global System for Mobile Communication (GSM). Au-
thors describe the monitoring of water quality in continental, coastal areas and in lakes.

In this research, we are focusing on the solar energy usage for a smart fuzzy system of
marine water monitoring of the Baltic Sea region in the coastal waters of Lithuania. The
peculiarities of four seasons (winter, spring, summer, and autumn) in the Baltic Sea region
are observed, i.e. air temperature, solar irradiance and their ratio change significantly. That
gives the experiment its uniqueness, and requires additional testing and system calibration.
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The novelty of the present research lies in establishing an ANFIS-based model to pre-
dict and control solar energy in a solar buoy for different lighting and temperature condi-
tions depending on the four seasons (autumn, winter, spring and summer). Furthermore,
the proposed model has been implemented in a smart fuzzy coastal marine water monitor-
ing system (Smart-MarineM) for estimation of a current power of a solar battery, lighting
and temperature conditions and to make a decision to transfer the data.

The structure of the paper is as follows. Section 2 presents Related works. Section 3
describes the developed smart fuzzy system of marine water monitoring including fuzzy
inference based solar energy planning using ANFIS. Section 4 presents the results of the
implementation of the proposed approach and experiments. Section 5 presents Discussion,
and Section 6 concludes the paper.

2. Related Works

In this section, we review papers dealing with the usage of solar energy (or irradiation)
for a smart marine water quality monitoring.

Vo et al. (2021) have presented a review on the Internet of Things (IoT) technolo-
gies in controlling ocean environment. They have concluded that almost all the existing
ocean environment control applications gathered and analysed extensive data from the
marine environment, however, marine environmental monitoring activities to protect ma-
rine ecosystems were still very limited. According to Vo et al. (2021), the usage of AI in
such systems allows us to enable more accurate and flexible data collection. Moreover,
the application of big data and real-time parallel with 5G network technology is conve-
nient for marine environmental control centres to access, process, and analyse the received
data with ultra-high spatial and temporal resolution so that solutions can be issued to fix
unexpected events immediately.

In Cho et al. (2021), it is argued that recent demand for eco-friendly energy sources
has been rapidly increasing. Therefore, the Lithium-ion battery (LIB) exposed to seawater
or corroded by immersion is not suitable for marine buoys because its cobalt toxicity
causes serious environmental pollution problems (Olivetti et al., 2017). Consequently,
a number of authors have proposed to use seawater batteries (Cho et al., 2021; Ligaray
et al., 2020; Zhang et al., 2018; Hwang et al., 2019; Kim et al., 2021) or solar batteries
(Przybysz et al., 2020; Zhang et al., 2021; Trevathan and Sharp, 2020) for wireless marine
buoy systems. However, as indicated in Cho et al. (2021), Demirdelen et al. (2019), there
are some issues to be resolved when using those batteries as follows: 1) proper support
charge during battery usage; 2) maintaining stable battery state by preventing overcharge
and undercharge; 3) for lifetime or optimal replacement time estimations, the degradation
progress in the battery needs to be reported. Moreover, the marine buoy needs to be self-
powered with harvesting devices such as PV (Helmi et al., 2014), wind (Kesavakumar et
al., 2013) and wave harvester (Li et al., 2019) for long-lasting system operation. Also,
intelligent power management techniques are required, since the buoy lightening causes
large power consumption.
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Demirdelen et al. (2019) have reviewed different solar power prediction methods in
order to obtain more accuracy. They have determined, that in real-time operation systems,
i.e. buoys, a short time prediction is used.

Morón-López et al. (2020) have implemented a Remote Monitoring System (RMS)
based on IoT technologies combined with satellite imagery, track harmful algae blooms
(HABs) in two Spanish waters: the freshwater (Conchas Reservoir (Galicia)) and the
brackish water shallow (L’Albufera Lagoon (Valencia)). The authors concentrate on data
collection from two different environments, data transfer to a data management system
on the cloud and their visualisation on the web interface in real time and do not describe
battery power management.

Falleni et al. (2020) have proposed a Smart Buoy for real-time remote access to un-
derwater devices and for provision of power and extended computational capabilities. Its
Power Module houses a central battery unit and a solar panel that together offer the buoy
long periods of autonomy while deployed. The module also includes a solar charge con-
troller that prevents over-charging and over-discharging of the battery, and voltage regu-
lators and electric switches that power on and off the other components while performing
energy-saving when possible. Consequently, the Power Module does not have an intel-
ligent component and is relatively simple. However, their experiments showed that the
Smart Buoy operates properly.

In the proposed Floating Water Quality Monitoring using IoT System (Thamrin et al.,
2021), a self-power embedded controller is used. The power storage could provide enough
for the entire system to operate with optimum voltage and current for 24-hour operation.

In Sabatini et al. (2021), a sensor network for inland water monitoring based on buoys
embedded with the reduced size and power consumption release of the BIONOTE-L is
presented.

Darmawan et al. (2020) have designed the detection device for seawater waves with
fuzzy algorithm based on IoT. Authors investigated the possibilities to combine a gyro-
scope, which detect and measure the angular motion of waves, an accelerometer, which
measures the acceleration of the force of waves, and LoRa (i.e. Long Range and pro-
prietary low-power wide-area network modulation technique), which became useful for
developing of a low-power wireless technology that uses radio spectrum (Darmawan et al.,
2020). Authors are trying to implement the fuzzy set theory to predict the tsunami waves
at sea. However, they do not present a fuzzy reasoning system in details. Only fuzzy cal-
culations are presented in the paper. Moreover, the proposed system testing during the
medium and dangerous environment conditions is not clear. The observations are devoted
for inland waters, but have no analysis of possibilities for developing of online working
buoy systems with the implementation of solar energy in small devices.

The mobile buoy systems for water quality monitoring are presented in Zoss et al.
(2018). Similar structures of systems are developed as a GNSS buoy and have possibil-
ity to observe the water surface elevations and provide the real-time tide and wave data
in estuaries and coastal areas in Lin et al. (2017), Dzemydienė and Radzevičius (2020).
The problem of distributing of operations is considered in Zoss et al. (2018). The system
consists of a dynamic cooperative array of mobile buoys afforded with sensing capabil-
ities. The possibilities to use the solar energy are omitted, and we see the need to apply
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Fig. 1. The reference architecture of the smart fuzzy coastal marine water monitoring system (Smart-MarineM).

the intelligent components like fuzzy reasoning and ANFIS for predicting, planning and
maintaining the energy of a smart system.

The controller based on the adaptive fuzzy neural network to track the dynamically
positioned vehicle on water with unavailable velocities and unidentified control param-
eters is presented by Zhang et al. (2020). Qin et al. (2019) have solved the problem of
missing data due to transmission errors by using sensor’s failure and equipment’s mainte-
nance methods in buoy-based monitoring system. Song et al. (2021) are trying to present
the continuous space location model and a particle swarm Optimization-Based Heuristic
Algorithm for maximizing the allocation of ocean-moored buoys.

Summing up, the topic of exploring marine environment using different smart marine
water quality monitoring systems is relevant and expands in the way of using IoT and
cloud technologies for better data transmission and processing. However, the topic of in-
telligent solar energy (or irradiation) management system for a marine water quality mon-
itoring remains insufficiently examined. Almost all found buoy systems for marine water
monitoring are equipped with linear solar power control systems. Meanwhile, while solar
energy management systems based on ANFIS (Abadi et al., 2018; Viswavandya et al.,
2020) are proposed in other application domains, ANFIS employment in buoys for solar
energy monitoring remains little examined.

3. Development of the Smart Fuzzy System of Marine Water Monitoring

The overall reference architecture of the smart fuzzy coastal marine water monitoring
system (Smart-MarineM) is presented in Fig. 1. The Smart-MarineM is designed with its
main goal of coastal marine water hydro-meteorological data monitoring with the con-
sideration that the system: 1) can measure and store information in a Data Storage in
a real-time scenario; 2) adopts to the solar energy consumption (the Smart fuzzy solar
energy planning and control component (Smart-SolE)); 3) is suitable for intelligent data
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transfer to the Smart monitoring node; 4) is suitable for smart energy planning and control
using ANFIS.

3.1. The Reference Architecture of Smart-MarineM

The most important function of the system is to ensure that the data collection from the
Sensors reflect the actual aquatic status and the data are transmitted and delivered to the
Data Warehouse of the Decision Support Subsystem in a timely manner using Communi-
cation component. Solar component (consisting of a Solar panel – energy generator, and
a battery) ensures the delivery of energy to the buoy. The Decision Support Subsystem
is responsible for processing of the data from Data Warehouse using the Fuzzy reason-
ing component, which evaluates overall situation of water quality and transfers results to
Decision-making engine. The Ontology component is used for the description of data in
the Data Warehouse. The usage of Ontology in our system facilitates conceptualization and
smooth mapping between concepts to assist in structuring the domain knowledge; ensures
explicit domain assumptions and unambiguous interpretation of both the concepts and
their interrelationships by the Fuzzy reasoning component; assists more intelligent search
(e.g. generalization of queries to find nearest partial matches). With the help of Ontology,
the marine water monitoring system becomes more apprehensible, better prepared to any
further changes and modifications required.

The Data Storage component is used for storage of temporal data from Sensors in the
case when buoys cannot transmit the data to the Data Warehouse because of low battery.

Users are gathering the information through the graphical user interface (GUI) from
the Smart-MarineM about hydro-meteorological situations of coastal marine water, some
kinds of decisions or/and control actions.

The hardware background of the subsystem of buoys under development consists of
the following four layers (Dâmaso et al., 2014; Gricius et al., 2015; Dzemydienė and
Radzevičius, 2020):

• the network layer as a background layer of computing nodes that guarantees the ability
of the system to be able of working and ensuring communication between nodes (buoys)
and a master node (a stationary working host machine) in a decentralized wireless way;

• the protocol layer, which consists of fundamental communication technologies, such
as consensus algorithms, cryptography methods, ensuring that the system on-line work
properly;

• the wireless sensors network (WSN) layer that is responsible for the primary data mon-
itoring mission by transmitting transactions securely and assures that existing system
functions are working correctly;

• the application layer, which provides APIs for the object’s usability and is responsible
for interaction with the other buoys and users in the network.

An infrastructure of distributed buoys with integrated multi-function sensors should be
created to support online and real-time operation of cooperative components, with limited
power supply and memory capacity.
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Table 1
Components which are integrated into the structure of buoy’s system based on WSN.

No. Name and type of component Functionality description

1 Arduino Mega control board with
ATMega2560 microcontroller

It works at 16 MHz clock speed and is the main block
supporting the infrastructure of buoys.

2 SIM900 network module It is responsible for wireless communication and data
transmission via GSM network to the monitoring station.

3 The geographical positioning system
(GPS)

It is used for recognition of coordinates (i.e. latitude and
longitude) of buoys.

4 10 mW XBee PRO module It is responsible for providing wireless communication
between individual buoys.

5 Connection of sensors (like the MPU6050
accelerometer/gyroscope pair)

It is working as sensors of waviness measurements.

6 Real time control (RTC) timer It works as a timer for measuring time durations, and supports
the control of working regime according to the supply energy
and consumptions needs.

7 The connection structure for integration of
other type sensors

Heterogeneous block for connection of sensors in a buoy, like
temperature, barometric pressure and other sensors.

8 Power supply block Each buoy is powered by solar energy, which can be charged
in Ni-MH type batteries at the same time, allowing the buoy
to operate during the dark and light hours throughout the day.

9 Global System for Mobile communication
(GSM) antenna

For Mobile Wi-Fi communication.

In this study we have focused on the smart fuzzy solar energy planning component,
which is important for autonomous work of buoys subsystem. The prototype of smart
system under development is working on the basis of WSN for continuous data transmit-
ting. The hardware part of the subsystem of buoys is based on some sets of components
which are integrated in the whole system. A possible description of components that can
be integrated into the buoy system is presented in Table 1.

Each buoy can have from 1 to 20 sensors that gather different data at time intervals,
which are defined in Smart-MarineM.

3.2. ANFIS for Solar Energy Planning

3.2.1. The ANFIS Structure
The adaptive neuro fuzzy inference system (ANFIS), composed of the fuzzy inference
system (FIS) and the artificial neural network (ANN), solves non-linear problems with en-
hanced performance. The FIS component conveys the qualitative human thinking process
into the accurate quantifiable evaluation. The ANN component is responsible for learning
(using training data sets) and adapts to its environment. ANFIS is based on premise and
consequence parts, which are connected using IF-THEN fuzzy rules (Eq. (1)):

Ri : if
(
x1 is Ai

1

)
. . . and . . .

(
xn is Ai

n

)
then fi = aT

i · x + bi, (1)

where (x ∈ R
n) are input variables of fuzzy sets Ai

1, . . . , A
i
n, and (ai, bi) are the design

parameters that are determined during the training process using a linear Takagi–Sugeno
model (Takagi and Sugeno, 1985). The ANFIS structure consists of five layers (Fig. 2).
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Fig. 2. The basic ANFIS structure.

In this study, we have used two inputs and one output of ANFIS structure. In the first
layer (Layer 1, Fig. 2), two inputs ((x1, x2), n = 2), i.e. voltage parameter and current are
fuzzified by using the triangular membership function (MF) (Eq. (2)) and provided to the
second layer (Layer 2).

In this study, we have used triangular MF, since it is easily implementable in FIS (Mil-
iauskaitė and Kalibatiene, 2020a, 2020b; Kalibatienė and Miliauskaitė, 2021; Choi and
Rhee, 2009).

μAi
(x) =

⎧⎪⎨
⎪⎩

0, if x < c1, c3 � x,
x−c1
c2−c1

, if c1 � x < c2,
c3−x
c3−c2

, if c2 � x < c3,

(2)

where: c1, c2, c3 are the adaptive parameters of the function.
The second layer (Layer 2) assesses the fuzzing inputs, evaluates the weights for the

MFs and provides the strength parameters wi (Eq. (3)) to the third layer (Layer 3), which
normalizes the weights (wi) of the MF using Eq. (4).

wi =
∏

μi(x), (3)

wi = wi∑
i wi

. (4)

The third layer (Layer 3) provides the normalized weights (wi) of MFs to the fourth
layer (Layer 4), which applies fuzzy rules (Eq. (1)) to obtain fi , performs the product of the
normalized weights (wi) and fi , and provides the final results to the fifth layer (Layer 5).
In Layer 5, the global model response (f ) is calculated by Eq. (5).

f =
∑

i

wifi . (5)

Training of ANFIS means determining the parameters in its structure in Layer 1 and
Layer 4 using an optimization algorithm. In the training phase, Layer 1 (i.e. premise) and
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Fig. 3. The proposed Smart-SolE (I – Irradiation (W/m2), T – Temperature, °C, P – power, W, generated by
Solar energy generator, P* – power, W, predicted by ANFIS, I_PV – current, A, P_PV – voltage, V).

Layer 4 (i.e. consequence) parameters are utilized in order to obtain effective results. Dif-
ferent training approaches have been suggested to achieve better performance of ANFIS
(Karaboga and Kaya, 2019). In our study, we have used a hybrid approach.

After the training is complete, the performance of ANFIS is determined by a set of
different algorithms. In our case, we have used the mean squared error (MSE) (Eq. (6)) to
measure the average of the squares of errors between the outputs fi and the training sets
ftraini

.

MSE = 1
/

n

n∑
i=1

(fi − ftraini
)2, (6)

where fi and ftraini
denote the ANFIS output and the measured value from the i-th ele-

ment. The closer MSE is to zero, the more accurate the predicted result.

3.2.2. Smart Fuzzy Solar Energy Planning Using ANFIS
The proposed Smart fuzzy solar energy planning component (Smart-SolE) with ANFIS
for solar energy usage evaluation is presented in Fig. 3.

The operation of the proposed system is presented in Fig. 4. The system starts operating
within the predefined time periods. However, this interval can be changed by the admin-
istrator or the Decision Support Subsystem (see Fig. 1) in case of emergency or the need.
If the Energy planning component based on the ANFIS prediction results determines that
the Solar battery is charged enough, then it sends a signal to the Communication compo-
nent for transfer of data collected by Sensors to the Decision Support Subsystem. If there
is not enough power for data transfer, the Smart solar energy planning component is in
the mode of waiting for enough power. However, in the waiting mode the newly collected
portions of data by the Solar energy generator are stored in the Data Storage.
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Fig. 4. The algorithm of the proposed Smart-SolE.

Table 2
“SAM-150P” solar module specification and electrical parameters.

Parameters Specification

Cells per module (NCell) 36
Maximum power per module (Pmp) 150 W
Voltage of maximum power point (Vmp) 18.38 V
Current at maximum power point (Imp) 8.16 A
Open circuit voltage (Voc) 22.68 V
Short-circuit current (Isc) 8.62 A
Temperature coefficient of Voc and Isc (%/°C) −0.34/ + 0.08

4. Experimental Research Results

The proposed approach was implemented into the Smart-SolE prototype for evaluation
and exam using the MATLAB/Simulink 2021 software. The buoys network at the Baltic
Sea and Lithuanian coastal hydro-meteorological data1 were used in the experiments. The
buoys network solar module technical parameters are presented in Table 2.

The collected measurement data used in the experiments consists of two data sets as
following: 1) a data set about weather conditions in the period of five years including

1http://www.meteo.lt/lt/menesio-apzvalgu-archyvas.

http://www.meteo.lt/lt/menesio-apzvalgu-archyvas
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Fig. 5. The battery charging level (%): a) partial shading conditions during the spring and autumn (I = 970
W/m2, T = +9.7 °C); b) the least sunny conditions during the winter (I = 538 W/m2, T = −1.1 °C).

Fig. 6. The inputs: a) PV voltage (I_PV) MFs; b) PV current (P_PV) MFs.

four seasons1 (temperature (°C), irradiation (W/m2)); and 2) a data set collected from
the hydrographic buoy (irradiation (W/m2), temperature (°C), humidity (%), battery volt-
age (V)).

The Smart-SolE prototype simulated different operating conditions, i.e. various irra-
diation conditions depending on the seasons, and was tested to study its operation. We
have examined three different working conditions as follows: 1) the high lighting condi-
tions during the summer, when the average irradiation is 1042 W/m2, and the average air
temperature is +17.9 °C; 2) the partial lighting conditions during the spring and autumn,
when the average irradiation1 is 970 W/m2, and the average air temperature is +9.7 °C; and
3) the least sunny conditions during the winter, when the average irradiation1 is 538 W/m2,
and the average air temperature is −1.1 °C. In this paper, we present the most interesting
cases (i.e. the partial lighting (Fig. 5a) and the least sunny (Fig. 5b) conditions) as follows.
In figures, the x-axis shows the time of battery charging in seconds; the y-axis presents
the battery charging level in percentages. Note that initial battery charging level taken in
the experiment is 45%.

As can be seen from Fig. 6, in the least sunny period the battery charging speed is
lower. Two inputs of the form of power and voltage data (PV array), i.e. system voltage
(I_PV) and current (P_PV), are provided to ANFIS (Fig. 3).
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Fig. 7. The output Power (P*) MFs.

Fig. 8. The dependency between input (input 1 (I_PV), input 2 (P_PV)) and output Power (P*) parameters.

Note that voltage, current and power in the measurement stage are labelled as V, I
and P, respectively; and, in Smart-SolE, they are labelled as voltage (I_PV) and current
(P_PV).

We present the result of prediction during the winter, since it is the least sunny period
in the year. The inputs consist of 3 MFs each, and the MFs are of triangular nature. From
the training data set, it is observed that the voltage parameters vary from 6 to 14 V (Fig. 6a)
and the current parameters vary from 6 to 12 A (Fig. 6b).

According to the presented input (voltage and current), ANFIS predicts power
(P*(W)), the MFs of which are presented in Fig. 7.

The relationships between two-input and one-output of ANFIS can be depicted by a
3-D plot. The surface model in Fig. 8 represents the input–output dependency. The x-axis
represents voltage (I_PV) (input 1), the y-axis is the current (P_PV) (input 2), and the
z-axis is the value of power (output). How the output depends on the input is determined
by the fuzzy rules (see the explanation below).

In this research, using two-input parameters with three fuzzy sets per input, FIS has
produced a complete rule set of 9 (32) rules in order to build an ANFIS model. It is im-
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Table 3
ANFIS training and testing settings.

Parameter Description/Value

Fuzzy structure/FIS training data Sugeno/genfis1
FIS object generation grid partition on the data
MF type of Input/MF type of Output trimf (triangular)/constant
Number of inputs/outputs 2/1
Number of MFs associated with each input 3
Optimization method hybrid
Training algorithm to model the training data least-squares and backpropagation gradient descent methods
Maximum number of training epochs 100
Initial step size 0.001
Step size decrease rate/increase rate 0.9/2
Data for training/data for testing 70/30

Fig. 9. The output of P* after processing in ANFIS – results of training.

portant to note that the partition increase of the input space exponentially increases the
number of rules that influence and enormously enlarge the speed of learning and applica-
tion of the system. Therefore, an effective partition of the input should be found.

Some examples of the fuzzy rules are as follows:

IF (P_PV is Low) AND (I_PV is Low) THEN (P* is Low);
IF (P_PV is Low) AND (I_PV is High) THEN (P* is Moderate);
IF (P_PV is Moderate) AND (I_PV is Low) THEN (P* is Moderate);
IF (P_PV is Low) AND (I_PV is Moderate) THEN (P* is Low).

The ANFIS settings for this study are presented in Table 3.
Figures 9 and 10 present the results of dataset processing by ANFIS during the winter.

We have used 70/30 ratio for the training and testing.
As can be seen, P* becomes more accurate after training, i.e. during training the co-

efficient of determination is R2 = 0.3956, during testing R2 = 0.8371. R2 describes the
degree of association between experimental data and those obtained by the model. In the
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Fig. 10. The output of P* after processing in ANFIS – results of testing.

Fig. 11. The decision tree used in the energy planning component.

case of R2 = 1, the model has an exact correspondence to the experimental data. Ac-
cordingly, our testing results show high match to the obtained theoretical model during
training.

After the training is complete, the performance of ANFIS is determined using MSE =
0.0032 (Eq. (6)). This small MSE shows the close finding to the line of best fit.

Those ANFIS results P* are transferred to the Energy Planning Component to make
a decision for data transferring to Decision Support Subsystem. The Energy Planning
Component based on the input data from ANFIS (P*) and Data Storage (P, I_PV, P_PV)
decides whether to send the data. The decision mechanism is the rule-based and presented
by the decision tree in Fig. 11.

According to the predefined rules, the current power P is estimated based on ANFIS
predictions, i.e. the current power level is determined to be high, medium, or low. The bat-
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Table 4
An example of the obtained decision-making results

with the proposed approach (1 – transfer the data,
0 – terminate the data transfer).

P P* Battery Signal

41 Low 25% 0
47 High 55% 1
50 Moderate 70% 1
20 Moderate 42% 1
36 Low 36% 1
45 Moderate 7% 0
58 High 24% 1

tery charging level for making the decision is chosen 25%, because this level is critical
ensuring the data transfer and further operation of the entire system after the data transfer.

The snapshot of the obtained decision-making results is presented in Table 4.
The major challenge for the proposed approach and its implementation is the collection

of reliable data and the ability to cope with very fast changing environmental conditions.
The usage of ANFIS for Smart-SolE demonstrates flexibility of the data transfer according
to different environmental conditions, like shading and seasonality.

5. Discussion

The analysis of the related works showed that marine monitoring systems, combined
with AI and IoT components for the data collection, processing, transmission and overall
systems operation, become more accurate and flexible. Existing approaches are utiliz-
ing ANFIS for solar energy planning in different application domains and purposes. The
review of the found and analysed smart buoy systems shows that authors mainly empha-
size data transmission using IoT of buoys, rather than incorporating smart solar energy
planning in buoys. Therefore, we emphasize on more detailed level of smart solar energy
planning in buoys.

In this paper, the smart fuzzy inference based solar energy planning and control com-
ponent (Smart-SolE) for coastal marine water monitoring has been developed and exam-
ined to validate its performance. The advantage and uniqueness of the proposed approach
is that we establish an ANFIS-based model to predict and control solar energy for different
lighting and temperature conditions depending on the four seasons in the Baltic Sea region
in the coastal waters of Lithuania. The proposed model has been implemented in a smart
fuzzy coastal marine water monitoring system (Smart-SolE) for estimation of a current
power of a solar battery, lighting and temperature conditions and to make a decision using
the proposed decision tree to transfer the data collected by a buoy to the Decision Support
Subsystem. During the experimental research it was observed that air temperature, solar
irradiance and their ratio change similarly in spring and autumn; therefore, those two sea-
sons were combined in the experiments of the proposed approach. However, the proposed
approach is universal and can be used in other regions with different seasonality, only by
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adapting the specific solar energy supply weather conditions for recognizing the specific
working modes of solar energy supply.

The study shows that ANFIS is a suitable artificial intelligence model for solar energy
planning and control in the coastal marine water monitoring area. The obtained accuracy
of the testing is R2 = 0.8371 that shows high match to the obtained theoretical model
during training. The performance of ANFIS is MSE = 0.0032, which shows the close
finding to the line of best fit.

This research focused on the use of Smart-SolE for coastal marine water monitoring,
limiting research on other components, like detailed buoys’ physical characteristics, more
detailed solar energy generation data and solar battery charging data. More real data is
necessary for investigation. Moreover, the issues of the assessment of coastal marine wa-
ter quality remain in our future plans. Based on these observations, further questions were
raised regarding applying of artificial intelligence for improvement and extension of the
decision-making component and making it smarter and more independent of user’s inter-
vention.

6. Conclusions

Extensive human intervention into nature and increasing environmental pollution have
increased the need to study and monitor adverse effects on marine waters. In order to
solve the coastal marine water monitoring tasks, different marine water monitoring sys-
tems are proposed. Nowadays, new technologies, like IoT and machine learning, allow
us to improve and extend functionality of remote marine monitoring. However, the topic
of intelligent solar energy (or irradiation) systems for marine quality monitoring remains
insufficiently examined. In this research, the approach for solar energy implementation in
remote control monitoring system of buoys was proposed. The main focus is the devel-
opment of the Smart-SolE reasoning component that is integrated into the entire Smart-
MarineM. The novelty of Smart-SolE is the use of an ANFIS-based model, which enables
more adaptable and continuous work of buoys in coastal marine monitoring processes.

From the study, based on the obtained accuracy, it was determined that ANFIS is a
suitable AI model for solar energy planning and control in the coastal marine monitoring
area. However, additional investigations with consideration of the buoys’ physical charac-
teristics, communication protocols, and more detailed analysis of solar battery charging
process are necessary.
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