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Abstract. Ligand Based Virtual Screening methods are used to screen molecule databases to se-
lect the most promising compounds for a query. This is performed by decision-makers based on the
information of the descriptors, which are usually processed individually. This methodology leads
to a lack of information and hard post-processing dependent on the expert’s knowledge that can
end up in the discarding of promising compounds. Consequently, in this work, we propose a new
multi-objective methodology called MultiPharm-DT where several descriptors are considered si-
multaneously and whose results are offered to the decision-maker without effort on their part and
without relying on their expertise.
Key words: ligand-based virtual screening, multi-objective optimization, decision tool.

1. Introduction

Drug development has always been an area of constant progress due to its direct applica-
tion in society. This has been especially noticeable in recent years due to highly transmis-
sible and deadly diseases such as Zika (Petersen et al., 2016), Ebola (Baize et al., 2014),
and now COVID-19 (Mehta et al., 2020). Although a milestone in terms of development
time has been achieved with the latter (Kim et al., 2020), the chances of failure are usually
high and in fact, 90% of drugs that enter clinical trials fail to gain United States Food and
Drug Administration (FDA) approval and are not marketed. Additionally, 75% of the costs
are due to failures in the design pipeline (Tollman, 2001; Leelananda and Lindert, 2016).
Consequently, the entire drug development process can take 12–15 years and exceed more
than $1 billion (Hughes et al., 2011). To reduce costs, time and to improve the success rate,
many new techniques and methodologies have been developed. One of these techniques is
Virtual Screening (VS), which has been gaining ground in recent decades (Tanrikulu et al.,

∗Corresponding author.

https://doi.org/10.15388/21-INFOR469


56 S. Puertas-Martín et al.

2013). VS is an in silico technique that allows the processing of large libraries with mil-
lions of compounds to find new compounds similar to a reference molecule based on one
or several descriptors (Wang et al., 2009; Hamza et al., 2012; Boström et al., 2013; Kumar
and Zhang, 2016). It is normally used as a filter to reduce the number of compounds to be
studied in the later stages of drug development, one such example being High-Throughput
Screening (HTS) to reduce costs and time (López-Ramos and Perruccio, 2010; Kar and
Roy, 2013). This has increased the popularity of these techniques, which have shown great
progress over the last two decades.

In terms of the VS methods, two categories are dependent on the available information
of the compounds: Structure-Based Virtual Screening (SBVS) and Ligand-Based Virtual
Screening (LBVS). The former is applied when the three-dimensional structure of the ther-
apeutic target is available and it is exploited in order to propose hits, either obtained by
experimental methods (X-ray crystallography (Lu et al., 2006) or Nuclear Magnetic Reso-
nance (NMR) (Stark and Powers, 2011)) or through the construction of molecular models.
An example of SBVS is the docking (Brooijmans and Kuntz, 2003; Morris and Lim-Wilby,
2008; Pagadala et al., 2017), a technique where the objective is to find the best coupling
between two molecules: a receptor and a ligand. In contrast, LBVS is used when we exploit
information derived only from one of several active or inactive ligands which usually hap-
pens when the three-dimensional structure of the drug target is not available. This includes
Quantitative Structure-Activity Relationship (QSAR) (Karelson, 2000), shape matching
techniques (comparison of global or partial shape between molecules) (Hawkins et al.,
2007) and similarity search techniques using 2D/3D descriptors.

As far as we know, most LBVS methods proposed in the literature optimize the
compounds by focusing on a single descriptor. A variety of descriptors can be consid-
ered: shape similarity, electrostatic similarity, aromatic potential, desolvation potential,
or atomic property fields. For example, ROCS (OpenEye Scientific Software, 2021) or
WEGA (Yan et al., 2013) find the most similar molecule to a given query in terms of
shape similarity. In addition, the recently proposed OptiPharm has proved to be a very
competitive piece of software when optimizing shape similarity or electrostatic potential
(Puertas-Martín et al., 2019, 2020; OpenEye Scientific Software, 2020). Nevertheless, to
increase the success of the predictions, the experts look for candidate compounds with
similarities to the given query in more than one descriptor simultaneously. To do so, they
face the query molecule to the whole database with one of the tools previously men-
tioned. They then carry out a post-processing phase that usually consists of sorting the
compounds according to their scoring value, selecting the top of them, and analysing the
subset of molecules by extracting or computing values related to the second descriptor of
interest. This post-processing phase may be challenging and require much training and
knowledge on the part of the expert (Tresadern et al., 2009; Maccari et al., 2011; Chu and
Gochin, 2013; Kim et al., 2015; Kossmann et al., 2016; Woodring et al., 2017), basically
because most of the time, there are descriptors in conflict, and an improvement in one
leads to deterioration in the other.

A solution to these problems lies in multi-objective optimization. This has been used
in different areas such as engineering (Marler and Arora, 2004), food (Ferrández et al.,
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2019), economics (Tapia and Coello, 2007) or energy (Cui et al., 2017). Within the VS
field, solutions can be found using techniques such as QSAR, Docking, de novo design
and even library design (Nicolaou and Brown, 2013), although, in the LBVS field there
are few solutions found and, as far as we know, none applied to shape and electrostatic.
In this work we propose:

• A new multi-objective software called MultiPharm able to optimize LVBS problems
with many descriptors, simultaneously. For the sake of testing, we have solved a bi-
objective optimization problem with shape and electrostatic similarity descriptors.

• A new decision-making methodology called MultiPharm-DT. Notice that there is usu-
ally no single optimal solution in multi-objective optimization but a group of alternative
results with different trade-offs. Such a set of solutions is called the Pareto set (or ef-
ficient set) (Coello and Lamont, 2004), together with the corresponding set of scoring
vectors, the Pareto front. With this new tool, the experts or decision-makers can solve
a multi-objective LBVS problem and decide which Pareto optimal solution(s) fits their
preferences more suitably, without any post-processing or additional effort from their
side.

These new proposals may represent a real challenge since it is a non-convex multi-
objective optimization problem and its resolution requires new methods beyond the gen-
eralization of single-objective global optimization techniques, as previously has been done
(Pardalos et al., 2017).

The rest of the paper is organized as follows. Section 2 introduces the concepts of
multi-objective optimization as well as the methodology currently used in the literature.
This section also outlines a new proposal which includes a new methodology and a new
tool. Section 3 describes the database used and the tool configurations. Section 4 shows
the results obtained, detailing the different cases. Finally, the conclusions are summarized
in the last section.

2. Methods

This section initially describes the multi-objective problem that we will address and de-
fines some essential concepts about multi-objective optimization. Later we will briefly
detail the two possible methodologies employed to deal with the problem. The first one is
widely used in the literature, and it is based on optimizing only one descriptor followed
by post-processing from the expert’s side. The second one consists of the simultaneous
maximization of all the descriptors and helps reduce the expert’s effort.

2.1. The Multi-Objective Optimization Problem

This paper aims to maximize both the shape T cS and the electrostatic similarity T cE of
two molecules (a query A and a target B), simultaneously.

The shape similarity score is calculated using a weighted Gaussian model (Grant and
Pickup, 1995; Grant et al., 1996; Yan et al., 2013), which is widely used in other works
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(Yan et al., 2013; Cui et al., 2015; Lo et al., 2016) and can be expressed mathematically
as follows:

VAB =
∑

i∈A,j∈B

wiwjvij , (1)

where vij is the sum of the intersections of the atoms and wi and wj are weights associated
with the atoms i and j , respectively. From this function, the Tanimoto coefficient (Real
and Vargas, 1996) is computed to normalize the score:

T cS = VAB

VAA + VBB − VAB

, (2)

where VAA and VBB are the overlaps of the molecules A and B with themselves, respec-
tively. This function returns a value in the range [0, 1] where 0 means that there is no
overlap and 1 means that there is a complete overlap between both molecules.

The electrostatic similarity (Böttcher and Bordewijk, 1978) between A and B is ob-
tained by calculating the (3):

EAB =
∫

φA(r)φB(r)�A(r)�B(r)dr ≈ h3
∑
ijk

φA
ijkφ

B
ijk�

A
ijk�

B
ijk. (3)

In a similar fashion to (1), the Tanimoto metric is used to normalize the value. For
(4), the range value is [−0.33, 1] where 0 means there is no electrostatic overlap, 1 means
the overlap is complete and −0.33 means the overlap is complete but the loads of the
molecules are opposite.

T cE = EAB

EAA + EBB − EAB

. (4)

For optimization purposes, we look for the target’s pose that maximizes both the shape
and electrostatic score values. To do so, we consider that the query remains in the same
position during the whole optimization process. A pose p represents the rotation and trans-
lation of the target from its original position, and it is defined as a quaternion of the form
p = {θ, c1, c2,�}, where θ is the angle that a molecule is rotated with respect to the axis
created by the points c1 = (c1x, c1y, c1z) and c2 = (c2x, c2y, c2z). � = (�x,�y,�z) is
a displacement vector.

The multi-objective optimization problem can be then defined as:

T c(p) = {
max T cS(p), max T cE(p)

}
,

s.t. p ∈ S.
(5)

The need to tackle this problem from a multi-objective perspective can be seen in
Fig. 1. It shows an example where the query molecule DB01155 and the target DB01208
are considered as input. Figure 1(a) shows the pose obtained when the shape similarity
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Fig. 1. Example of the conflict existing between the shape and electrostatic optimization. We have considered
the query molecule DB01155 represented in green and fixed in 3D space, and the target molecule DB01208
depicted in gray. We show the overlap of their structures on the left and their electrostatic charges on the right.
To the latter, the positive charge for the query (resp. target) is represented in blue (resp. cyan) and the negative
in red (resp. magenta). (a) Shows the optimal pose obtained when the shape similarity is maximized. With
such a pose we obtain a T cS = 0.832 value. Additionally, we have evaluated the electrostatic similarity at the
optimal pose, reaching a T cE = 0.556 value. (b) Shows the optimal pose when the electrostatic similarity is
maximized, obtaining a T cE = 0.892 figure. We have also evaluated the shape similarity at the optimal pose.
The corresponding value has been T cS = 0.318.

is maximized. As can be seen, a high value of T cS = 0.832 is obtained. However, when
we evaluate such a pose with the electrostatic similarity, we realize the obtained value is
quite small (T cE = 0.556). In Fig. 1(b) we show the opposite case, i.e. we optimize the
electrostatic similarity and evaluate the shape similarity with the obtained pose. As can
be seen, we obtain high values of T cE = 0.892 but a negligible value for shape similarity
T cS = 0.318. All this clearly means that there exist instances where both objectives are
in conflict and then, multi-objective techniques are needed.

When multiple objectives are present, the concept of an optimal solution, as in the
single-objective problems, does not exist (Pardalos et al., 2017). Then, before addressing
the optimization problem, it is necessary to explain what solving a multi-objective problem
means. In a single-objective context it is easy to determine when a pose p is better than
another p′. It clearly happens when T ci(p) > T ci(p

′), being i ∈ {S,E}. In a multi-
objective framework, the quality of two poses is determined by the concept of dominance.
Its definitions are as follows:
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Fig. 2. Concept of dominance. Let us consider the solution in red as a reference. The solutions represented
by black dots have better similarity values in the two objective functions than the red one. Consequently, the
black solutions dominate the red one. Likewise, the solutions in white are dominated, since they have worse
similarity values in both descriptors than the red one. Finally, the gray solutions have better similarity values in
one property and worse in the other, so they are non-comparable solutions regarding the reference solution.

Definition 1. For two feasible poses p,p′ ∈ S, we say that p dominates p′ and T c(p)

dominates T c(p′) if and only if T ci(p) � T ci(p)′ for all i = S,E, and there is at least
one j ∈ {S,E} such that T cj (p) > T cj (p)′.

Figure 2 illustrates the concept of dominance. Notice how the objective space is rep-
resented, i.e. we have mapped a set of solutions p to the objective space T c(p) =
(T cS, T cE).

Definition 2. A pose p ∈ S is said to be efficient or a Pareto optimal solution if and
only if there is not another pose p′ ∈ S dominating p, i.e. none of the objective functions
can be improved without worsening at least one of the others. The set SE of all the Pareto
optimal solutions is called the efficient set or the Pareto optimal set. The image of a Pareto
optimal solution T c(p) is called the Pareto optimal objective vector and the set of all the
Pareto optimal objective vectors T c(SE) is denominated the Pareto optimal front.

Therefore, solving a multi-objective problem like the one in (5) means finding the
whole non-dominated subset formed by all the efficient poses, whose corresponding T c =
(T cS, T cE) represents the optimal Pareto front (Deb et al., 2016). However, obtaining an
exact description of the efficient set (or Pareto front) is impossible for the problem at hand
since those sets are continuous and include an infinite number of points. Furthermore, the
computing cost may be high, which is an important point in the current context. As such,
in this work, we will focus on providing a finite set of points comprising a Pareto Front
Approximation (PFA) as a solution of (5) (see Fig. 3).

2.2. Single-Objective Approach

This subsection describes the methodology used in the literature that is characterized by
the use of single-objective software for the selection of candidate compounds. As will be
seen, regardless of the case, not only is a significant effort required to determine which
molecules to select for evaluation, but the selection is highly dependent on the available
information and expert knowledge, which can rule out promising results.
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Fig. 3. An example of an approximation of the Pareto front for two objective functions (T cS and T cE ). White
points are solutions dominated by the black points. All the black points belong to the Pareto front. None of the
black points can be considered better than each other.

The most widely used methodology in the literature consists of facing the query
molecule to the whole database by optimizing the shape similarity. This procedure, de-
noted as Mono-Shape throughout this paper, is illustrated through an example in Fig. 4(a),
where the Query molecule is DB09074, and the database consists of the rigid compounds
from the well-known FDA. Initially, the Query is compared to each compound TargetS
from the database to obtain their optimum position and corresponding shape similarity
value T cS . Afterward, a post-processing procedure starts, whose complexity and required
effort depends on the experience of the decision-maker. In this respect, there can be many
different workflows. As part of this work, three of them will be explained.

The first workflow (WF
Mono-Shape
1 ) is trivial and consists of the decision-maker only

being interested in similarity of shape. In such a case, the compounds are sorted (RkS) in
descending order by T cS , and the molecule with the greatest T cS is proposed as the best
prediction. In our example, this molecule would be DB11799 with T cS = 0.69.

However, if the decision-maker’s preferences include molecules with both high shape
and electrostatic similarities, which we named the second workflow (WF

Mono-Shape
2 ), the

post-processing is rather time-consuming. This workflow is widely used in the literature
and for more details on the specific procedures, several papers can be consulted (Chu and
Gochin, 2013; Kim et al., 2015; Kossmann et al., 2016; Woodring et al., 2017). After
sorting the molecules by the T cs value, it continues by selecting and evaluating the N

best compounds to measure the corresponding electrostatic similarity value T cEval
E . Notice

that the evaluation of the electrostatic similarity considers the pose obtained with the shape
similarity optimization. The decision-maker usually determines the number N of analysed
molecules and usually is not greater than 10% of the database sizes (Hevener et al., 2012;
Kaoud et al., 2012; Kossmann et al., 2016). Even so, the number of compounds to be
analysed might be considerably high, meaning the selection of promising solutions might
demand a lot of experience, knowledge, and time from the expert’s side. In our example,
for N = 100 and after a visual inspection of the aligned poses, the expert could select the
molecule DB13801 with a T cS = 0.48 and T cEval

E = 0.32 grounded on several criteria
(additional chemical substructural similarities and potential known pharmacophores for
the chosen drug target, among others).

Finally, another possible way to proceed might be to compute the average value be-
tween T cS and T cEval

E and propose the one with the greatest mean value (T cmeanSE) as
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the best prediction, which is called the third workflow (WF
Mono-Shape
3 ). It is intended to

alleviate a problem that frequently occurs in WF
Mono-Shape
2 . As part of this, compounds

can have a very high value in shape similarity but very low in electrostatic similarity.
Let us now itemize the obtained predictions when we optimize the electrostatic sim-

ilarity instead of the shape similarity, denoted as Mono-Elec. We can now consider the
expert has a single-objective tool available to maximize the electrostatic similarity of two
molecules. As previously, to illustrate the procedure, the same query and database are
selected (see Fig. 4(b)). Similarly, the query molecule faced the whole database by opti-
mizing the electrostatic similarity of each target, and a list of candidate molecules sorted
according to their T cE values is obtained. From this point on, the experts can make dif-
ferent decisions based on their knowledge, available information, or preferences. They
might consider that only a descriptor is of interest and hence select the molecule with the
greatest T cE , (WF Mono-Elec

1 ). In our example, this molecule would be DB00956 with a
T cE = 0.48. They might also require molecules with high similarities in both descrip-
tors. As previously considered, the experts might select the top N molecules and evaluate
the obtained pose with the shape similarity descriptor, to ultimately select the one with
the greatest evaluated value, (WF Mono-Elec

2 ). In our example, for N = 100 the expert
would propose DB14840 with T cE = 0.29 and T cEval

S = 0.47. Either that, or they might
compute the average value (WF Mono-Elec

3 ) and propose the molecule DB11656 as the best
prediction with T cmeanES = 0.39.

To summarize both methodologies, Mono-Shape and Mono-Elec, it has been shown
that the decision-maker needs a great deal of knowledge and experience to be able to
carry out many decisions (WF1, WF2, WF3), solve different single-objective optimization
problems and accomplish different analyses in search of good predictions. The key point
is that all of them may lead to different candidate molecules that could be of interest to
the experts. However, the larger the number of candidate molecules obtained, the bigger
the number of optimization problems to solve, and the greater the post-processing effort
required by the decision-makers, meaning it becomes unfeasible for a human expert to
apply their experience and chemical knowledge to such large scale contexts.

2.3. The Multi-Objective Approach: MultiPharm-DT

This section describes the methodology proposed in this work. For this purpose, it has
been divided into two parts. Firstly, we will detail the tool, called MultiPharm, which has
been developed to support this methodology. Secondly, MultiPharm-DT will be explained.
It is the compound selection strategy based on a decision tool that implements the expert’s
preferences.

2.3.1. MultiPharm, the Multi-Objective Optimization Tool
This subsection is devoted to explaining MultiPharm, a new tool designed to deal with
LBVS multi-objective optimization problems. As a result, it can obtain a set of predictions
without any post-processing from the expert’s side.

MultiPharm can solve any LBVS multi-objective optimization problem with up to m

objective functions that depend on the position of the molecules. In other words, it can deal
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Fig. 4. Selection process using single-objective software. Each compound in the database is optimized to maxi-
mize the value of a descriptor (WF1). Subsequently, the compounds are sorted and the best N are selected. This
subset is evaluated with the second descriptor (WF2). Finally, the average value of both descriptors (WF3) is
calculated. Depending on the interests of the decision-maker, the compounds can be selected from one workflow
or another.
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Fig. 5. MultiPharm tool structure. Two molecules are received as input parameters. After applying alignment
mechanisms to them and calculating the boundaries of the optimization parameters, a set of initial poses is
generated. After that, the position of the target molecule is modified by a multi-objective optimization algorithm
to optimize the shape and electrostatic similarities with the query molecule. The result obtained is a set of poses
with different similarity values in each descriptor.

with any objective function used to measure the similarity between two given molecules.
Its structure is defined in Fig. 5 and the procedures implemented are explained below.

Alignment and centering compounds. The first step consists of preprocessing the input
molecules. The processing performed on the compounds databases before applying VS
techniques to them is well known. Consequently, the position of the molecules is entirely
random and it influences the solutions. To avoid this, MultiPharm places the centroids of
the pair of molecules at the origin of coordinates. Subsequently, it aligns the compounds
using PCA such that the longest axis is aligned with the X-axis and the shortest axis of the
molecules with the Z-axis. In this way, the initial solutions generated have a good starting
point and do not depend on the position of the compounds in the database.

Parameter limit calculation. Since each pair of input compounds can have different
sizes, the corresponding limits of the decision parameters are dynamically computed for
each particular instance. θ is the rotation angle applied to the axis formed by the 3D points
in space c1 and c2. θ is always defined in the range [0, 2π] radians to allow the molecule
to rotate freely. In contrast, c1 and c2 depends on the target molecule. Specifically, the
box containing the target molecule is calculated, and within it, the two points are ran-
domly generated. Finally, � is calculated as the difference between the boxes containing
the query and the target molecules. This procedure avoids poses in which there is no over-
lap between the two compounds.

Initial solutions. Once the parameters are defined and limited, we generate the initial
solutions. We carry out an empirical study to obtain a good set of starting poses for this
problem, which consists of creating 300 solutions from the centred and aligned molecules’
initial position. After that, we divide them into 4 groups: three of them with 80 solutions
obtained when rotating the target molecule by different angles at each axis (X, Y,Z) and
one group of 60 poses randomly generated, to include variety and hence, avoid being
trapped in local optima.
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Fig. 6. An example where results obtained by comparing the query DB09074 and the target DB01283 are
shown. In yellow (resp. red) is the value obtained by optimizing the electrostatic potential similarity (resp. shape)
with single-objective software. It is observed that only two solutions (poses) are obtained. However, the multi-
objective tool provides a greater number of solutions in which a balance between both properties is sought.
In addition, single-objective solutions are shown. They are located at the extreme points of the Pareto front.

Multi-objective optimization algorithm. MultiPharm is a wrapper for a multi-objective
optimization algorithm. It means that it can include any of the multi-objective optimization
algorithms proposed in the literature, such as NSGA-II and SPEA-II (Zitzler et al., 2001;
Deb et al., 2002; Durillo and Nebro, 2011). However, for the problem at hand, and taking
previous experiences (Puertas-Martín et al., 2019, 2020) into account, we consider that
MOEA/D (Zhang and Li, 2007) is an excellent alternative to prove the efficacy of the
multi-objective methodology. As such, it is implemented as part of the MultiPharm tool.

MOEA/D stands for Multi-Objective Evolutionary Algorithm based on Decomposi-
tion. It transforms the multi-objective problem into several scalar optimization problems
using a decomposition method. All these subproblems are simultaneously solved consid-
ering a set of uniformly distributed weight vectors. With each generation, the population is
formed by the best solution found for each subproblem. This population evolves through-
out the optimization procedure taking the neighborhood information into account. We
refer the interested reader to Zhang and Li (2007), Li and Zhang (2008) for an in-depth
description of the optimization algorithm.

2.3.2. Output Result: a Pareto Front
MultiPharm obtains, as a result, a Pareto front (and of course, its corresponding efficient
set). Figure 6 shows the Pareto front obtained as a real example where the query molecule
was DB09074 and the target molecule was DB00504. Notice that each blue circle repre-
sents the value of T cS and T cE that can be obtained if the target molecule is at a particular
pose p. As can be seen, there is a pose where the T cS achieves its maximum value and
another one where it reaches the maximum T cE . As we illustrate in the figure, those solu-
tions coincide with the ones obtained when a single-objective problem is considered, i.e.
with the solutions of WF

Mono-Shape
1 and WF Mono-Elec

1 methodologies, respectively.
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Fig. 7. Selection process for the most similar compounds following the multi-objective methodology. The query
molecule is compared with the whole database, consequently obtaining a Pareto front for each target molecule.
Subsequently, all the fronts are mixed and it is left to the decision-maker’s discretion which compounds to select.
For this example, the compounds with non-dominated poses have been selected.

2.4. The Decision Tool: MultiPharm-DT

The execution of MultiPharm over a database will obtain a Pareto front for each pair
(query, target). It could be too much information for the expert, even considerably more
than the one managed with the single-objective perspective. In this work, we have also
implemented a decision tool, called MultiPharm-DT, to reduce the quantity of informa-
tion given to the expert. Although one could consider many different selection criteria,
we opted to implement a mechanism that obtains the Pareto front of the paretos as part of
MultiPharm-DT.

Figure 7 helps to illustrate this mechanism. As can be seen, MultiPharm-DT merges
all the particular Pareto fronts. At this point, the experts can compare them, see the sim-
ilarities of the compounds from the database with the query molecule, and extract infor-
mation in different ways. Apart from the union of the paretos, MultiPharm-DT applies a
decision mechanism and provides a filtered solution. The expert is able to select the most
appropriate compound for their preferences at a glance. That means they will select the
compound DB00956 if they are looking for a molecule with high electrostatic similarity.
If their preferences are inclined towards shape similarity, they will choose the compound
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Fig. 8. Only validated and rigid compounds are selected from the original database. The compounds are then
processed by removing salts, neutralizing the pronotation state and computing the partial charges.

DB11799. However, if they are interested in proposing compounds with a balance between
the two descriptors, they will choose from the compounds DB01012, DB01224, DB01259
or DB11656. Finally notice that for each compound, the multi-objective methodology of-
fers a set of possible poses, as mentioned in subsection The Multi-Objective Optimization
Problem, which could also be of great interest to the decision-maker.

3. Materials

3.1. Database

The database used in this work was obtained from DrugBank v5.0.1 (Wishart et al., 2018)
and mol2 files necessary for the VS calculations were set up by using AmberTools (Case
et al., 2017). This took the form of removing salts and neutralizing their protonation state,
computing partial charges by MMFF94 force field, adding hydrogen atoms and minimiz-
ing energies (default parameters) (Halgren, 1995) (see Fig. 8). From this database, we
selected those compounds that were rigid and validated by the FDA, a federal agency of
the United States Department of Health and Human Services. This subset was classified
by its number of atoms in groups. A compound (query) was selected randomly from each
group, as shown in Fig. 9. Consequently, 32 molecules were selected for analysis against
the rest of the database. And in order to compare software and methodologies on an equal
footing, hydrogen atoms were considered for shape and electrostatic similarity.

3.2. Hardware Setup

All the experiments in this work have been executed using 18x Bullx R424-E3, which
consists of 2 Intel Xeon E5 2650 (16 cores), 64 GB of RAM memory and 128 GB SSD
(http://hpca.ual.es/en/infraestructure).

http://hpca.ual.es/en/infraestructure
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Fig. 9. Molecules are grouped by their number of atoms. Queries molecules are randomly selected from each
group. This process has been performed on the whole database although in this figure only molecules containing
between 25 and 36 atoms are shown.

3.3. Software Configuration

To compare the two methodologies, we decided to use OptiPharm in its two versions
(Puertas-Martín et al., 2019; Puertas-Martín et al., 2020) and MultiPharm. OptiPharm is
a recent piece of software designed to work with the LBVS problem which implements
an evolutionary global optimization algorithm that can solve any optimization problem
related to the similarity of two compounds, a query and target molecules. It implements
procedures to adjust the latter to the query molecule, remaining unchanged throughout the
optimization process. OptiPharm has proved to be very competitive when maximizing the
shape similarity, as well as the electrostatic. For a more comprehensive explanation of the
software and the obtained results, reading the original works (Puertas-Martín et al., 2019;
Puertas-Martín et al., 2020) is recommended. It is also available in the free-to-use server
BRUSELAS (Banegas-Luna et al., 2019).

OptiPharm and MultiPharm can be parameterized in order to adapt them to different
problems and the preferences of the user. Focusing on the quality of the solutions, the con-
figuration established for OptiPharm is the same as published in other works. This will be
called OptiPharm Robust (OpR) and its input parameters are: N = 200,000 function eval-
uations, M = 5 starting poses, tmax = 5 iterations and lmax = 1 as the smallest possible
radius. Conversely, MultiPharm is set up with the default parameters (Zhang and Li, 2007;
Li and Zhang, 2008). But in order to compare both pieces of software on equal terms, the
number of MultiPharm evaluations is set to the same value as the OptiPharm configura-
tion, i.e. the number of evaluations is 200,000. In addition, the number of solutions that
will form a Pareto front is set at 300.

4. Results and Discussion

Before proceeding with the results, it is necessary to explain how we will compare both
methodologies, i.e. MultiPharm-DT versus Mono-Shape and Mono-Elec. Our goal is to
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Fig. 10. The predictions obtained by the single-objective and multi-objective software for the query DB09516.

Table 1
Summary of the results obtained for both single and multi-objective methods for the query compound

DB09516. The most similar compound is shown for Mono-Shape and Mono-Elec, and the list of compounds
with non-dominated MultiPharm-DT solutions (poses).

WF
Mono-Shape
1 WF Mono-Elec

1 MultiPharm-DT

Query Target T cS T cEval
E

Target T cEval
S

T cE Compounds

DB09516 DB11359 0.951 0.268 DB00504 0.310 0.692 DB00339, DB00504,
DB02362, DB11359,
DB14186

prove that we can obtain more predictions of interest with the multi-objective methodol-
ogy, but (i) without the participation of the expert, (ii) with less computational effort and
(iii) with more accuracy. To do so, the 32 query molecules are faced against the database.
The results are summarized in Table 2. To understand such a table, we will focus on a
particular row, more precisely, on the one corresponding to the query molecule DB09516.
The pertinent results appear in Fig. 10 and Table 1.

In the figure, we show the solution found by each workflow (WF
Mono-Shape
i and

WF Mono-Elec
i with i = 1, 2, 3), and also the filtered Pareto front obtained by MultiPharm-

DT. As expected, the predictions obtained by WF
Mono-Shape
1 and WF Mono-Elect

1 coincide
with the extreme points of the Pareto front. It shows that we are analysing the single-
objective methodology with a reliable algorithm, OptiPharm, and hence the comparison
with the multi-objective methodology is fair.

Nevertheless, the predictions achieved by MultiPharm-DT dominate the ones ob-
tained by WF

Mono-Shape
i and WF Mono-Elec

i with i = 2, 3. As can be seen, WF Mono-Elec
2 ,

WF Mono-Elec
3 and WF

Mono-Shape
3 offer the compound DB02362 as a solution, which is also

provided by MultiPharm-DT. However, MultiPharm-DT is more accurate and finds a pose
p that allows higher score values to be reached, as can be appreciated in the figure. Finally,
the workflow WF

Mono-Shape
2 obtains the DB14195 compound as the best prediction. This
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solution is not in competition with any of the molecules provided by MultiPharm-DT, i.e.
it is dominated.

The performance observed in the previous paragraph for the DB09516 query follows
the normal trend for all the experiments; the only solutions that can compete with the
ones obtained by MultiPharm-DT are those provided by WF

Mono-Shape
1 and WF Mono-Elec

1 .
For the remaining cases (WF

Mono-Shape
i and WF Mono-Elec

i with i = 2, 3), MultiPharm-DT
always offers a better alternative that dominates them. All of this reveals the advantages
of considering a multi-objective methodology when we require compounds that maxi-
mize several descriptors simultaneously. Notice that during the optimization procedure,
MultiPharm-DT evolves the initial poses towards new ones considering the values of T cS

and T cE simultaneously. However, the single-objective methodology only optimizes the
pose taking a single descriptor into account. Accordingly, even in those cases where both
methods offer the same compound as part of the solution, MultiPharm-DT always reaches
better scoring function values. For this reason, in the following results and for the sake
of simplicity, we will only show WF

Mono-Shape
1 and WF Mono-Elec

1 . Nevertheless, the in-
terested reader may consult the Supplementary Material section, which provides all the
information about the predictions obtained for all the workflows.

The information depicted in Fig. 10 is also summarized in Table 1. In such a table, we
only include the predictions provided by WF

Mono-Shape
1 , WF Mono-Elec

1 and MultiPharm-
DT, for the reasons previously argued. Furthermore, for the sake of completeness, the
T cS and T cEval

E (resp. T cE and T cEval
S ) for WF

Mono-Shape
1 (resp. WF Mono-Elec

1 ) are also
mentioned. Notice that we do not provide any objective function value for MultiPharm-
DT because many are available depending on the selected pose. Additionally, for each
predicted target, a pose is obtained and represented using the VIDA (OpenEye Scientific
Software, 2018) program (see Fig. 11).

Once the specific case is explained, we provide some statistics for the complete set
of experiments. All the results appears in Table 2, which follows the same structure and
information as Table 1.

As can be seen in the table, for 23 out of 32 cases, MultiPharm-DT obtains a set
of predictions that include those obtained by WF

Mono-Shape
1 and/or WF Mono-Elec

1 . We re-
mark in bold the coincidences in the predictions. For 14 out of those 23, it provides many
more alternative compounds as part of the solution. Finally, for the remaining 9 queries,
MultiPharm-DT obtains a set of predictions that only include one of the two predictions
provided by WF

Mono-Shape
1 or WF Mono-Elec

1 . On average, MultiPharm-DT obtains 4.5 dif-
ferent predictions, which is a valuable number for a decision-maker.

It is important to remember that given a particular query, MultiPharm-DT generates
a Pareto front. After that, the decision-makers have different poses to choose the one that
best fits their interest, i.e. the one with a better balance between the scoring functions.
On the contrary, the single-objective workflows only provide the pose that maximizes one
descriptor, without considering the other one.
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Fig. 11. The predicted compounds obtained for query DB09516 sorted by T cS in ascending order. All poses
are found by the multi-objective tool. Note that subfigures (a) and (e) are also found with the single-objective
methods Mono-Elec and Mono-Shape, respectively.

4.1. Comparison of Results for WF1 and MultiPharm-DT

In this subsection, an exhaustive analysis of the results from Table 2 is performed, showing
the values of T cS and T cE that could not be displayed in the table due to the large num-
ber of poses offered by MultiPharm-DT. Thus, 3 groups can be distinguished. In the first
group there are 9 queries characterized by a high similarity value in both descriptors. In
addition, MultiPharm-DT finds the same compounds as WF

Mono-Shape
1 and WF Mono-Elec

1 .
Two examples are the DB00536 and DB01242 queries. The most similar target for the first
one has similarity values of T cS = 0.967 and T cE = 0.800 while regarding the target for
the second query, the values are T cS = 0.987 and T cE = 0.919 (Fig. 12).
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Table 2
Results obtained for 32 query compounds from the rigid and validated database.

WF
Mono-Shape
1 WF Mono-Elec

1 MultiPharm-DT

Query Target T cS T cEval
E

Target T cEval
S

T cE Compounds

DB00209 DB00427 0.726 −0.043 DB09076 0.816 0.385 DB09076, DB00990,
DB08942, DB00894,
DB00639, DB11699,
DB00427, DB05812

DB00259 DB09269 0.891 −0.084 DB14186 0.606 0.694 DB02362
DB00354 DB04825 0.641 0.183 DB05246 0.437 0.343 DB05246, DB04825
DB00359 DB00323 0.785 0.015 DB09280 0.557 0.277 DB00259, DB08981,

DB04657, DB00323,
DB04948, DB11699

DB00481 DB06249 0.827 0.141 DB11153 0.357 0.055 DB06249, DB00458,
DB00674, DB05239,
DB04825

DB00536 DB03904 0.967 0.508 DB03904 0.800 0.807 DB03904
DB00696 DB06077 0.633 0.113 DB08903 0.345 0.409 DB08903, DB06077,

DB00831, DB00354
DB00758 DB00205 0.748 −0.025 DB00754 0.512 0.353 DB06802, DB00754,

DB00674, DB01069,
DB00564, DB13225,
DB00794, DB01033,
DB00420, DB14763

DB00956 DB00318 0.966 0.692 DB00318 0.823 0.827 DB00318
DB00998 DB13284 0.808 0.287 DB09269 0.521 0.421 DB09269, DB01069,

DB13284, DB04840,
DB11560, DB13501

DB01192 DB00956 0.911 0.504 DB09214 0.581 0.437 DB00956, DB09214
DB01242 DB00458 0.987 0.913 DB00458 0.919 0.985 DB00458
DB01273 DB00909 0.844 0.087 DB00184 0.556 0.311 DB00909, DB00184,

DB11823, DB11156,
DB14763

DB01336 DB00696 0.550 −0.008 DB09321 0.805 0.045 DB09131, DB09076,
DB00526, DB09321,
DB00696, DB00209,
DB15328

DB01419 DB06816 0.624 0.112 DB06767 0.390 0.072 DB01579, DB06816,
DB14845, DB06767,
DB00656, DB14506

DB01608 DB00477 0.883 0.600 DB00477 0.631 0.830 DB00477
DB04743 DB00427 0.789 −0.014 DB13801 0.615 0.392 DB08981, DB01007,

DB06147, DB06413,
DB00967, DB13801,
DB09214

DB06637 DB00544 0.961 −0.038 DB11359 0.785 0.829 DB13100, DB00763,
DB00544, DB11359,
DB00936

db06799 DB00592 0.848 0.066 DB01367 0.232 0.472 DB01367, DB00431,
DB00592

(continued on next page)
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Table 2
(continued)

WF
Mono-Shape
1 WF Mono-Elec

1 MultiPharm-DT

Query Target T cS T cEval
E

Target T cEval
S

T cE Compounds

DB09074 DB11799 0.688 −0.022 DB00956 0.476 0.274 DB11656, DB01259,
DB11799, DB01224,
DB00956, DB01012

DB09241 DB14200 0.768 0.013 DB14180 0.654 0.073 DB09473, DB11183,
DB11156, DB14200,
DB00674, DB08797,
DB01213, DB09513,
DB14530, DB11221,
DB14180, DB01273,
DB11150, DB00805

DB09280 DB00216 0.640 −0.020 DB09104 0.640 0.067 DB00216, DB11656,
DB06077, DB09104,
DB00469, DB00956,
DB01012, DB00805

DB09472 DB14499 0.895 0.978 DB14499 0.980 0.882 DB14499
DB09516 DB11359 0.951 0.268 DB00504 0.682 0.299 DB00504, DB14186,

DB00339, DB02362,
DB11359

DB11151 DB11153 1.000 0.991 DB11153 0.989 0.678 DB14506
DB11336 DB00261 0.812 −0.004 DB00173 0.645 0.549 DB14186, DB01399,

DB04657, DB13284,
DB04840, DB00173,
DB11156

DB11363 DB11799 0.647 −0.174 DB06767 0.479 0.075 DB14723, DB01259,
DB09280, DB06816,
DB06767, DB09104,
DB04868, DB13801,
DB00469

DB11496 DB08797 0.954 −0.129 DB00356 0.787 0.947 DB00356
DB12404 DB00967 0.694 0.217 DB01283 0.635 0.389 DB11656, DB01283,

DB01069, DB00967
DB14702 DB09418 0.872 0.876 DB09418 0.948 0.670 DB09418
DB14723 DB11799 0.650 0.128 DB00805 0.493 0.290 DB00998, DB11799,

DB01283, DB00605,
DB00469, DB00805

DB14763 DB00205 0.828 0.334 DB00205 0.558 0.714 DB00205

The second group of compounds consists of 14 queries. It is characterized by
MultiPharm finding more compounds in addition to those from WF

Mono-Shape
1 and

WF Mono-Elec
1 . Figure 13 shows an example of 6 different queries. These queries are of

great interest and are where the potential of MultiPharm-DT can truly be seen. Normally,
the compounds found by WF

Mono-Shape
1 and WF Mono-Elec

1 are very good in terms of the
descriptor they optimize but not the other. However, with MultiPharm, in addition to get-
ting these two compounds, it is possible to find a set where the balance of both descriptors
is much better and by giving a slightly lower value to one descriptor, the similarity of the
other improves considerably.



74 S. Puertas-Martín et al.

Fig. 12. Results where WF1 and MultiPharm-DT return the same compounds.

Finally, the third group consists of the remaining 9 queries, where MultiPharm
finds several molecules, but among them, only one belongs either to WF

Mono-Shape
1 or

WF Mono-Elec
1 . Four of these cases are represented in Fig. 14 and in fact, in Fig. 14(c) it

can be seen that among the MultiPharm compounds, the DB13801 molecule, and not the
DB00427 molecule, is found by WF Mono-Elec

1 .
In view of all the above results, it can be seen that this new methodology with

MultiPharm-DT is able to widen the knowledge about the compounds to be selected since
different poses with similarity values in both descriptors are known for each compound.
Indeed, it improves the quality of the decisions and allows good compounds to be se-
lected without the knowledge or action of a decision-maker, which greatly facilitates the
appropriate choice of compounds.

Finally, as a general comment, it is important to mention that MultiPharm-DT provides
more valuable predictions than the single-objective workflows, in terms of quantity and
quality. Interestingly, this is in a single run without the expert’s participation. Furthermore,
without considering the expert’s effort, obtaining the solutions for the single-objective
methodology will cost 200,000 evaluations per workflow (a total of 400,000 evaluations)
while MultiPharm-DT only requires 200,000. It is clear to see then that the advantages of
using MultiPharm-DT, in terms of computing time, are sizeable.

5. Conclusions

In this work, we propose a new methodology for solving LBVS problems that require the
optimization of several descriptors simultaneously. It is composed of a new tool, named
MultiPharm, and a decision mechanism, named MultiPharm-DT. As a result, a set of pre-
dictions is obtained that can be directly offered to the decision-makers without any par-
ticipation on their side.

This new method has been compared with the one currently being followed in the
literature, which entails solving an optimization problem that includes a single descriptor
and analysing the obtained solutions taking a second descriptor into account. This system
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Fig. 13. Results where MultiPharm-DT get more compounds than with WF1 methodology.

requires a concerted effort on the part of the decision-maker to select the best compounds
because they have to relate both descriptors via post-processing that becomes more costly
as the number of compounds to be processed increases.

To test this new approach, a set of rigid, FDA-approved compounds has been used.
In addition, shape and electrostatic similarities have been used although it is possible to
use MultiPharm with a larger number of descriptors. As the results have shown, multi-
objective solutions provide more information on compound similarity and a larger num-
ber of quality candidate compounds without performing any post-processing. In terms of
computational time, multi-objective optimization is much faster than trying to replicate
the same behaviour with single-objective.
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Fig. 14. Results where WF1 and MultiPharm-DT return various different compounds.

In the future, new algorithms will be included in this novel tool so that the expert can
select the most suitable algorithm for their problem. Following this line, new objective
functions will be added to improve decision-making knowledge. Finally, it would be wise
to employ the flexibility of the compounds so that they are not treated as rigid compounds,
regardless of their nature.

6. Supplementary Material

Figures
The development of this work has generated a large number of results. Consequently,

all the results obtained can be found in the compressed attachment, classified in 4 folders:

• All. Pareto fronts obtained by MultiPharm for all compounds.
• Clean. MultiPharm-DT solutions.
• Comparative. The MultiPharm-DT compounds and those obtained by WF1 are shown.
• AllWorkflows. The MultiPharm-DT compounds and those obtained by WF1, WF2 and

WF3 are shown.

Software

• Project name: MultiPharm.
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• Project source code repository: https://gitlab.hpca.ual.es/savins/multipharm.
• Operating system(s): Windows, Linux and MacOS.
• Programming language: Java.
• License: Mozilla Public License 2.0.
• Any restrictions to use by non-academics: licence needed, contact with the authors.

Databases
The databases belong to their authors and access to them depends on any applicable

restrictions.

Acknowledgements

This research was partially supported by the supercomputing infrastructure at Poz-
nan Supercomputing Centre, the e-infrastructure program of the Research Council of
Norway, the supercomputer centre at UiT – the Arctic University of Norway and by
the computing facilities at the Extremadura Research Centre for Advanced Technolo-
gies (CETA–CIEMAT), funded by the European Regional Development Fund (ERDF).
CETA–CIEMAT belongs to CIEMAT and the Government of Spain. The authors also
acknowledge the computing resources and technical support provided by the Plataforma
Andaluza de Bioinformática at the University of Málaga. Powered@NLHPC research was
partially supported by the supercomputing infrastructure at the NLHPC (ECM-02).

Funding

This work was supported by the Spanish Ministry of Economy and Competitiveness
through the CTQ2017-87974-R, RTI2018-095993-B-I00 and EQC2019-006418-P grants;
by the Junta de Andalucía through the grant Proyectos de excelencia (P18-RT-1193), by
the Programa Regional de Fomento de la Investigación (Plan de Actuación 2018, Región
de Murcia, Spain) through the: “Ayudas a la realización de proyectos para el desarrollo
de investigación científica y técnica por grupos competitivos (20988/PI/18)” grant; by the
University of Almeria throught the grant: “Ayudas a proyectos de investigación I+D+I en
el marco del Programa Operativo FEDER 2014-20” (UAL18-TIC-A020-B).

References

Baize, S., Pannetier, D., Oestereich, L., Rieger, T., Koivogui, L., Magassouba, N.F., Soropogui, B., Sow, M.S.,
Këita, S., De Clerck, H., Tiffany, A., Dominguez, G., Loua, M., Traoré, A., Kolié, M., Malano, E.R., Heleze,
E., Bocquin, A., Mély, S., Raoul, H., Caro, V., Cadar, D., Gabriel, M., Pahlmann, M., Tappe, D., Schmidt-
Chanasit, J., Impouma, B., Diallo, A.K., Formenty, P., Van Herp, M., Günther, S. (2014). Emergence of Zaire
Ebola virus disease in Guinea. New England Journal of Medicine, 371(15), 1418–1425.

Banegas-Luna, A.J., Cerón-Carrasco, J.P., Puertas-Martín, S., Pérez-Sánchez, H. (2019). BRUSELAS: HPC
generic and customizable software architecture for 3D ligand-based virtual screening of large molecular
databases. Journal of Chemical Information and Modeling, 59(6), 2805–2817.

https://gitlab.hpca.ual.es/savins/multipharm


78 S. Puertas-Martín et al.

Boström, J., Grant, J.A., Fjellström, O., Thelin, A., Gustafsson, D. (2013). Potent fibrinolysis inhibitor discovered
by shape and electrostatic complementarity to the drug tranexamic acid. Journal of Medicinal Chemistry,
56(8), 3273–3280.

Böttcher, C.J.F., Bordewijk, P. (1978). Theory of Electric Polarization. Elsevier Science Limited, Amsterdam.
Brooijmans, N., Kuntz, I.D. (2003). Molecular recognition and docking algorithms. Annual Review of Biophysics

and Biomolecular Structure, 32(1), 335–373.
Case, D.A., Cerutti, D.S., Cheatham, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W.,

Greene, D., Homeyer, N., Izadi, S., Kovalenko, A., Lee, T.S., LeGrand, S., Li, P., Lin, C., Liu, J., Luchko, T.,
Luo, R., Mermelstein, D., Merz, K.M., Monard, G., Nguyen, H., Omelyan, I., Onufriev, A., Pan, F., Qi, R.,
Roe, D.R., Roitberg, A., Sagui, C., Simmerling, C.L., Botello-Smith, W.M., Swails, J., Walker, R.C., Wang,
J., Wolf, R.M., Wu, X., Xiao, L., York, D.M., Kollman, P.A. (2017). AMBER. University of California, San
Francisco.

Chu, S., Gochin, M. (2013). Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR
screening and similarity searching. Bioorganic & Medicinal Chemistry Letters, 23(18), 5114–5118.

Coello, C.A.C., Lamont, G.B. (2004). Applications of Multi-Objective Evolutionary Algorithms. World Scien-
tific, Singapore.

Cui, L., Wang, Y., Liu, Z., Chen, H., Wang, H., Zhou, X., Xu, J. (2015). Discovering new acetylcholinesterase
inhibitors by mining the Buzhongyiqi decoction recipe data. Journal of Chemical Information and Modeling,
55(11), 2455–2463.

Cui, Y., Geng, Z., Zhu, Q., Han, Y. (2017). Multi-objective optimization methods and application in energy
saving. Energy, 125, 681–704.

Deb, K., Sindhya, K., Hakanen, J. (2016). Multi-objective optimization. In: Decision Sciences. CRC Press,
United States, pp. 145–184.

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

Durillo, J.J., Nebro, A.J. (2011). jMetal: a java framework for multi-objective optimization. Advances in Engi-
neering Software, 42, 760–771.

Ferrández, M.R., Puertas-Martín, S., Redondo, J.L., Ivorra, B., Ramos, A.M., Ortigosa, P.M. (2019). High-
performance computing for the optimization of high-pressure thermal treatments in food industry. The Jour-
nal of Supercomputing, 75(3), 1187–1202.

Grant, J.A., Pickup, B.T. (1995). A Gaussian description of molecular shape. The Journal of Physical Chemistry,
99(11), 3503–3510.

Grant, J.A., Gallardo, M.A., Pickup, B.T. (1996). A fast method of molecular shape comparison: a simple
application of a gaussian description of molecular shape. Journal of Computational Chemistry, 17(14),
1653–1666.

Halgren, T.A. (1995). Potential energy functions. Current Opinion in Structural Biology, 5(2), 205–210.
Hamza, A., Wei, N.-N., Zhan, C.-G. (2012). Ligand-based virtual screening approach using a new scoring func-

tion. Journal of Chemical Information and Modeling, 52(4), 963–974.
Hawkins, P.C.D.D., Skillman, A.G., Nicholls, A. (2007). Comparison of shape-matching and docking as virtual

screening tools. Journal of Medicinal Chemistry, 50(1), 74–82.
Hevener, K.E., Mehboob, S., Su, P.-C., Truong, K., Boci, T., Deng, J., Ghassemi, M., Cook, J.L., Johnson, M.E.

(2012). Discovery of a novel and potent class of F. Tularensis enoyl-reductase (FabI) inhibitors by molecular
shape and electrostatic matching. Journal of Medicinal Chemistry, 55(1), 268–279.

Hughes, J.P., Rees, S., Kalindjian, S.B., Philpott, K.L. (2011). Principles of early drug discovery. British Journal
of Pharmacology, 162(6), 1239–1249.

Kaoud, T.S., Yan, C., Mitra, S., Tseng, C.-C., Jose, J., Taliaferro, J.M., Tuohetahuntila, M., Devkota, A., Sam-
mons, R., Park, J., Park, H., Shi, Y., Hong, J., Ren, P., Dalby, K.N. (2012). From in silico discovery to intra-
cellular activity: targeting JNK-protein interactions with small molecules. ACS Medicinal Chemistry Letters,
3(9), 721–725.

Kar, S., Roy, K. (2013). How far can virtual screening take us in drug discovery? Expert Opinion on Drug
Discovery, 8(3), 245–261.

Karelson, M. (2000). Molecular descriptors in QSAR/QSPR. Wiley-Interscience, New York.
Kim, E.-S.S., Cho, H., Lim, C., Lee, J.-Y.Y., Lee, D.-I.I., Kim, S., Moon, A., Kim, E.-S.S., Cho, H., Lim, C.,

Lee, J.-Y.Y., Lee, D.-I.I., Moon, A. (2015). A natural piper-amide-like compound NED-135 exhibits a potent
inhibitory effect on the invasive breast cancer cells. Chemico-Biological Interactions, 237, 58–65.



MultiPharm-DT: A Multi-Objective Decision Tool for LBVS Problems 79

Kim, Y.C., Dema, B., Reyes-Sandoval, A. (2020). COVID-19 vaccines: breaking record times to first-in-human
trials. npj Vaccines, 5(1), 34.

Kossmann, B.R., Abdelmalak, M., Lopez, S., Tender, G., Yan, C., Pommier, Y., Marchand, C., Ivanov, I. (2016).
Discovery of selective inhibitors of Tyrosyl-DNA phosphodiesterase 2 by targeting the enzyme DNA-binding
cleft. Bioorganic and Medicinal Chemistry Letters, 26(14), 3232–3236.

Kumar, A., Zhang, K.Y.J. (2016). Application of shape similarity in pose selection and virtual screening in
CSARdock2014 exercise. Journal of Chemical Information and Modeling, 56(6), 965–973.

Leelananda, S.P., Lindert, S. (2016). Computational methods in drug discovery. Beilstein Journal of Organic
Chemistry, 12, 2694–2718.

Li, H., Zhang, Q. (2008). Multiobjective optimization problems with complicated Pareto sets, MOEA/D and
NSGA-II. IEEE Transactions on Evolutionary Computation, 13(2), 284–302.

Lo, Y.-C., Senese, S., Damoiseaux, R., Torres, J.Z. (2016). 3D chemical similarity networks for structure-based
target prediction and scaffold hopping. ACS Chemical Biology, 11(8), 2244–2253.

López-Ramos, M., Perruccio, F. (2010). HPPD: ligand- and target-based virtual screening on a herbicide target.
Journal of Chemical Information and Modeling, 50(5), 801–814.

Lu, I.-L., Huang, C.-F., Peng, Y.-H., Lin, Y.-T., Hsieh, H.-P., Chen, C.-T., Lien, T.-W., Lee, H.-J., Mahindroo,
N., Prakash, E., et al.(2006). Structure-based drug design of a novel family of PPARgamma partial ago-
nists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. Journal of Medicinal
Chemistry, 49(9), 2703–2712.

Maccari, G., Jaeger, T., Moraca, F., Biava, M., Flohé, L., Botta, M. (2011). A fast virtual screening approach
to identify structurally diverse inhibitors of trypanothione reductase. Bioorganic and Medicinal Chemistry
Letters, 21(18), 5255–5258.

Marler, R.T., Arora, J.S. (2004). Survey of multi-objective optimization methods for engineering. Structural and
Multidisciplinary Optimization, 26(6), 369–395.

Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J. (2020). COVID-19: consider
cytokine storm syndromes and immunosuppression. The Lancet, 395(10229), 1033–1034.

Morris, G.M., Lim-Wilby, M. (2008). Molecular docking. In: Kukol, A. (Ed.), Molecular Modeling of Proteins,
Vol. 443. Humana Press, Clifton, N.J., pp. 365–382.

Nicolaou, C.A., Brown, N. (2013). Multi-objective optimization methods in drug design. Drug Discovery Today:
Technologies, 10(3), 427–435.

OpenEye Scientific Software (2018). VIDA 4.4.0.4. Santa Fe, NM. https://www.eyesopen.com.
OpenEye Scientific Software (2020). EON. Santa Fe, NM. https://www.eyesopen.com.
OpenEye Scientific Software (2021). ROCS. Santa Fe, NM. https://www.eyesopen.com.
Pagadala, N.S., Syed, K., Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews,

9(2), 91–102.
Pardalos, P.M., Žilinskas, A., Žilinskas, J. (2017). Non-Convex Multi-Objective Optimization. Springer Interna-

tional Publishing, New York.
Petersen, L.R., Jamieson, D.J., Powers, A.M., Honein, M.A. (2016). Zika virus. New England Journal of

Medicine, 374(16), 1552–1563.
Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M., Pérez-Sánchez, H. (2019). OptiPharm: an evolutionary algo-

rithm to compare shape similarity. Scientific Reports, 9(1), 1398.
Puertas-Martín, S., Redondo, J.L., Pérez-Sánchez, H., Ortigosa, P.M. (2020). Optimizing electrostatic similarity

for virtual screening: a new methodology. Informatica, 31(4), 821–839.
Real, R., Vargas, J.M. (1996). The probabilistic basis of Jaccard’s index of similarity. Systematic Biology, 45(3),

380–385.
Stark, J.L., Powers, R. (2011). Application of NMR and molecular docking in structure-based drug discovery.

NMR of Proteins and Small Biomolecules, 1–34.
Tanrikulu, Y., Krüger, B., Proschak, E. (2013). The holistic integration of virtual screening in drug discovery.

Drug Discovery Today, 18(7-8), 358–364.
Tapia, M.G.C., Coello, C.A.C. (2007). Applications of multi-objective evolutionary algorithms in economics and

finance: a survey. In: 2007 IEEE Congress on Evolutionary Computation. IEEE, Singapore, pp. 532–539.
Tollman, P. (2001). A Revolution in R & D: How Genomics and Genetics are Transforming the Biopharmaceu-

tical Industry. Boston Consulting Group, Boston, US.
Tresadern, G., Bemporad, D., Howe, T. (2009). A comparison of ligand based virtual screening methods and

application to corticotropin releasing factor 1 receptor. Journal of Molecular Graphics and Modelling, 27(8),
860–870.

https://www.eyesopen.com
https://www.eyesopen.com
https://www.eyesopen.com


80 S. Puertas-Martín et al.

Wang, Z., Lu, Y., Seibel, W., Miller, D.D., Li, W. (2009). Identifying novel molecular structures for ad-
vanced melanoma by ligand-based virtual screening. Journal of Chemical Information and Modeling, 49(6),
1420–1427.

Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda,
Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R.,
Le, D., Pon, A., Knox, C., Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for
2018. Nucleic Acids Research, 46(D1), 1074–1082.

Woodring, J.L., Bachovchin, K.A., Brady, K.G., Gallerstein, M.F., Erath, J., Tanghe, S., Leed, S.E., Rodriguez,
A., Mensa-Wilmot, K., Sciotti, R.J., Pollastri, M.P. (2017). Optimization of physicochemical properties for 4-
anilinoquinazoline inhibitors of trypanosome proliferation. European Journal of Medicinal Chemistry, 141,
446–459.

Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J. (2013). Enhancing molecular shape comparison by weighted
Gaussian functions. Journal of Chemical Information and Modeling, 53(8), 1967–1978.

Zhang, Q., Li, H. (2007). MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE
Transactions on Evolutionary Computation, 11(6), 712–731.

Zitzler, E., Laumanns, M., Thiele, L. (2001). SPEA2: improving the strength pareto evolutionary algorithm. Evo-
lutionary Methods for Design Optimization and Control with Applications to Industrial Problems, 95–100.

S. Puertas-Martín is a PhD at the Informatics Department at the University of Almería,
Spain. His publications and more information about him can be found on https://www.
scopus.com/authid/detail.uri?authorId=57201417677. His research interests are drug dis-
covery, global optimization and high performance computing.

J.L. Redondo is a professor at the Informatics Department at the University of Almería,
Spain. She obtained her PhD from the University of Almería. Her publications can
be found on https://www.scopus.com/authid/detail.uri?authorId=35206862500. Her re-
search interests include high performance computing, global optimization and applica-
tions.

M.R. Ferrández is a PhD at the Informatics Department at the University of Almería,
Spain. She obtained her PhD from the University of Almería. Her publications can
be found on https://www.scopus.com/authid/detail.uri?authorId=57201429990. Her re-
search interests include high-performance computing, global optimization, food treatment
and disease analysis.

P.M. Ortigosa is a full professor at the Informatics Department at the University of
Almería, Spain. She obtained her PhD from the University of Málaga. Her publications
can be found on https://www.scopus.com/authid/detail.uri?authorId=6602759441. Her
research interests include high performance computing, global optimization and appli-
cations.

H. Pérez-Sánchez is the principal investigator of the Structural Bioinformatics and High
Performance Computing (BIO-HPC) research group at the Universidad Católica de Mur-
cia (UCAM), Spain. He obtained his PhD from the University of Murcia. His publica-
tions can be found on https://www.scopus.com/authid/detail.uri?authorId=12767397700.
His research interests include high performance computing, structural bioinformatics and
physical chemistry.

https://www.scopus.com/authid/detail.uri?authorId=57201417677
https://www.scopus.com/authid/detail.uri?authorId=57201417677
https://www.scopus.com/authid/detail.uri?authorId=35206862500
https://www.scopus.com/authid/detail.uri?authorId=57201429990
https://www.scopus.com/authid/detail.uri?authorId=6602759441
https://www.scopus.com/authid/detail.uri?authorId=12767397700

	Introduction
	Methods
	The Multi-Objective Optimization Problem
	Single-Objective Approach
	The Multi-Objective Approach: MultiPharm-DT
	MultiPharm, the Multi-Objective Optimization Tool
	Output Result: a Pareto Front

	The Decision Tool: MultiPharm-DT

	Materials
	Database
	Hardware Setup
	Software Configuration

	Results and Discussion
	Comparison of Results for WF1 and MultiPharm-DT

	Conclusions
	Supplementary Material

