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Abstract. In order to avoid working in a constrained hazardous environment, manual spray paint-
ing operation is gradually being replaced by automated robotic systems in many manufacturing
industries. Application of spray painting robots ensures defect-free painting of dissimilar compo-
nents with higher repeatability, flexibility, productivity, reduced cycle time and minimum wastage
of paint. Due to availability of a large number of viable options in the market, selection of a spray
painting robot suitable for a given application poses a great problem. Thus, this paper proposes
the integrated application of step-wise weight assessment ratio analysis (SWARA) and combined
compromise solution (CoCoSo) methods to identify the most apposite spray painting robot for an
automobile industry based on seven evaluation criteria (payload, mass, speed, repeatability, reach,
cost and power consumption). The SWARA method identifies cost as the most significant criterion
based on a set preference order, whereas, Fanuc P-350iA/45 is selected as the best spray paint-
ing robot by CoCoSo method. The derived ranking results are also contrasted with other popular
multi-criteria decision making (MCDM) techniques (TOPSIS, VIKOR, COPRAS, PROMETHEE
and MOORA) and subjective criteria weighting methods (AHP, PIPRECIA, BWM and FUCOM).
High degrees of similarity in the ranking patterns between the adopted approach and other MCDM
techniques prove its effectiveness in solving complex industrial robot selection problems. This inte-
grated approach is proved to be quite robust being almost unaffected by the changing values of the
corresponding tuning parameter in low-dimensional MCDM problems.
Key words: robot, spray painting, MCDM, SWARA, CoCoSo.
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1. Introduction

Spray painting is a technique where a special device is utilized to spray a coating, mainly
paint, ink, varnish etc. through the air onto a finished surface. During this operation, com-
pressed gas, usually air is employed to atomize and direct the paint particles towards the
surface. It has now become an indispensable process in many industries, like automobile,
fabrication, pipe, cookware, aerospace and defense (Haugan, 1974). However, the indus-
trial paint mainly in the form of volatile organic compounds is extremely hazardous to hu-
man body after atomization. Airtight spraying room and poor ventilation conditions also
make the working environment of manual spray painters extremely deleterious. Manual
spray painting also causes non-uniform and imperfect coating, wastage of paint, high cy-
cle time, low flexibility, poor repeatability, difficulty in painting complicated inaccessible
part features, etc.

With rapid industrialization and rise in automation, painting robots have gradually
evolved out as an effective substitute to manual spray painting operation ensuring reduced
human effort with better working environment, increased consistency, higher productiv-
ity, increased flexibility, lower power consumption and minimum paint wastage (Muzan
et al., 2012). The paramount outcome of Industry 4.0 is to select and deploy an intelligent
spray painting robot combining massive data, cloud computing, solid safety, intelligent
sensors, the Internet of Things (IoT), and other significant technologically advanced fea-
tures. Digitalization and closed-loop solutions provided by Industry 4.0 would enable the
spray painting robots to optimize their painting operations while minimizing the paint
used and energy consumed. Furthermore, deploying a suitable spray painting robot in the
era of Industry 4.0 would eliminate paint shear, poor finishing quality, recurrent flushing,
undesirable downtime, etc. Consequently, the use of digitalization technologies would aid
in careful monitoring of paint quality, predicting machine failure and paint lines, resulting
in improving performance and efficiency of spray painting robots. Usually, paint robots
are of two types, i.e. hydraulic and electronic. Hydraulic robots are robust in construc-
tion, offer high load capacity and provide simple solutions for fulfilling explosion-proof
standards as power cables to electronic servo motors are eliminated. They are also low
cost alternatives to their electronic counterparts. With respect to speed, repeatability and
flexibility, electronic paint robots are far superior to hydraulic robots. These electronic
robots are highly accurate, and can deliver consistent, seemingly identical results with re-
spect to thickness and uniform coatings. While eliminating the risk of human error, when
paired with other automatic painting equipment they can maximize the efficiency of spray
painting operation. Although their initial cost is quite high, they require less mechanical
maintenance due to their modular design. With the help of suitable software, algorithms,
sensors and cameras, they can recognize which parts of the products to paint using right
amount of paint for a flawless finish. However, both these paint robot types require proper
preventive maintenance and intervention of technically knowledgeable support staff for
their operations and selection of some of the specific operational parameters. For spray
painting operation, a five or six-axis (degree of freedom) robot capable of complex arm
and wrist motions is usually preferred. Among these axes, three are for the base motions
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and the remaining are for applicator orientation (Gujela et al., 2015). Degree of freedom is
the number of independent parameters needed to completely specify the configuration of
a mechanism. The number of axes configured in a robot is directly related to its degree of
freedom. For a simple straight-forward operation, like material handling or pick-n-place
task, a simple four axis robot is sufficient. However, if its application is constrained within
a small confined space with its arm requiring a lot of twisting and turning, a six axis robot
would be a good choice. The number of axes thus depends on its application. More axes
provide better flexibility, provided that the cost permits. Hence, while considering and
solving an industrial robot selection problem, the most important decision is to evaluate
what kind of applications and what kind of processes the robot is used for.

In order to fulfill the requirements of present-day manufacturing industries, selection
of spray painting robots has now become much varied due to availability of plenty of al-
ternatives with varying configurations and complexities. Sometimes, the end users are so
fascinated with a particular robot that they do not examine whether the required parts can
be painted more quickly and inexpensively with a less costly alternative. Many a time,
a robot is selected for a painting operation without sufficient analysis of the application
requirements. Thus, while selecting a robot for a given painting task, due consideration
needs to be provided on its various specifications and capabilities, like space requirement,
ability to paint dissimilar parts at high production rate, speed, purchase cost including
additional expenses of integrating it into the paint system, cycle time, simplicity of pro-
gramming, repeatability, work envelop, payload, mechanical weight, etc. (Khouja and Of-
fodile, 1994). Thus, it can be propounded that identification of the most appropriate robot
from a pool of available alternatives with respect to a set of conflicting evaluation criteria
resembles a typical multi-criteria decision making (MCDM) problem (Tashtoush et al.,
2015; Bader and Rahimifard, 2020). In this paper, a spray painting robot selection problem
for an automobile industry is solved while integrating step-wise weight assessment ratio
analysis (SWARA) and combined compromise solution (CoCoSo) methods. Based on the
opinions of a group of decision makers, subjective weights assigned to the considered cri-
teria are estimated using SWARA method, while CoCoSo method helps in deriving the
ranking order of the alternative spray painting robots for the given task.

This paper is organized as follows: Based on the literature review, the correspond-
ing research gap is identified in Section 2. Section 3 provides the mathematical details
of SWARA and CoCoSo methods. A real-time spray painting robot selection problem
is solved in Section 4 along with a comparative analysis of the ranking performance of
SWARA-CoCoSo method against other integrated MCDM techniques. Conclusions are
drawn in Section 5.

2. Survey of the Literature

It has already been mentioned that selection of a spray painting robot from an array of
alternatives available in the market for a given painting task is a typical MCDM problem.
Presence of conflicting evaluation criteria (like high speed with low power consumption,
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high efficiency with reduced initial capital investment, etc.) often makes this problem more
complex. Due to availability of a large number of MCDM techniques and ardent need to
accurately resolve this problem, solving robot selection problems for diverse industrial
applications with the help of MCDM techniques has already caught the interest of the past
researchers. Table 1 provides a list of different MCDM techniques applied for industrial
robot selection along with the corresponding evaluation criteria and weight measurement
techniques considered.

It is interestingly noticed that a plethora of MCDM techniques, like weighted sum
method (WSM), weighted product model (WPM), weighted aggregated sum prod-
uct assessment (WASPAS), multi-objective optimization on the basis of ratio analy-
sis (MOORA), multiplicative MOORA (MULTIMOORA), simple multi-attribute rating
technique (SMART), analytic hierarchy process (AHP), technique for order of prefer-
ence by similarity to ideal solution (TOPSIS), VIKOR (Vlse Kriterijumska Optimizacija
I Kompromisno Resenje), elimination et choice translating reality (ELECTRE), graph
theory and matrix approach (GTMA), preference ranking organization method for enrich-
ment evaluation (PROMETHEE), grey relational analysis (GRA), range of value (ROV),
polygons area method (PAM), complex proportional assessment (COPRAS), additive ra-
tio assessment (ARAS), evaluation based on distance from average solution (EDAS),
TODIM (TOmada de Decisao Interativa Multicriterio), multi-attributive border approxi-
mation area comparison (MABAC), etc. have been adopted in this direction.

The AHP and best worst method (BWM) are the subjective techniques, and entropy
method and criteria importance through intercriteria correlation (CRITIC) are the objec-
tive techniques mainly deployed for assigning relative importance to the considered robot
selection criteria. It can be noted from Table 1 that those MCDM tools have principally
been applied to identify industrial robots for pick-n-place (while avoiding certain prede-
fined obstacles), assembly, arc welding and packaging operations. Robots have also been
selected to provide support during milling and numerical control machining operations.

The review of literature in Table 1 reveals that until date, no endeavor has been put for-
ward by the past researchers in identifying candidate robots for spray painting operations
in manufacturing industries. On the other hand, applications of SWARA as a subjective
criteria weight measurement tool and CoCoSo as a ranking tool for alternatives have not
been explored towards industrial robot selection. There is also a lack of studies related to
comparative analysis of different MCDM techniques while solving industrial robot selec-
tion problems. Athawale and Chakraborty (2011) only exhaustively compared the ranking
performance of various MCDM techniques, like WSM, WPM, AHP, TOPSIS, GTMA,
VIKOR, ELECTRE, PROMETHEE, GRA and ROV for an industrial pick-n-place robot
selection problem. Keeping in view the identified research gaps, this paper proposes an
integrated application of SWARA and CoCoSo methods for identifying the most suitable
robot for spray painting operations in an automobile industry.

While solving a given MCDM problem with m alternatives and n evaluation crite-
ria, both AHP and SWARA methods can subjectively estimate the corresponding criteria
weights. They employ pair-wise comparisons to express relative importance of the de-
cision making elements in a hierarchy, which is known as comparative importance of
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Table 1
A comprehensive list of past researches on industrial robot selection.

Author(s) Application Criteria Weight
measurement

MCDM

Chatterjee et al.
(2010)

Pick-n-place
operation

Load capacity, maximum tip speed,
repeatability, memory capacity, manipulator
reach, velocity, vendor’s service quality,
program flexibility, cost

AHP,
subjective
judgment

VIKOR, ELECTRE

Athawale and
Chakraborty
(2011)

Pick-n-place
operation

Load capacity, repeatability, maximum tip
speed, memory capacity, manipulator reach

AHP WSM, WPM, AHP,
TOPSIS, GTMA,
VIKOR, ELECTRE,
PROMETHEE,
GRA, ROV

Rehman and
Ahamri (2013a)

Packaging Velocity, load capacity, repeatability,
program flexibility, purchase cost,
installation cost

AHP ELECTRE

Athawale et al.
(2012)

Pick-n-place
operation

Load capacity, maximum tip speed,
repeatability, memory capacity, manipulator
reach, velocity, cost, vendor’s service
quality, program flexibility

AHP VIKOR

Rehman and
Ahamri (2013b)

Packaging Velocity, load capacity, repeatability,
program flexibility, purchase cost,
installation cost

AHP TOPSIS

Azimi et al.
(2014)

NC machine
support,
pick-n-place
operation

Cost, handling coefficient, load capacity,
repeatability, velocity, maximum tip speed,
memory capacity, manipulator reach

AHP WSM, WPM,
TOPSIS, VIKOR,
PAM

Omoniwa (2014) Pick-n-place
operation

Repeatability, load capacity, maximum tip
speed, memory capacity, manipulator reach,
cost, handling capacity, velocity

– GRA

Sen et al. (2015) Pick-n-place
operation

Velocity, load capacity, cost, repeatability,
maximum tip speed, memory capacity,
manipulator reach

AHP PROMETHEE-II

Karande et al.
(2016)

Pick-n-place
operation

Load capacity, repeatability, maximum tip
speed, memory capacity, manipulator reach,
cost, handling coefficient, velocity

AHP WSM, WPM,
MOORA, WASPAS,
MULTIMOORA

Sen et al. (2016) Pick-n-place
operation

Load capacity, repeatability, maximum tip
speed, memory capacity, manipulator reach,
velocity, cost

AHP TODIM

Breaz et al.
(2017)

Milling Load capacity, reach, weight, repeatability,
power consumption, dexterity, service

AHP AHP

Mathew et al.
(2017)

Pick-n-place
operation

Load capacity, repeatability, maximum tip
speed, memory capacity, manipulator reach

AHP WASPAS

Mondal et al.
(2017)

Pick-n-place
operation

Load capacity, repeatability, maximum tip
speed, memory capacity, manipulator reach

AHP COPRAS

Simion et al.
(2018)

Arc welding Motion, repeatability, allowable loading
moment, payload, robot mass, reach, power
rating, cost, flexibility

AHP AHP

Yalçin and Uncu
(2019)

Manufactur-
ing
Pick-n-place
operation

Load capacity, repeatability, vertical reach,
degree of freedom, maximum tip speed,
memory capacity, manipulator reach,
man-machine interface, program flexibility,
vendor’s service contract, cost

AHP EDAS

(continued on next page)
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Table 1
(continued)

Author(s) Application Criteria Weight
measurement

MCDM

Suszyński and
Rogalewicz
(2020)

Assembly Lifting capacity, weight, working range,
repeatability, range of movement, cost,
velocity

AHP AHP, TOPSIS,
SMART

Agarwal et al.
(2021)

Arc welding Payload, horizontal reach, vertical reach,
repeatability, weight, power rating, cost,
flexibility, safety, welding performance,
maintainability, ease of programming

Entropy MABAC

Goswami et al.
(2021)

Pick-n-place
operation

Velocity, load capacity, cost, repeatability,
maximum tip speed, memory capacity,
manipulator reach

CRITIC TOPSIS-ARAS,
COPRAS-ARAS

Rashid et al.
(2021)

Manufactur-
ing

Load capacity, repeatability, velocity ratio,
degree of freedom

BWM EDAS

Chodha et al.
(2021)

Arc welding Mechanical weight, repeatability, payload,
maximum reach, average power
consumption

Entropy
method

TOPSIS

This paper Spray
painting

Payload, cost, repeatability, speed, reach,
robot mass, power consumption

SWARA CoCoSo

average value in SWARA method. The AHP method requires a significantly large num-
ber of pair-wise comparisons against SWARA method, which has a relatively small, i.e.
(n − 1) comparisons. Thus, for a high-dimensional problem, in AHP method, the num-
ber of pair-wise comparisons proportionately increases, adversely influencing consistency
of the derived solutions. But AHP method employs an effective procedure to check con-
sistency of the pair-wise comparisons, which helps in identifying biasness in decision
making. The SWARA method does not have such a procedure. In AHP method, for per-
forming pair-wise comparisons, a 9-point scale is usually adopted. On the contrary, in
SWARA method, the decision makers have more freedom to express their judgments us-
ing a wider scale (any value between 0 and 1). A smaller number of pair-wise compar-
isons and easiness in expressing judgments along with its capability to rank criteria and
determine their weights makes SWARA a more demanding approach in prioritizing sus-
tainability assessment indicators of energy system (Zolfani and Saparauskas, 2013) and
failures in solar panel systems (Ghoushchi et al., 2020), solving personnel selection prob-
lem (Karabašević et al., 2015), assessing sustainable third party reverse logistic provider
(Mishra and Rani, 2021), selecting landfill site (Majeed and Breesam, 2021), etc. On the
other hand, CoCoSo method integrates WSM and WPM methods to determine sum of
weighted comparability sequence and power of weighted comparability sequence while
deriving an aggregated performance score for ranking of the alternatives under consider-
ation. It has found successful applications in solving supplier (Yazdani et al., 2019a) and
cloud service provider (Lai et al., 2020) selection problems, and studying machinability
properties of graphene nanocomposites (Kumar and Verma, 2021). In this paper, the effec-
tiveness of SWARA-CoCoSo method in solving spray painting robot selection problem
in real-time manufacturing environment is validated using Spearman’s rank correlation
coefficients against SWARA-TOPSIS, SWARA-VIKOR, SWARA-COPRAS, SWARA-
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PROMETHEE and SWARA-MOORA methods. Similarly, its effectiveness is also proved
with respect to AHP-CoCoSo, PIPRECIA (pivot pairwise relative criteria importance
assessment)-CoCoSo, BWM-CoCoSo and FUCOM (full consistency method)-CoCoSo
techniques. The SWARA-CoCoSo approach has already been adopted in solving location
selection problem for logistics center (Ulutaş et al., 2020), renewable energy resource
selection problem (Rani et al., 2021), identifying barriers for adoption of IoT in manufac-
turing sector (Cui et al., 2021), etc.

3. Methods

3.1. SWARA Method

The procedural steps of SWARA method are enumerated as below (Stanujkic et al.,
2015):

Step 1: To estimate subjective weights of the criteria under consideration, they are first
sorted with respect to their expected relative significance based on opinions of the
decision makers/experts using their cognition, experience and knowledge. If the
number of decision makers (r) is large and the decision problem is more subjec-
tive, preferential orders (relative significances) of n number of criteria are indi-
cated by an integer rank score ranging from 1 to 5, representing most significant
(rank 5) and very insignificant (rank 1) criteria along with the respective inter-
mediate rank values. Using Eq. (1), the average rank values (t̄j ) are computed as
follows:

t̄j =
∑r

k=1 tkj

r
, (1)

where tkj indicates ranking assigned by kth respondent to j th criterion and r is
the number of decision makers involved.

Once these average ranks are computed, criteria weights (qj ) are calculated by
dividing the average value of each criterion by the sum of criteria priority values,
as indicated in the following Eq. (2):

qj = t̄j∑n
j=1 tj

. (2)

Step 2: Thus, in order to avoid differences in opinions of the participating decision mak-
ers, these qj values can be treated as the initial sj values in SWARA method. Now,
starting from the second criterion, the group of decision makers is again asked to
express the relative importance of j th criterion in relation to (j − 1)th criterion.
This ratio is called the comparative importance of average value, sj (Keršuliene
et al., 2010).
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Step 3: Calculate the value of coefficient kj using the following Eq. (3):

kj =
{

1, j = 1,

sj + 1, j > 1.
(3)

Step 4: Determine the recalculated weight qj as below Eq. (4):

qj =
{

1, j = 1,
qj−1
kj

, j > 1.
(4)

Step 5: Compute the relative criteria weights as Eq. (5):

wj = qj∑n
k=1 qk

, (5)

where wj is the weight assigned to j th criterion.

3.2. CoCoSo Method

The CoCoSo is a recently developed MCDM technique based on the integrated application
of WSM and WPM methods (Yazdani et al., 2019b), leading to the attainment of the
compromise solution for a given problem. The application of CoCoSo method involves
the following steps:

Step 1: Develop the initial decision matrix.

X =

⎡
⎢⎢⎣

x11 x12 . . . x1n

x21 x22 . . . x2n

. . . . . . . . . . . .

xm1 xm2 . . . xmn

⎤
⎥⎥⎦ , (6)

where xij denotes the performance score of ith alternative with respect to j th
criterion.

Step 2: Apply linear normalization technique to make all the elements of the decision
matrix dimensionless and comparable.

For beneficial criterion:

rij = xij − min xij

max xij − min xij

, where i = 1, 2, . . . , m; and j = 1, 2, . . . , n.

(7)

For cost criterion:

rij = max xij − xij

max xij − min xij

, (8)

where rij is the normalized value of xij .
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Step 3: Now, based on WSM and WPM methods, the corresponding performance indexes
Si and Pi for each of the alternatives are calculated.

Si =
n∑

j=1

wj × rij , (9)

Pi =
n∑

j=1

(rij )
wj . (10)

Step 4: Estimate three different appraisal scores for the alternatives using the following
aggregation strategies.

kia = Si + Pi∑m
i=1(Si + Pi)

, (11)

kib = Si

mini Si

+ Pi

mini Pi

, (12)

kic = λ × Si + (1 − λ) × Pi

λ × maxi Si + (1 − λ) × maxi

Pi, 0 � λ � 1. (13)

It is worthwhile to mention here that Eq. (11) is formulated using arithmetic
mean of sums of WSM and WPM scores, and Eq. (12) is developed based on
the sum of relative scores of WSM and WPM compared to the best. On the other
hand, Eq. (13) expresses the balanced compromise of WSM and WPM scores. In
Eq. (13), the value of λ ranges between 0 and 1, with λ = 0.5 considered as the
default value.

Step 5: Rank the alternatives based on descending order of their ki values.

ki = (kia × kib × kic)
1
3 + 1

3
(kia + kib + kic). (14)

Thus, the best alternative should have the maximum ki value.

4. Spray Painting Robot Selection Using SWARA-CoCoSo Method

In order to apply SWARA-CoCoSo method in solving an industrial spray painting robot
selection problem, 12 alternative robot models from six different manufacturers are con-
sidered here. They all have six degrees of freedom. Their operational performance is then
assessed with respect to seven evaluation criteria, i.e. payload (P) (kg), mechanical weight
(M) (kg), speed (S) (m/sec), repeatability (RE) (mm), reach (RC) (mm), cost (C) (USD)
and power consumption (PC) (kVA). Among them, P, S and RC are beneficial attributes
having their higher values, while M, RE, C and PC are non-beneficial (cost) attributes re-
quiring their lower values. Payload is the weight including weight of the end arm tooling
and weight of the product (spray gun and paint) that a robot can lift. Although its higher
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Table 2
Spray painting robot alternatives and evaluation criteria.

Alternative Criteria
Manufacturer Model P M S RE RC C PC

Kawasaki KF121 12 770 1.2 0.5 2668 52186 5.1
KJ264 15 540 1.5 0.5 2640 58137 7.3

ABB IRB 5500-22 13 780 1.4 0.15 2975 20167 6.2
IRB 5510 13 767 1.4 0.15 2600 12550 5.3

YASKAWA Motoman MPX-3500 15 590 2 0.15 2700 39000 3
Motoman EPX-2800 20 650 2 0.5 2779 44000 5

Haosheng HS-6-1722 20 220 2 0.06 1722 54000 4.4
HS-6-1640 10 185 2 0.05 1640 50000 5.7

Fanuc P-250iB/15 15 530 1.8 0.2 2800 22500 4.4
P-350iA/45 45 590 1.8 0.1 2606 25000 3.1

Yooheart HY1010A-143 10 170 1.6 0.06 1430 23000 3
HY1050A-200 50 520 1.6 0.08 2000 25000 8

value is always recommended, its extreme value may adversely affect the performance of
a robot by slowing down its speed and increasing the cycle time. Choosing a robot not
only depends on its payload, but also it requires a comprehensive consideration of other
important criteria. Robot’s own mechanical weight plays an important role when it needs
to be mounted on a conveying system for automated spray painting operation. Excessive
payload and higher mechanical weight increase the inertia of a spray painting robot, abat-
ing its performance. Speed can be defined as the rate at which the spray painting operation
is performed and is directly related to the productivity of the robotic system. Speed mainly
depends on the cycle time that the given task needs to complete with due consideration
of both acceleration and deceleration of a robot from one point to another. Repeatability
is the capacity of a robot to consistently perform the same task with minimum deviation.
It ensures defect-free painting of the components/parts. Generally, its value between 0.02
mm and 0.05 mm is highly desirable. If the application process is relatively rough, such
as packaging, palletizing, etc., the robot needs not to have high precision. Reach can be
defined as the distance from the centre of a robot to the fullest extension of its arm, deter-
mining the work envelop of a given robot. Cost is related to the total capital invested for
procurement of a robot for a specific painting task and power consumption measures the
total electric power required to operate it. Lower power consumption provides cost sav-
ings as it is treated as an input to the device. Table 2 provides the initial decision matrix,
consisting of 12 alternatives and seven criteria, considered in this paper for solving the
spray painting robot selection problem using SWARA-CoCoSo method. The information
regarding the technical specifications of the considered spray painting robots is collected
from the catalogues/websites of the concerned robot manufacturers.

To estimate subjective weights of the considered criteria using SWARA method, they
are first sorted with respect to their expected relative significance based on unanimous
opinions of a group of decision makers while fulfilling the basic requirements of spray
painting operation. Three experts were called for meetings, and after mutual discussion
and brainstorming, relative significances of the considered criteria were estimated. The
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Table 3
Calculation of criteria weights using SWARA method.

Criteria sj kj qj wj

C 1 1.00 0.28
P 0.4 1.4 0.71 0.20
PC 0.35 1.35 0.53 0.15
RE 0.25 1.25 0.42 0.12
RC 0.2 1.2 0.35 0.10
S 0.15 1.15 0.31 0.09
M 0.1 1.1 0.28 0.08

Table 4
Ranking of spray painting robots using SWARA-CoCoSo method (for λ = 0.5).

Model Si Pi kia kib kic ki Rank

KF121 0.2150 3.7341 0.0549 2.1343 0.5244 1.2990 12
KJ264 0.1895 4.2238 0.0613 2.1311 0.5861 1.3508 11
IRB 5500-22 0.5180 5.2567 0.0802 4.1409 0.7669 2.2966 8
IRB 5510 0.5693 6.0680 0.0922 4.6284 0.8814 2.5892 5
Motoman MPX-3500 0.5830 6.3058 0.0957 4.7645 0.9148 2.6722 3
Motoman EPX-2800 0.4212 5.2748 0.0791 3.6347 0.7564 2.0915 10
HS-6-1722 0.4831 6.0575 0.0909 4.1709 0.8686 2.4006 7
HS-6-1640 0.4206 5.3244 0.0798 3.6449 0.7629 2.1013 9
P-250iB/15 0.6208 6.3912 0.0974 4.9871 0.9312 2.7729 2
P-350iA/45 0.8007 6.7296 0.1046 6.0267 1.0000 3.2346 1
HY1010A-143 0.6081 4.8665 0.0761 4.5118 0.7270 2.4011 6
HY1050A-200 0.6315 5.6850 0.0878 4.8543 0.8388 2.6366 4

first expert is a managing director having 25 years of administrative experience in spray
painting division of a large aerosol company. The second expert is a quality control man-
ager with 12 years job experience in powder coating quality control. On the other hand,
the third expert is a project manager and has more than 15 years experience in managing
paint and wall covering functions on contracts and product submittals. Among these cri-
teria, maximum importance is assigned to the procurement cost of a spray painting robot,
followed by its payload capacity. On the other hand, mechanical weight of the robot has
the least significance. Thus, the order of preference for the evaluation criteria is set as
C → P → PC → RE → RC → S → M. Table 3 depicts the criteria weight calculations
using SWARA method. In this table, the concerned group of decision makers expresses
the relative importance of j th criterion in relation to (j −1)th criterion, leading to the esti-
mation of comparative importance of average value (sj ). Now, using Eqs. (3)–(4), values
of coefficient (kj ) and recalculated weight (qj ) are respectively calculated. Finally, the
relative criteria weights are computed applying Eq. (5). It can be unveiled that according
to the set preference order of the criteria, C has the maximum priority weight, followed
by P, while M is the least important criterion.

Following the procedural steps of CoCoSo method, the initial decision matrix of Ta-
ble 2 needs to be linearly normalized to transform all of its elements within a range of 0
to 1, considering the type of the evaluation criterion involved in the spray painting robot
selection problem. In Table 4, the corresponding values of sum of weighted comparability
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Fig. 1. Ranking of spray painting robots based on their appraisal scores.

sequence (Si) and power of weighted comparability sequence (Pi) are determined for all
the alternative robots, employing Eqs. (9) and (10) respectively. Using this information,
the corresponding values of three different appraisal scores are estimated which are ag-
gregated together to derive the final appraisal scores for all the considered spray painting
robots. It can be clearly noticed from Table 4 that Fanuc P-350iA/45 model occupies the
top position in the ranking list with the maximum appraisal score, followed by P-250iB/15
model of the same manufacturer. On the other hand, minimum preference would be as-
signed to Kawasaki KF121 model for the given spray painting operation. The ranking
positions of these robots are pictorially represented in Fig. 1. Relatively high payload and
speed, moderate reach and mechanical weight, and relatively low repeatability, cost and
power consumption justify the selection of Fanuc P-350iA/45 model as the most suitable
spray painting robot. It is interesting to note here that while calculating the appraisal scores
(i.e. kic in Eq. (13)), value of the corresponding tuning parameter (λ) may play an impor-
tant role in influencing the final selection decision. The behaviour of SWARA-CoCoSo
method while ranking the candidate robots for varying values of λ is studied in Fig. 2. It
can be observed from this figure that for all the possible values of λ, the positions of the
top two and last two spray painting robots in the derived ranking lists remain unaltered, al-
though there are marginal deviations in the positions of the intermediately ranked robots.
Thus, it can be propounded that the proposed SWARA-CoCoSo method is quite robust,
being almost unaffected by the changing λ values.

To understand the impact of λ on the ranking pattern of SWARA-CoCoSo method,
a robustness study is carried out where the value of λ is varied between 0 and 1 with
0.01 increments to generate 101 independent trials. The rank awarded to each robot for
each λ value is presented in Fig. 3(a). It is observed that except for ranks 6–9, other ranks
remain constant even with changes in λ. The relative rank shares of different alternatives
(robots) are provided in Fig. 3(b). It is noticed that there is 0% change in the top 5 and
bottom 3 robot rankings. However, the robot rankings between ranks 6–9 are marginally
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Fig. 2. Rankings of alternative robots for varying λ values.

Fig. 3. (a) Variation of ranks by SWARA-CoCoSo with respect to change in λ for each robot, and (b) Relative
share of ranks for each robot for 101 SWARA-CoCoSo trials for λ = 0 to 1.

affected by changes in λ value. Between ranks 8–9, there is 11% variation, whereas, for
ranks 6–7, it is only 4%. The results of this robustness test indicate that SWARA-CoCoSo
is almost insensitive to changes in λ and thus, parameter tuning can be overlooked for
low-dimensional MCDM problems. The ranking pattern may be affected with λ value for
high-dimensional MCDM problems. Thus, it is recommended for future studies that the
default value for λ should be considered as 0.5 while solving MCDM problems. Thus,
SWARA-CoCoSo is a viable tool for such real-working optimal robot selection scenarios.
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Table 5
Ranking of robots using different integrated MCDM techniques.

Model SWARA-
CoCoSo

SWARA-
TOPSIS

SWARA-
VIKOR

SWARA-
COPRAS

SWARA-
PROMETHEE

SWARA-
MOORA

KF121 12 11 11 12 11 11
KJ264 11 12 12 11 12 12
IRB 5500-22 8 6 7 7 7 7
IRB 5510 5 3 5 4 6 5
Motoman MPX-3500 3 7 4 6 5 6
Motoman EPX-2800 10 10 8 10 9 10
HS-6-1722 7 8 10 8 8 8
HS-6-1640 9 9 9 9 10 9
P-250iB/15 2 5 3 5 3 4
P-350iA/45 1 1 1 1 1 1
HY1010A-143 6 4 6 2 4 3
HY1050A-200 4 2 2 3 2 2
r 0.5400 −0.9227 0.8400 0.8500 0.9400

Fig. 4. Spearman’s rank correlations for different integrated MCDM techniques.

Now, to validate the effectiveness of SWARA-CoCoSo method in accurately ranking
the candidate alternative spray painting robots, its performance is contrasted with other
popular MCDM techniques, like TOPSIS (Behzadian et al., 2012), VIKOR (Opricovic
and Tzeng, 2004), COPRAS (Zavadskas et al., 2008), PROMETHEE (Brans and Vincke,
1985) and MOORA (Brauers et al., 2008) methods. In this comparative analysis, the cri-
teria weighting technique, i.e. SWARA remains the same. Table 5 provides the ranking
results for all the considered integrated approaches and the corresponding Spearman’s
rank correlation values are plotted in Fig. 4 (p-values for almost all the cases <0.001).
For all the MCDM techniques integrated with SWARA method, Fanuc P-350iA/45 model
is identified as the most preferred choice. On the other hand, the worst chosen robot
alternative is from one of the models manufactured by Kawasaki. It can be revealed
from Fig. 4 that the ranking pattern of the alternative spray painting robots derived us-
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Table 6
Criteria weights using other subjective weighting methods.

Criteria SWARA AHP PIPRECIA BWM FUCOM

C 0.28 0.35 0.30 0.1865 0.1921
P 0.20 0.23 0.23 0.1553 0.1529
PC 0.15 0.17 0.17 0.1366 0.1518
RE 0.12 0.16 0.12 0.1358 0.1366
RC 0.1 0.04 0.08 0.1353 0.1258
S 0.09 0.03 0.05 0.1294 0.1251
M 0.08 0.03 0.03 0.1211 0.1157

Table 7
CoCoSo-based ranking of robots with other subjective weighting methods.

Model SWARA-
CoCoSo

AHP-
CoCoSo

PIPRECIA-
CoCoSo

BWM-
CoCoSo

FUCOM-
CoCoSo

KF121 12 11 11 12 12
KJ264 11 12 12 11 11
IRB 5500-22 8 7 7 9 8
IRB 5510 5 3 4 6 7
Motoman MPX-3500 3 6 5 3 3
Motoman EPX-2800 10 10 9 10 10
HS-6-1722 7 8 8 4 4
HS-6-1640 9 9 10 8 9
P-250iB/15 2 4 3 2 2
P-350iA/45 1 1 1 1 1
HY1010A-143 6 5 6 7 6
HY1050A-200 4 2 2 5 5

ing SWARA-CoCoSo is almost similar to that of SWARA-TOPSIS, SWARA-VIKOR,
SWARA-CORPAS, SWARA-PROMETHEE and SWARA-MOORA methods. High cor-
relation coefficients (r) between the utility (performance) scores of SWARA-CoCoSo and
other integrated MCDM techniques (shown in the last row of Table 5) reassure this obser-
vation. In VIKOR, the alternatives are ranked based on ascending values of its utility score,
whereas, in other methods (CoCoSo, TOPSIS, COPRAS, PROMETHEE and MOORA),
alternatives are ranked using descending values of their utility scores. This is the reason
of obtaining negative r value between SWARA-CoCoSo and SWARA-VIKOR methods.
Slight variations in the rankings of the intermediately positioned robots exist only due to
differences in the mathematical treatments involved in these methods.

To further prove the effectiveness of SWARA-CoCoSo method in ranking of the alter-
native spray painting robots, weights of the seven evaluation criteria are further estimated
using other subjective weighting techniques, like AHP (Saaty, 1977), PIPRECIA (Stanu-
jkic et al., 2015), BWM (Rezaei, 2015) and FUCOM (Pamučar et al., 2018), keeping in
mind the preference order of those criteria. These weight values are provided in Table 6.
The rankings of all the robots are now derived in Table 7 while integrating those subjective
weighting techniques with CoCoSo method. Fig. 5 plots the values of Spearman’s rank
correlations for SWARA-CoCoSo, AHP-CoCoSo, PIPRECIA-CoCoSo, BWM-CoCoSo
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Fig. 5. Spearman’s rank correlations for CoCoSo integrated with other weighting techniques.

and FUCOM-CoCoSo methods (p-values for almost all the cases <0.001). The rankings
of the candidate spray painting robots obtained using these combined methodologies are
also almost similar. As the corresponding criteria weights are estimated subjectively us-
ing those techniques by a group of decision makers based on a specific preference order,
it is expected that there may be insignificant deviations in the weight values, minimally
affecting the derived ranking orders. Hence, it can be concluded that SWARA-CoCoSo
method, having simple computational steps, can be effectively deployed in identifying the
most apposite robot for the given spray painting task.

It is worthwhile to mention here that while solving any decision making problem, the
priority weights assigned to the considered criteria play important roles in ranking of the
alternatives. This spray painting robot selection problem is finally solved using TOPSIS,
VIKOR, COPRAS, PROMETHEE and MOORA methods while assigning weights to the
criteria using AHP and entropy (Li et al., 2011) methods. In AHP method, the weights
allotted to the evaluation criteria are wC = 0.35, wP = 0.23, wPC = 0.17, wRE =
0.16, wRC = 0.04, wS = 0.03 and wW = 0.03, whereas, in entropy method (based on
randomness of data in the decision matrix), the corresponding weights are wC = 0.1437,
wP = 0.1371, wPC = 0.1478, wRE = 0.1268, wRC = 0.1499, wS = 0.1509 and wW =
0.1438. Table 8 provides the ranks of the alternative spray painting robots for both the
cases (rankings based on entropy method are shown in parentheses). It can be interestingly
noticed that for all the MCDM methods, the position of the top ranked spray painting robot
remains unchanged. The worst chosen robot is one from the models manufactured by
Kawasaki. It thus proves the capability of all the adopted MCDM techniques in correctly
identifying the best and worst spray painting robots for a problem with smaller numbers
of alternatives and criteria.

5. Conclusion

In this paper, SWARA method is first applied to determine subjective weights of the con-
sidered evaluation criteria (set in a given preference order) and these weights are subse-
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Table 8
Ranks of robots using TOPSIS, VIKOR, COPRAS, PROMETHEE and MOORA methods.

Model TOPSIS VIKOR COPRAS PROMETHEE MOORA

KF121 11(11) 11(12) 12(12) 11(12) 12(12)
KJ264 12(12) 12(11) 11(11) 12(11) 11(11)
IRB 5500-22 6(9) 7(10) 6(9) 7(4) 6(9)
IRB 5510 3(8) 4(8) 4(8) 6(8) 4(8)
Motoman MPX-3500 7(6) 6(2) 7(6) 5(6) 7(6)
Motoman EPX-2800 10(10) 8(5) 10(10) 9(7) 10(10)
HS-6-1722 8(4) 10(4) 8(4) 8(10) 8(4)
HS-6-1640 9(7) 9(6) 9(7) 10(9) 9(7)
P-250iB/15 5(5) 3(3) 5(5) 3(5) 5(5)
P-350iA/45 1(1) 1(1) 1(1) 1(1) 1(1)
HY1010A-143 4(3) 5(7) 3(3) 4(3) 3(3)
HY1050A-200 2(2) 2(9) 2(2) 2(2) 2(2)

quently employed along with CoCoSo method for ranking of the alternative spray painting
robots. The calculation steps involved in both these methods are easy to comprehend and
implement. Based on a set preference order, SWARA method identifies cost as the most
significant criterion, while application of CoCoSo method selects Fanuc P-350iA/45 as
the most suitable robot for the given spray painting task, followed by P-250iB/15 model.
Kawasaki KF121 model is the worst preferred choice. The proposed method is quite robust
being insensitive with respect to variations in the corresponding tuning parameter value
for low-dimensional MCDM problems. A comparative analysis of its ranking performance
against other popular MCDM techniques proves its effectiveness in accurately ranking the
robot alternatives. It is also observed that SWARA method behaves similarly as compared
to other subjective criteria weighting techniques. Thus, this integrated approach can be
considered as a viable tool for ranking of alternatives for real-time manufacturing-related
problems taking into account opinions of the experts in a group decision making envi-
ronment. The limitations of SWARA method are that it does not evaluate relationships
between the considered attributes and reliability of the expert judgments may be uncer-
tain due to inaccurate information. On the other hand, in CoCoSo method, the hybrid
integration operator basically combines benefits of arithmetic average integration opera-
tor with geometric average integration operator. This integration, however, considers three
subordinate compromise scores having significant variances affecting the final selection
decision. In CoCoSo method, determination of a compromise value of λ is also a con-
tentious task. The ranking performance of this approach may be contrasted with other
MCDM tools, like ELECTRE, ARAS, MABAC, multi-attributive real-ideal comparative
analysis (MARICA), measurement of alternatives and ranking according to compromise
solution (MARCOS), etc., methods. As another future scope of this paper, the alternative
spray painting robots may be ranked while estimating objective criteria weights based on
randomness of the data in the initial decision matrix. But in this case, the preference order
of the evaluation criteria may be distorted. Integration of CoSoSo method with fuzzy sets,
interval values, neutrosophic and intuitionistic fuzzy sets, etc., is highly recommended to
improve the solution accuracy of the decision making task. As it is not feasible to manually
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solve high-dimensional MCDM problems using this integrated approach, development of
a software prototype (decision support system) is thus strongly encouraged.
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