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Abstract. From the perspective of multiple attribute decision analysis, the evaluation of decision
alternatives should be based on the performance scores determined with respect to more than one
attribute. Fuzzy logic concepts can equip the evaluation process with different scales of linguistic
terms to let the decision-makers point out their ideas and preferences. A more recent one of fuzzy
sets is the picture fuzzy set which covers three separately allocable elements: positive, neutral, and
negative membership degrees. The novel and distinctive element included by a picture fuzzy set
is the refusal degree which is equal to the difference between 1 and the sum of the other three. In
this study, we aim to contribute to the literature of the picture fuzzy sets by (i) proposing two novel
entropy measures that can be used in objective attribute weighting and (ii) developing a novel picture
fuzzy version of CODAS (COmbinative Distance-based ASsessment) method which is empowered
with entropy-based attribute weighting. The applicability of the method is shown in a green supplier
selection problem. To clarify the differences of the proposed method, a comparative analysis is
provided by considering traditional CODAS, spherical fuzzy CODAS, and spherical fuzzy TOPSIS
with different entropy-based scenarios.
Key words: picture fuzzy sets, CODAS, entropy, information measures, expert judgment, green
supply chain management, supplier selection.

1. Introduction

Many Multiple Attribute Decision Making (MADM) problems do not involve appropriate
data which are directly measurable such as cost, net profit, any financial ratio, volume or
weight of an item, etc. To deal with the quantification problems, the decision-makers can
benefit from linguistic terms in stating their thoughts and preferences regarding the prob-
lem. Linguistic terms are often defined in different fuzzy environments. Zadeh (1965)
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launched the domain of fuzzy sets for symbolizing human judgments. In conventional
fuzzy set definition, the opinions can be represented by a single membership degree (μ)
which ranges between 0 and 1. This membership degree measures the optimism or agree-
ment level and possesses a positive perspective.

To smooth the representation challenge of the uncertainty in human judgments, fuzzy
set domain has been extended by researchers from different fields. Atanassov (1986) in-
troduced the intuitionistic fuzzy sets (IFS) by defining a negative membership (or non-
membership) degree (v). This new element in the fuzzy set definition brings resilience
to the uncertainty representation issue because the experts are able to specify their pes-
simistic views or disagreements in this way. Hence, non-membership degree points out a
negative perspective. Atanassov (1986) also defined a new element regarding the indeter-
minacy (or hesitancy) which shows the experts’ neutral preference: π = 1 −μ− v. Thus,
IFS was the first fuzzy concept that can cope with three dimensions of judgments (positive
membership, negative membership, and indeterminacy). In real life, these degrees are the
equivalents of yes, no, and abstain, respectively, in a voting environment. Nonetheless, the
drawback in IFS is that the indeterminacy degree cannot be independently assigned by the
experts.

After the introduction of the horizon widening features of fuzzy sets and IFSs, new
fuzzy concepts have been proposed in the literature. Pythagorean fuzzy sets (Yager, 2013),
q-Rung orthopair fuzzy sets (Yager, 2017), and Fermatean fuzzy sets (Senapati and Yager,
2020) have extended the representation domain of the expert by just considering the in-
dependently assignable positive and negative membership degrees. The independently
assignable hesitancy degree is considered in neutrosophic sets (Smarandache, 1999) and
spherical fuzzy sets (Kutlu Gündoğdu and Kahraman, 2019a). Many researchers work on
developing aggregation operators, information measures such as entropy, distance, inclu-
sion (subsethood), and knowledge measures for easing the uncertainty handling issue in
decision-making problems.

The most recent fuzzy set concept considering all the three independently assignable
membership degrees was presented by Cuong and Kreinovich (2013). This novel concept
is called picture fuzzy sets (PFS) as a logical reasoning of fuzzy sets and IFSs. A PFS
is characterized by three independently assignable degrees expressing the positive (μ),
the neutral (η – which means hesitancy), and the negative (v – which is an equivalent to
non-membership) membership degrees. The sole constraint defined in PFS enforces that
their sum must not exceed 1. The gap between their sum and 1 is called refusal degree.
The expert’s choice of refusing the idea sharing is quantified in PFS by this novel element.
The refusal degree is here defined as π = 1 − μ − η − v.

PFS exhibits its importance in voting environments. Cuong (2014) clarifies the items in
PFS for the voting case. The voters can be divided into four groups: vote for the candidate,
abstain, vote against the candidate, and refusal of the voting, i.e. casting a veto. It is obvious
that PFS has a broader representation power than previous extensions of fuzzy sets since
it involves a fourth component called refusal degree. PFS is the only fuzzy set definition
handling this issue. Son (2016) introduced an example showing the importance of PFS
for MADM. The personnel selection activity needs information about the candidates for
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understanding whether they are eligible for the job or not. The result of this selection could
be one of the 4 classes: true positive, true negative, false negative, and false positive which
can be accepted as the equivalents to the membership degrees of PFS. Each candidate is
evaluated by considering 4 classes. The selection is based on these evaluations. Assume
that two candidates are evaluated: A took (50%, 20%, 20%, 10%) and B took (40%, 10%,
30%, 20%). The most appropriate candidate can be selected by applying the score function
defined for PFS. As given in Definition 3, score value of A is 50% − 20% = 30% and
score value of B is 40% − 30% = 10%. Thus, candidate A will be selected as a result.

Most of the business and management issues are MADM problems because the com-
panies, institutions, even societies, and governments are enforced to take a lot of features
of the decisions they should take into account. The problem definition of any MADM
problem involves the determination of three basic elements: the attributes which can pos-
sess a potential impact on the results, the decision-makers who will be consulted due to
their expertise, and the alternatives that are the potential solutions.

In MADM understanding, each alternative is evaluated by the decision-makers with
respect to attributes, and the very first issue that should be addressed in decision analysis
emerges after this data collection activity: how will we process these data to obtain the
overall performance of each alternative? The motivation behind this question is that the
decision analyst has many methodologies that can be used in reflecting the importance of
the attributes to the decision. Each attribute has its own mean with discrete and changing
significance for the problem at hand.

The requirement explained above is also called attribute weighting and it can be han-
dled via applying one of two basic methods or a mixture of them: (1) subjective methods
such as AHP-Analytic Hierarchy Process, SWARA-Stepwise Weight Assessment Ratio
Analysis and Simos’ procedure are based on the experts’ evaluations; (2) objective meth-
ods do not demand these individualistic preferences and thoughts. In calculating the at-
tribute weights, they just examine the performances of the alternatives with the aim of re-
moving or at least limiting the risk of manipulative preferential actions of decision-makers
or too long data collection periods. Particularly, in auditing the companies in terms of the
quality assurance performance of their business processes, occupational health issues, and
their financial strength, the subjectivity in attribute weighting may be misleading. There-
fore, objective attribute weighting tools can be used to handle these issues.

Entropy measure which is based on the performance scores can support the objec-
tive attribute weighting effort. In this study, two new entropy measures are developed for
PFSs and their applicability in MADM is manifested in integration to a novel extension
of CODAS (COmbinative Distance-based ASsessment) method under picture fuzzy envi-
ronment. The main contributions of the study are listed as follows:

1. Two novel entropy measures for PFSs are proposed as a contribution to the literature
of PFS and their validity is demonstrated via comparisons with previously developed
entropy measures.

2. CODAS method which is established by Keshavarz-Ghorabaee et al. (2016) is modi-
fied with the operational rules of PFSs for allowing the MADM process to handle the
picture fuzzy type data. This is the first attempt at this topic. The attribute weights are
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calculated in this version via a methodology that is based on newly defined entropy
measures, but it is applicable with subjective attribute weights.

There are 7 sections in the study. After this first section regarding the introduc-
tion, Section 2 covers the preliminaries of PFS and the results of an extensive litera-
ture review on the recent fuzzy extension of CODAS. Novel entropy measures for PFS
are demonstrated and proved in Section 3. Section 4 presents the novel picture fuzzy
extension of CODAS (PF-CODAS) and the integration of entropy measures into the
model. In section 5, the newly proposed PF-CODAS version with entropy-based objec-
tive weighting is implemented in an example that was previously studied by Meksavang
et al. (2019). The results of various implementations are compared in order to show the
validity of the novel entropy-based PF-CODAS approach in Section 6. Section 7 con-
cludes the study with some remarks and the future research possibilities are also men-
tioned.

2. Preliminaries

First, the PFS concept is introduced and the defined operations on PFS are specified in
this section. Then, CODAS is introduced, and the results of a comprehensive literature
overview on CODAS are summarized in order to understand and clarify the state-of-the-
art. We limit our research on CODAS here in order not to distort the flow of the paper.

2.1. Picture Fuzzy Sets

PFS theory is introduced by Cuong and Kreinovich (2013) as a generalization and syn-
thesis of Zadeh’s fuzzy set theory and Atanassov’s intuitionistic fuzzy set theory. A PFS
has three independently assignable informative elements, i.e. the degree of positive mem-
bership (μ), the degree of neutral membership (η), the degree of negative membership
(ν). Due to the definition’s sole limitation forcing that their sum should be smaller than or
equal to 1, the remaining part is presented as a novelty and a distinctive feature of PFS,
which is called the degree of refusal membership (π). These four elements comprise the
potential vote types such as yes, no, abstain, and refuse.

Definition 1. Let X be a universal set. Then a PFS A on X is defined as follows:

A = {(x, μA(x), ηA(x), νA(x)
) ∣∣ x ∈ X

}
, (1)

where μA, ηA, νA are mapping from X to [0, 1]. For all x ∈ X, μA(x) is called positive
membership degree of x ∈ A, ηA(x) is called neutral membership degree of x ∈ A

and νA(x) is negative membership degree of x ∈ A. Also, μA, ηA, νA must satisfy the
following condition:

0 � μA(x) + ηA(x) + νA(x) � 1, ∀x ∈ X (2)
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and π(x) = 1 − μA(x) − ηA(x) − νA(x) is called refusal membership degree of x in A

(Cuong, 2014). PFS(X) denotes all the picture fuzzy sets on a universal set X.

Cuong (2014) defined the subsethood, equality, union, intersection, and complement
for every two PFSs A and B as follow:

1. A ⊆ B if ∀x ∈ X, μA(x) � μB(x), ηA(x) � ηB(x), νA(x) � νB(x);
2. A = B iff A ⊆ B and B ⊆ A;
3. A∪B = {〈x, max(μA(x), μB(x)), min(ηA(x), ηB(x)), min(νA(x), νB(x))〉 | x ∈ X};
4. A∩B = {〈x, min(μA(x), μB(x)), min(ηA(x), ηB(x)), max(νA(x), νB(x))〉 | x ∈ X};
5. Ac = {〈x, νA(x), ηA(x), μA(x)〉 | x ∈ X}.

Definition 2. Let A = (μA, ηA, νA) and B = (μB, ηB, νB) are two PF numbers (PFN),
then their operations are as follows (Wang et al., 2017):

A ⊕ B = (1 − (1 − μA)(1 − μB), ηAηB, (ηA + νA)(ηB + νB) − ηAηB

)
, (3)

A ⊗ B = ((μA + ηA)(μB + ηB) − ηAηB

)
, ηAηB, 1 − (1 − νA)(1 − νB), (4)

τA = (1 − (1 − μA)τ , (ηA)τ , (ηA + νA)τ − (ηA)τ
)
, (5)

Aτ = ((μA + ηA)τ − (ηA)τ , (ηA)τ , 1 − (1 − νA)τ
)
, (6)

AC = (νA, ηA,μA). (7)

Definition 3. Let A = (μA, ηA, νA) and B = (μB, ηB, νB) are two PFNs. In order
to compare them, the algorithm given below is used where score function is defined as
sc(A) = μA − νA and accuracy function is ac(A) = μA + ηA + νA (Wang et al., 2017):

(i) If sc(A) > sc(B), then A > B means A is superior to B.
(ii) If sc(A) = sc(B), then

(1) ac(A) > ac(B) implies that A > B, which means A is superior to B;
(2) ac(A) = ac(B) implies that A = B, which means A is equivalent to B.

Definition 4. Let Ai = (μi, ηi, νi) (i = 1, . . . , n) is a collection of PFNs in X. The
picture fuzzy weighted averaging (PFWA) operator is given as follows (Wei, 2017a):

PFWAw(Ai) =
(

1 −
n∏

i=1

(1 − μi)
wi ,

n∏
i=1

(ηi)
wi ,

n∏
i=1

(νi)
wi

)
, (8)

where w = (w1,. . . ,wn) is the weight vector of Ai , and satisfies wi > 0 and
∑n

i=1wi = 1.
The distance, similarity, and subsethood measures are important tools to compare two

fuzzy sets. Therefore, many researchers studied the concept of these measures for PFSs.

Definition 5. Let A = (μA, ηA, νA) and B = (μB, ηB, νB) are two PFNs.
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Euclidean (dE(A,B)) and Hamming (dH (A,B)) distances are defined by Cuong and
Kreinovich (2013) as follows:

dE(A,B) =
[

1

n

n∑
i=1

(
(μA − μB)2 + (ηA − ηB)2 + (νA − νB)2)] 1

2

, (9)

dH (A,B) = 1

n

n∑
i=1

(|μA − μB | + |ηA − ηB | + |νA − νB |). (10)

PF distance measures dDT1, dDT2, dDT3, dDT4 were introduced by Dinh and Thao (2018)
as follow:

dDT1(A,B) = 1

3n

n∑
i=1

[|μA − μB | + |ηA − ηB | + |νA − νB |], (11)

dDT2 = 1

n

{ n∑
i=1

[
(μA − μB)2 + (ηA − ηB)2 + (νA − νB)2]} 1

2

, (12)

dDT3 = (A,B) = 1

n

n∑
i=1

max
[|μA − μB |, |ηA − ηB |, |νA − νB |], (13)

dDT4 = (A,B) = 1

n

{ n∑
i=1

max
[|μA − μB |2, |ηA − ηB |2, |νA − νB |2]}

1
2

. (14)

Dutta (2018) also defined the following distance measures dD1, dD2, dD3, dD4, dD5 for
PFSs:

dD1(A,B) = 1

2

n∑
i=1

[|μA − μB | + |ηA − ηB | + |νA − νB | + |πA − πB |], (15)

dD2(A,B) = 1

2n

n∑
i=1

[|μA − μB | + |ηA − ηB | + |νA − νB | + |πA − πB |], (16)

dD3(A,B) =
{

1

2

n∑
i=1

[
(μA − μB)2 + (ηA − ηB)2 + (νA − νB)2 + (πA − πB)2]} 1

2

,

(17)

dD4(A,B) =
{

1

2n

n∑
i=1

[
(μA − μB)2 + (ηA − ηB)2 + (νA − νB)2 + (πA − πB)2]} 1

2

,

(18)

dD5(A,B) = 1

n

n∑
i=1

[
1
4 [|μA − μB | + |ηA − ηB | + |νA − νB | + |πA − πB |]

+ 1
2 max[|μA − μB |, |ηA − ηB |, |νA − νB |, |πA − πB |]

]
.

(19)
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PF generalized distance measures dS1, dS2 are proposed by Singh et al. (2018) as follow:

dS1(A,B) =
{

1

4n

n∑
i=1

[ |μA − μB |λ + |ηA − ηB |λ
+ |νA − νB |λ + |πA − πB |λ

]} 1
λ

, λ > 0, (20)

dS2(A,B) =
{

1

4n

n∑
i=1

max

[ |μA − μB |λ, |ηA − ηB |λ,
|νA − νB |λ, |πA − πB |λ

]} 1
λ

, λ > 0. (21)

PF distance measure dW is defined by Wei (2018a) as follows:

dW (A,B) = 1

2n

n∑
i=1

[|μA − μB | + |ηA − ηB | + |νA − νB |]. (22)

PF distance measure dGS is introduced by Ganie and Singh (2020) as follows:

dGS(A,B) = 1 − 1

4n

n∑
i=1

⎡
⎢⎢⎢⎣

3
√

μAμB + 3
√

νAνB + 3
√

ηAηB + 3
√

πAπB

+ √
(1 − μA − νA)(1 − μB − νB)

+ √
(1 − μA − ηA)(1 − μB − ηB)

+ √
(1 − νA − ηA)(1 − νB − ηB)

⎤
⎥⎥⎥⎦ . (23)

Wei (2017b) introduced some similarity measures based on cosine function for PFSs as
follow:

SWC1(A,B) = 1

n

n∑
i=1

cos

[
π

2
max

(|μA − μB |, |ηA − ηB |, |νA − νB |)], (24)

SWC2(A,B) = 1

n

n∑
i=1

cos

[
π

4

[|μA − μB | + |ηA − ηB | + |νA − νB |]], (25)

SWC3(A,B) = 1

n

n∑
i=1

cos

[
π

2
max

(|μA − μB |, |ηA − ηB |, |νA − νB |, |πA − πB |)],
(26)

SWC4(A,B) = 1

n

n∑
i=1

cos

[
π

4

[|μA − μB | + |ηA − ηB | + |νA − νB | + |πA − πB |]],
(27)

SWC5(A,B) = 1

n

n∑
i=1

cot

[
π

4
+ π

4
max

(|μA − μB |, |ηA − ηB |, |νA − νB |)], (28)

SWC6(A,B) = 1

n

n∑
i=1

cot

[
π

4
+ π

4
max

(|μA − μB |, |ηA − ηB |,

|νA − νB |, |πA − πB |)]. (29)
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PF similarity measures SW1, SW2 , SW3 are also introduced by Wei (2018b) as follow:

SW1(A,B) = 1

n

n∑
i=1

μAμB + ηAηB + νAνB√
μ2

A + η2
A + ν2

A

√
μ2

B + η2
B + ν2

B

, (30)

SW2(A,B) = 1

n

n∑
i=1

μAμB + ηAηB + νAνB

max(μ2
A + η2

A + ν2
A,μ2

B + η2
B + ν2

B)
, (31)

SW3(A,B) = 1

3n

n∑
i=1

⎛
⎜⎜⎝

min(|μA−μB |)+max(|μA−μB |)
|μA−μB |+max(|μA−μB |)
+ min(|ηA−ηB |)+max(|ηA−ηB |)

|ηA−ηB |+max(|ηA−ηB |)
+ min(|νA−νB |)+max(|νA−νB |)

|νA−νB |+max(|νA−νB |)

⎞
⎟⎟⎠ . (32)

PF similarity measures SS1 , SS2 , SS3 are proposed by Singh et al. (2018) as follow:

SS1(A,B) = 1 −
{

1

4n

n∑
i=1

[ |μA − μB |λ + |ηA − ηB |λ
+ |νA − νB |λ + |πA − πB |λ

]} 1
λ

, λ > 0, (33)

SS2(A,B) = 1 −
{

1

4n

n∑
i=1

max

[ |μA − μB |λ, |ηA − ηB |λ,
|νA − νB |λ, |πA − πB |λ

]} 1
λ

, λ > 0, (34)

SS3(A,B) = 1

4n

n∑
i=1

min

( |μA − μB |, |ηA − ηB |,
|νA − νB |, |πA − πB |

)

max

( |μA − μB |, |ηA − ηB |,
|νA − νB |, |πA − πB |

) . (35)

Thao (2020) defined similarity measures ST1, ST2 for PFSs as follow:

ST1(A,B) =
n∑

i=1

ωi

1

4 ln 4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|μA − μB | − 1) ln 1−|μA−μB |
4

+ (|ηA − ηB | − 1) ln 1−|ηA−ηB |
4

+ (|νA − νB | − 1) ln 1−|νA−νB |
4

−
⎛
⎝ |μA − μB |

+ |ηA − ηB |
+ |νA − νB | + 1

⎞
⎠

× ln |μA−μB |+|ηA−ηB |+|νA−νB |+1
4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (36)

ST2(A,B) =
n∑

i=1

ωi

{
1 − |μA − μB | + |ηA − ηB | + |νA − νB |

3

}
. (37)

PF Dice-similarity measures SWG1, SWG2, SWG1 are introduced by Wei and Gao (2018)
as follow:
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SWG1(A,B) = 1

n

n∑
i=1

2(μAμB + ηAηB + νAνB)

μ2
A + η2

A + ν2
A + μ2

B + η2
B + ν2

B

, (38)

SWG2(A,B) = 1

n

n∑
i=1

2(μAμB + ηAηB + νAνB + πAπB)

μ2
A + η2

A + ν2
A + π2

A + μ2
B + η2

B + ν2
B + π2

B

, (39)

SWG3(A,B) =
∑n

i=1 2(μAμB + ηAηB + νAνB)∑n
i=1(μ

2
A + η2

A + ν2
A) +∑n

i=1(μ
2
B + η2

B + ν2
B)

, (40)

SWG3(A,B) =
∑n

i=1 2(μAμB + ηAηB + νAνB + πAπB)∑n
i=1(μ

2
A + η2

A + ν2
A + π2

A) +∑n
i=1(μ

2
B + η2

B + ν2
B + π2

B)
. (41)

The only subsethood measures for PFSs are presented by Aydoğdu (2020) as follow:

cA1(A,B) = 1 − 1

2n

n∑
i=1

[|μA − μA∩B | + |ηA − ηA∩B | + |νA − νA∩B |], (42)

cA2(A,B) = 1 −
[

1

n

n∑
i=1

(
(μA − μA∩B)2 + (ηA − ηA∩B)2 + (νA − νA∩B)2)] 1

2

.

(43)

In some MADM applications, the weights of the attributes which are required for aggrega-
tion of the performance evaluations and/or the weights of the decision-makers representing
their expertise level which are used in combining their evaluations can be unknown. Also,
the subjectivity in the evaluations is required to be limited. For the purposes mentioned,
objective weighting methods which are based on entropy measures, OWA operator, maxi-
mizing deviation methods, SECA (Simultaneous Evaluation of Criteria and Alternatives),
and MEREC (Method based on the Removal Effects of Criteria) can be employed in the
domain of MADM (Keshavarz-Ghorabaee et al., 2018, 2021). Entropy is a very common
manner of doing it and some entropy measures defined under PF environment are given
below.

Wang et al. (2018) introduced the definition of entropy for PFSs in the following.

Definition 6. Let A,B ∈ PFS(X). A function Ew : PFS(X) → [0, 1] is an entropy on
PFS, if Ew satisfies the following axioms:

1. Ew(A) = 0 if A is a crisp set,
2. Ew(A) = 1, if μA = ηA = νA,
3. Ew(A) = E(Ac),
4. Ew(A) � Ew(B), if A is less fuzzy then B, that is,

|μA − ηA| + |μA − νA| + |ηA − νA| � |μB − ηB | + |μB − νB | + |ηB − νB |.
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PF entropy measure EW is presented by Wang et al. (2018) as follows:

EW(A) = 1 − 1

2n

n∑
i=1

(∣∣μA(xi) − ηA(xi)
∣∣+ ∣∣μA(xi) − νA(xi)

∣∣
+ ∣∣ηA(xi) − νA(xi)

∣∣). (44)

Thao (2020) presented another concept of PF entropy that extends the concept of intu-
itionistic fuzzy entropy and proposed PF entropies ET1, ET2 , ET3 .

Definition 7. For any C,D ∈ PFS(X), the function E : PFS(X) → [0, 1] is an entropy
measure for PFS, if ET satisfies the following axioms:

1. E(C) = 0 if μC(xi), ηC(xi), νC(xi) ∈ {0, 1} for all xi ∈ X,
2. E(C) = 1 if μC = ηC = νC = 0.25,
3. E(C) = E(Cc),
4. E(C) � E(D) if C is less fuzzy than D, that is,

μC(xi) � μD(xi), ηC(xi) � ηD(xi), νC(xi) � νD(xi)

if max
{
μC(xi), ηC(xi), νC(xi)

}
� 0.25

or

μC(xi) � μD(xi), ηC(xi) � ηD(xi), νC(xi) � νD(xi)

if min
{
μC(xi), ηC(xi), νC(xi)

}
� 0.25

for all xi ∈ X.

ET1(C) = 1

n

n∑
i=1

[
1

ln 4

{−μC(xi) ln μC(xi) − ηC(xi) ln ηC(xi)

− νC(xi) ln νC(xi) − πC(xi) ln πC(xi)

}]
, (45)

ET2(C) = 1 − 4

3n

n∑
i=1

max

{ |μC(xi) − 0.25|, |ηC(xi) − 0.25|,
|νC(xi) − 0.25|, |πC(xi) − 0.25|

}
, (46)

ET3(C) = 1 − 4

3n

n∑
i=1

max

{ |μC(xi) − 0.25|, |ηC(xi) − 0.25|,
|νC(xi) − 0.25|, |πC(xi) − 0.25|

}
. (47)

The following entropy measures EJ1, EJ2 are introduced by Joshi (2020a; 2020b):

EJ1(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n(1−r)

∑n
i=1

[
μr

A(xi) + ηr
A(xi) + νr

A(xi)

+ πr
A(xi) − 1

]
, r > 0, r �= 1,

1
n(1−r)

∑n
i=1

[
μr

A(xi) + νr
A(xi) + πr

A(xi) − 1
]
, if ηA(xi) = 0,

−
(

μA(xi) log(μA(xi)) + νA(xi) log(νA(xi))

+ πA(xi) log(πA(xi))

)
,

if ηA(xi) = 0,

r = 0,
1

n(1−r)

∑n
i=1

[
μr

A(xi) + (1 − μA(xi)
)r − 1

]
, if ηA(xi)

= πA(xi) = 0,
(48)
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EJ2(A) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

r
n(r−1)

∑n
i=1

[
1 −

(
μr

A(xi) + ηr
A(xi)

+ νr
A(xi) + πr

A(xi)

) 1
r
]
, r > 0, r �= 1,

r
n(r−1)

∑n
i=1

[
1 − (μr

A(xi) + νr
A(xi) + ηr

A(xi)
) 1

r
]
, if πA(xi) = 0,

r
n(r−1)

∑n
i=1

[
1 − (μr

A(xi) + (1 − μA(xi)
)r) 1

r
]
, if ηA(xi)

= πa(xi) = 0.

(49)

Arya and Kumar (2020a; 2020b) proposed fuzzy entropy measures EK1 , EK2 for PFS as
follow:

EK1(A) = −1

n

n∑
i=1

[
μA(xi) log2(μA(xi)) + ηA(xi) log2(ηA(xi))

+ νA(xi) log2(νA(xi)) + πA(xi) log2(πA(xi))

]
, (50)

EK2(A) = 1

n(1 − λ)

n∑
i=1

[(
μA(xi)

λ + ηA(xi)
λ + νA(xi)

λ + πA(xi)
λ
)− 1

]
, λ �= 1.

(51)

Definition 8. Let C = (μC, ηC, νC) be a PFN. Its knowledge measure is computed as
follows:

K(C) = 1−0.5(EnC+πC) with EnC = min(dH (C,Cmin), dH (C,Cmax))

max(dH (C,Cmin), dH (C,Cmax))
, (52)

where EnC denotes the entropy value of C and dH (. , .) is the Hamming distance (Eq. (10))
between the given two PFNs. As seen from the definition, the summation operation is
removed from Eq. (10) for this case because of n = 2 (Lin et al., 2020).

2.2. CODAS and Its Fuzzy Extensions

Keshavarz-Ghorabaee et al. (2016) developed CODAS method as a novel MADM tool
in order to support decision-analysts in their efforts of analysing the alternatives which
are evaluated with respect to the appropriate attributes in the decision problem at hand.
The distinctive feature of the method is the simultaneous consideration of two well-known
distance measures. The performance of an alternative is evaluated by the Euclidean and
Taxicab distances from the negative-ideal point. The CODAS utilizes the Euclidean dis-
tance as the primary measure for assessing the alternatives. When the Euclidean distances
of two alternatives to the negative-ideal point are very close to each other, the Taxicab
distance is also considered in comparing them. The degree of closeness of Euclidean dis-
tances is set by a threshold parameter. The CODAS algorithm is as follows:

1. X = [xij ] decision matrix is constructed where i (= 1, . . . , m) represents alternatives
and j (= 1, . . . , n) represents attributes.

2. Linear normalization is conducted to standardize the decision matrix. If attribute j is
a cost type attribute, mini xij /xij is performed. For a benefit attribute j , the normal-
ization equation is xij / maxi xij . Normalized decision matrix is shown as N = [nij ].
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3. In order to consider the importance of attributes, the normalized values are multiplied
by the weights: rij = wjnij . The output of this step is the weighted normalized decision
matrix that can be represented by R = [rij ].

4. As a comparison measure, CODAS uses the distances to the negative-ideal point. This
is derived from R = [rij ] via taking the minimum values of each attribute: nsj =
mini rij . The negative-ideal solution is a row vector: ns = [nsj ].

5. Euclidean and Taxicab distances of each alternative i to ns are computed via Ei =√∑n
j=1(rij − nsj )2 and Ti =∑n

j=1 |rij − nsj |.
6. The square relative assessment matrix Ra = [hik] is built by considering the pair-

wise comparisons of alternatives’ Euclidean and Taxicab distances. To compute the
hik values, the threshold parameter of � ∈ [0.01, 0.05] should be set by the decision-
maker. If the difference between Ei and Ek is less than �, hik = (Ei − Ek). Other-
wise (if (Ei − Ek) � �), both the Euclidean and Taxicab distances are considered:
hik = (Ei − Ek) + (Ti − Tk).

7. The assessment score of alternative i is calculated via Hi =∑n
k=1 hik .

8. The alternatives are ranked in ascending order of their Hi values. The best alternative
will naturally be the alternative with the highest assessment score.

When we search for fuzzy extensions of CODAS in the SCOPUS platform, it is seen
that 32 studies have appeared since 2017. Table A1 in Appendix A summarizes the find-
ings on the state-of-the-art of fuzzy versions of CODAS. In the second column of the table,
the fuzzy set concepts used in studies are given. The most utilized version is intuitionistic
fuzzy sets with 11 publications. 2-tuple, Pythagorean, spherical, neutrosophic, hesitant,
and linguistic term-based fuzzy versions are the other concepts used. From this finding, it
is understood that any picture fuzzy version of CODAS has not been developed yet. Even
though spherical and neutrosophic versions handle the hesitancy representation issue in
CODAS, both hesitancy and refusal degree representation power of PFS has not already
been considered. The current study aims at filling this gap.

While the third column shows the hybridized MADM methods for different purposes,
the fourth column shows the application fields of the studies. The versions of AHP (Ana-
lytic Hierarchy Process) are usually employed for subjectively weighting of the attributes.
Another important finding is that no study applies for the option of objective weighting
of the attributes. To show the applicability of objective weighting methods with CODAS,
entropy-based weighting is proposed and used in the study. First, two entropy measures
developed in Section 3 are respectively integrated into the modified CODAS version for
PFS. Then, some entropy measures given in Section 2.1 and the knowledge measure given
in Definition 7 are comparatively exploited for monitoring the differences or the similar-
ities among them. Also, some MADM methods in the literature are used for comparison
of the results to show the validity of the propositions.

3. Novel Entropy Measures for PFSs

In this section, we propose two new entropy measures for PFSs.
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Definition 9. Let A,B ∈ PFS(X). A function E : PFS(X) → [0, 1] is an entropy on
PFS, if E satisfies the following axioms:
1. E(A) = 0 if A is a crisp set,
2. E(A) = 1, if μA = ηA = νA,
3. E(A) = E(Ac),
4. E(A) � E(B), if A is less fuzzy then B, that is,

|μA − νA| + |ηA − πA| � |μB − νB | + |ηB − πB |.
For any A ∈ PFS(X), we define a function ESA1 : PFS(X) → [0, 1] by

ESA1(A) = 1

n

n∑
i=1

1 − |μA(xi) − νA(xi)| − |ηA(xi) − πA(xi)|
1 + |μA(xi) − νA(xi)| + |ηA(xi) − πA(xi)| , ∀xi ∈ X. (53)

Theorem 1. The function ESA1 is an entropy measure for a PFS.

Proof. To prove that Eq. (53) is an entropy measure for PFSs, we show that it satisfies the
axioms shown in Definition 8.
1. Suppose that A is a crisp set. This refers either

μA(xi) = 1, νA(xi) = 0, ηA(xi) = 0, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 1, ηA(xi) = 0, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 0, ηA(xi) = 1, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 0, ηA(xi) = 0, πA(xi) = 1.
If A = {〈x, 1, 0, 0〉}, then

ESA1(A) = 1

n

n∑
i=1

1 − |1 − 0| − |0 − 0|
1 + |1 − 0| + |0 − 0| = 1

n

n∑
i=1

1 − 1

1 + 1
= 0.

When we substitute other values in Eq. (53), we find that ESA1(A) = 0.
2. If μA(xi) = ηA(xi) = νA(xi), then

1

n

n∑
i=1

1 − |μA(xi) − νA(xi)| − |ηA(xi) − πA(xi)|
1 + |μA(xi) − νA(xi)| + |ηA(xi) − πA(xi)| = 1

n

n∑
i=1

1 = 1.

3. Due to the definition of the complement of A, it is clear that ESA1(A) = ESA1(A
c).

4. For any two PFSs A and B, if

|μA − νA| + |ηA − πA| � |μB − νB | + |ηB − πB |,
then 1 + |μA − νA| + |ηA − νA| � 1 + |μB − νB | + |ηB − νB |

and
1 − |μA − νA| − |ηA − νA| � 1 − |μB − νB | − |ηB − νB |.

Thus, we get ESA1(A) � ESA1(B).
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Definition 10. For any A ∈ PFS(X), we define a function ESA2 : PFS(X) → [0, 1] by

ESA2(A)

= 1 − 2

{
1

3n

n∑
i=1

[
(μA(xi) − 0.25)2 + (ηA(xi) − 0.25)2

+ (νA(xi) − 0.25)2 + (πA(xi) − 0.25)2

]} 1
2

, ∀xi ∈ X.

(54)

Lemma 1 (Joshi, 2020a). If we have either μC(xi) � μD(xi), ηC(xi) � ηD(xi),
νC(xi) � νD(xi) if max{μC(xi), ηC(xi), νC(xi)} � 0.25 or μC(xi) � μD(xi), ηC(xi) �
ηD(xi), νC(xi) � νD(xi) if min{μC(xi), ηC(xi), νC(xi)} � 0.25 for all xi ∈ X, then we
get

(
μA(xi) − 0.25

)2 + (ηA(xi) − 0.25
)2 + (νA(xi) − 0.25

)2 + (πA(xi) − 0.25
)2

�
(
μB(xi) − 0.25

)2 + (ηB(xi) − 0.25
)2 + (νB(xi) − 0.25

)2
+ (πB(xi) − 0.25

)2
.

Theorem 2. The function ESA2(A) is an entropy measure for a PFS.

Proof. To prove Eq. (54) is an entropy measure for PFSs, we show that it satisfies the
axioms in Definition 6.

1. Suppose that A is a crisp set. This refers either
μA(xi) = 1, νA(xi) = 0, ηA(xi) = 0, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 1, ηA(xi) = 0, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 0, ηA(xi) = 1, πA(xi) = 0;
or μA(xi) = 0, νA(xi) = 0, ηA(xi) = 0, πA(xi) = 1.
If A = {〈x, 1, 0, 0〉}, then

ESA2

= 1 − 2

{
1

3n

n∑
i=1

[
(1 − 0.25)2 + (0 − 0.25)2 + (0 − 0.25)2 + (0 − 0.25)2]} 1

2

= 1 − 2

{
1

3n

n∑
i=1

[
(0.75)2 + (0.25)2 + (0.25)2 + (0.25)2]} 1

2

= 1 − 2

{
1

3n

n∑
i=1

[0, 75]
} 1

2

= 0.

Substituting other values in Eq. (54), we find that ESA2(A) = 0.
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2. If A = {〈xi, 0.25, 0.25, 0.25〉 | xi ∈ X}, then πA(xi) = 0.25. We get

ESA2(A) = 1 − 2

{
1

3n

n∑
i=1

[
(μA(xi) − 0.25)2 + (ηA(xi) − 0.25)2

+ (νA(xi) − 0.25)2 + (πA(xi) − 0.25)2

]} 1
2

= ESA2(A)

= 1 − 2

{
1

3n

n∑
i=1

[
(0.25 − 0.25)2 + (0.25 − 0.25)2

+ (0.25 − 0.25)2 + (0.25 − 0.25)2

]} 1
2

= 1.

3. It is clear that ESA2(A) = ESA2(A
c) for all A ∈ PFS(X).

4. This property follows Lemma 1.

4. CODAS Extension Under Picture Fuzzy Environment (PF-CODAS)

The study has extended CODAS method into the picture fuzzy environment as a contri-
bution to the literature. In this novel proposition, PFNs provide a better opportunity of
independency to the decision-makers since it is allowed to express independent degrees
for positive, negative, and hesitant preferences. The refusal degrees can also be calculated
as the fourth element in PFS. Especially, the consideration of the refusal degree in de-
cision analysis is scarce in the literature of MADM. Moreover, entropy-based objective
weighting process is joint to the method in case that the initial problem definition does
not have the attribute weights. The algorithm is given as follows:

Step 1. Decision-makers (e = 1, . . . , k) express their judgments about alternatives’
(i = 1, . . . , m) performances with respect to attributes (j = 1, . . . , n) via linguistic
evaluations. The linguistic term set (Table 1) having PFN correspondences can be used
for this purpose.

After gathering evaluations from decision-makers, there will be k decision matrices
(X̃1, X̃2, . . . , X̃k). The judgments are combined through an aggregation operator defined
in PFS. In this aggregation, we consider the decision-makers’ weights representing their

Table 1
Linguistic terms for expert evaluations (Meksavang

et al., 2019).

Linguistic term PFN correspondence

Very Poor (VP) (0.10, 0.00, 0.85)
Poor (P) (0.25, 0.05, 0.60)
Moderately Poor (MP) (0.30, 0.00, 0.60)
Fair (F) (0.50, 0.10, 0.40)
Moderately Good (MG) (0.60, 0.00, 0.30)
Good (G) (0.75, 0.05, 0.10)
Very Good (VG) (0.90, 0.00, 0.05)
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expertise (ωe). X̃e = [x̃e
ij ] is the eth decision-maker’s evaluation matrix where x̃e

ij =
〈μe

ij , η
e
ij , v

e
ij 〉 depicts the PFN correspondence of the linguistic evaluation and X̃ = [x̃ij ]

is the aggregated decision matrix where x̃ij = 〈μij , ηij , vij 〉. For obtaining X̃e given in
Eq. (55), the picture fuzzy weighted averaging (PFWA) operator (Eq. (56)) is performed
(Wei, 2017a).

X̃ =
⎡
⎢⎣

x̃11 = 〈μ11, η11, v11〉 · · · x̃1n = 〈μ1n, η1n, v1n〉
...

. . .
...

x̃m1 = 〈μm1, ηm1, vm1〉 · · · x̃mn = 〈μmn, ηmn, vmn〉

⎤
⎥⎦ , (55)

PFWAω

(
X̃1, X̃2, . . . , X̃k

) =
k⊕

e=1

ωeX̃
e = 〈μij , ηij , vij 〉

=
{

1 −
k∏

e=1

(
1 − μe

ij

)ωe ,

k∏
e=1

(
ηe

ij

)ωe ,

k∏
e=1

(
ve
ij

)ωe

}
. (56)

Step 2. The attribute considered in any decision problem can be a cost or a benefit type
attribute. To convert cost attributes to benefit ones, the positive (μij ) and negative (vij )
membership degrees should be replaced while the neutral membership degrees (ηij ) keep
their values. This is called normalization.

Step 3. After normalization, the weights of attributes representing their importance and
significance should be considered. 4 possibilities might be thought of in weighting:

(I) If the weights are already known as prior information, we can directly use them;
(II) If the decision-makers’ preferences are important for the analyst, their expertise can

be gathered, and the subjective weights are computed via various MADM tools such
as AHP, Analytic Network Process (ANP), SWARA, Simos’ procedure, etc.;

(III) When the subjectivity is not desired with the purpose of eliminating manipulation
risk or when there is not enough time for data collection or when the analyst does
not have the weights of any kind, the weights can be objectively calculated from
the current data by referring to the methods such as entropy-based approaches or
maximizing standard deviation method;

(IV) When required, a mixture of objective and subjective methods can be exploited
(Kabak and Ruan, 2011; Çalışkan et al., 2013; Li et al., 2014; Freeman and Chen,
2015).

This proposition aims at showing the applicability of entropy-based objective weighting
with the integration of CODAS under PF environment. Therefore, the method requires
first the calculation of the entropies of each attribute via Eq. (57) or Eq. (58). Then, the
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weights are obtained as formulated in Eq. (59) (Aydoğdu and Gül, 2020)

Enj = 1

m

m∑
i=1

1 − |μij − vij | − |ηij − πij |
1 + |μij − vij | + |ηij − πij | , (57)

Enj = 1 − 2

{
1

3m

m∑
i=1

[
(μij − 0.25)2 + (ηij − 0.25)2

+ (vij − 0.25)2 + (πij − 0.25)2

]} 1
2

, (58)

wj = 1 − Enj

n −∑n
j=1 Enj

. (59)

The attribute weights obtained in Eq. (59) are used in constructing the weighted normal-
ized decision matrix R̃ = [r̃ij ] via Eq. (60). This equation is a reorganization of the
multiplication operation defined in Eq. (5)

r̃ij = 〈μw
ij , η

w
ij , v

w
ij

〉 = wj ∗ 〈μij , ηij , vij 〉
= 〈1 − (1 − μij )

wj , η
wj

ij , (ηij + vij )
wj − (ηij )

wj
〉
. (60)

Step 4. The distinctive feature of CODAS is the consideration of the distance of each
alternative from the negative-ideal solution which can be obtained via Eq. (60)

ñsj = 〈min
(
μw

ij

)
, min

(
ηw

ij

)
, max

(
vw
ij

)〉
. (61)

Step 5. Euclidean and Hamming distances of each alternative i to ñs = [ñsj ] are computed

Ei =
[

1

n

n∑
i=1

((
μw

ij − min
(
μw

ij

))2 + (ηw
ij − min

(
ηw

ij

))2 + (vw
ij − max

(
vw
ij

))2)] 1
2

,

(62)

Ti = 1

n

n∑
i=1

(∣∣μw
ij − min

(
μw

ij

)∣∣+ ∣∣ηw
ij − min

(
ηw

ij

)∣∣+ ∣∣vw
ij − max

(
vw
ij

)∣∣). (63)

The distance values are crisp numbers now. So, the remaining three steps are the same as
the original CODAS method.

Step 6. Identical to Step 6 of CODAS given in Section 2.2.

Step 7. Identical to Step 7 of CODAS given in Section 2.2.

Step 8. Identical to Step 8 of CODAS given in Section 2.2.

5. An Application of Green Supplier Selection in the Beef Industry

In the study, we have developed a novel PFS version of CODAS with the integration of
entropy-based objective attribute weighting. We have also tried to keep the computations
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picture fuzzy until the very end of the method. The proposed PF-CODAS is here applied
in a supplier selection problem for the beef industry previously defined and analysed by
Meksavang et al. (2019).

Büyüközkan and Çifçi (2012) stated that even if material, funds, and information flows
establish a supply chain system, due to governmental rules and growing consciousness in
the society about keeping the environment safe, organizations must be more sensitive to
environmental issues, particularly if they want to keep their existence in global markets.
Supplier selection issue has gained greater attraction today because organizations focus
on improving their core competence and they need to outsource less profitable activities
to supply chain partners for this reason (Govindan et al., 2015). In this selection process,
environmental issues have been emphasized from a perspective of green supply chain
management. In the literature, green supplier selection problem is very fruitful. Govindan
et al. (2015) presented a very extensive literature review on MADM applications on green
supplier selection problem. Liou et al. (2021) integrated support vector machines, fuzzy
best-worst method, and fuzzy TOPSIS method and presented the model’s applicability
in a real case of a Taiwanese electronics company. Wei et al. (2021) developed a proba-
bilistic uncertain linguistic version of CODAS and applied it to a green supplier selection
problem. Kumar and Barman (2021) applied and compared the results of fuzzy VIKOR
and fuzzy TOPSIS methods in the green supplier selection issue of India’s small-scale
iron and steel industry. Çalık (2021) proposed a Pythagorean fuzzy extension of AHP and
TOPSIS integration for green supply chain management in the Industry 4.0 era and made
a trial for agricultural tool manufacturers in Turkey.

After a brief explanation about MADM in green supply chain management field, we
can return to the application of the proposed method in a case that was previously defined
by Meksavang et al. (2019). The authors stated that carbon footprint reduction received
great attention throughout the world, and the agriculture sector is one of the main contrib-
utors to global carbon emission. They also mentioned the increasing pressure on the beef
industry from the government and clients to reduce carbon emissions in its supply chain.
For mitigating carbon emission, the proposed entropy-based PF-CODAS approach is here
applied to the selection of a supplier for a beef abattoir company.

Step 1. Ten potential beef farmers are considered as supplier alternatives and denoted as Ai

(i = 1, . . . , 10). Their green supply performance is assessed following seven attributes
(j = 1, . . . , 7): quality of meat (C1), age of cattle (C2), diet fed to cattle (C3), aver-
age weight (C4), traceability (C5), carbon footprint (C6), and price (C7). Three decision-
makers (DM1, DM2, DM3) make the evaluations of the performance ratings of suppliers.
The weight set for the decision-makers’ is assumed as (0.3, 0.4, 0.3) due to the differences
in their technical knowledge and expertise levels. The linguistic evaluations given in Ta-
ble 1 are used for this purpose and the corresponding PFNs are found in the same table.
Table A2 and Table A3 in Appendix A show the linguistic evaluations of decision-makers
and the corresponding PFNs (X̃e = [x̃e

ij ]), respectively. In order to build the aggregated
picture fuzzy decision matrix, Eq. (56) is performed.

Table 2 shows the aggregated decision matrix (Eq. (55)). As an illustration, the aggre-
gated performance value (x̃31) of A3 with respect to C1 is computed as follows where the
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Table 2
The aggregated picture fuzzy decision matrix.

C1 C2 C3 C4 C5 C6 C7

A1 0.900 0.000 0.050 0.300 0.000 0.600 0.900 0.000 0.050 0.750 0.050 0.100 0.868 0.000 0.062 0.483 0.000 0.414 0.500 0.100 0.400
A2 0.543 0.000 0.357 0.750 0.050 0.100 0.500 0.100 0.400 0.781 0.000 0.113 0.900 0.000 0.050 0.629 0.000 0.235 0.447 0.000 0.452
A3 0.581 0.000 0.266 0.354 0.000 0.531 0.781 0.000 0.113 0.600 0.000 0.300 0.629 0.000 0.235 0.600 0.000 0.300 0.354 0.000 0.531
A4 0.600 0.000 0.300 0.500 0.100 0.400 0.781 0.000 0.113 0.250 0.050 0.600 0.856 0.000 0.066 0.856 0.000 0.066 0.388 0.000 0.510
A5 0.718 0.000 0.191 0.900 0.000 0.050 0.810 0.000 0.081 0.265 0.000 0.600 0.224 0.000 0.666 0.750 0.050 0.100 0.435 0.081 0.452
A6 0.750 0.050 0.100 0.354 0.000 0.531 0.750 0.050 0.100 0.750 0.050 0.100 0.900 0.000 0.050 0.629 0.000 0.235 0.428 0.000 0.470
A7 0.551 0.000 0.298 0.300 0.000 0.600 0.483 0.000 0.414 0.354 0.000 0.531 0.265 0.000 0.600 0.483 0.000 0.414 0.428 0.000 0.470
A8 0.817 0.000 0.105 0.629 0.000 0.235 0.629 0.000 0.235 0.354 0.000 0.531 0.250 0.050 0.600 0.781 0.000 0.113 0.428 0.000 0.470
A9 0.484 0.000 0.403 0.354 0.000 0.531 0.483 0.000 0.414 0.781 0.000 0.113 0.600 0.000 0.300 0.500 0.100 0.400 0.500 0.100 0.400
A10 0.653 0.000 0.216 0.483 0.000 0.414 0.600 0.000 0.300 0.900 0.000 0.050 0.900 0.000 0.050 0.900 0.000 0.050 0.435 0.081 0.452

Table 3
The normalized picture fuzzy decision matrix.

C1 C2 C3 C4 C5 C6 C7

A1 0.900 0.000 0.050 0.300 0.000 0.600 0.900 0.000 0.050 0.750 0.050 0.100 0.868 0.000 0.062 0.483 0.000 0.414 0.400 0.100 0.500
A2 0.543 0.000 0.357 0.750 0.050 0.100 0.500 0.100 0.400 0.781 0.000 0.113 0.900 0.000 0.050 0.629 0.000 0.235 0.452 0.000 0.447
A3 0.581 0.000 0.266 0.354 0.000 0.531 0.781 0.000 0.113 0.600 0.000 0.300 0.629 0.000 0.235 0.600 0.000 0.300 0.531 0.000 0.354
A4 0.600 0.000 0.300 0.500 0.100 0.400 0.781 0.000 0.113 0.250 0.050 0.600 0.856 0.000 0.066 0.856 0.000 0.066 0.510 0.000 0.388
A5 0.718 0.000 0.191 0.900 0.000 0.050 0.810 0.000 0.081 0.265 0.000 0.600 0.224 0.000 0.666 0.750 0.050 0.100 0.452 0.081 0.435
A6 0.750 0.050 0.100 0.354 0.000 0.531 0.750 0.050 0.100 0.750 0.050 0.100 0.900 0.000 0.050 0.629 0.000 0.235 0.470 0.000 0.428
A7 0.551 0.000 0.298 0.300 0.000 0.600 0.483 0.000 0.414 0.354 0.000 0.531 0.265 0.000 0.600 0.483 0.000 0.414 0.470 0.000 0.428
A8 0.817 0.000 0.105 0.629 0.000 0.235 0.629 0.000 0.235 0.354 0.000 0.531 0.250 0.050 0.600 0.781 0.000 0.113 0.470 0.000 0.428
A9 0.484 0.000 0.403 0.354 0.000 0.531 0.483 0.000 0.414 0.781 0.000 0.113 0.600 0.000 0.300 0.500 0.100 0.400 0.400 0.100 0.500
A10 0.653 0.000 0.216 0.483 0.000 0.414 0.600 0.000 0.300 0.900 0.000 0.050 0.900 0.000 0.050 0.900 0.000 0.050 0.452 0.081 0.435

evaluations are P (0.25, 0.05, 0.60), MG (0.60, 0.00, 0.30), G (0.75, 0.05, 0.10):

x̃31 = 0.3 ∗ (0.25, 0.05, 0.60) + 0.4 ∗ (0.60, 0.00, 0.30) + 0.3 ∗ (0.75, 0.05, 0.10)

= (1 − (1 − 0.25)0.3 ∗ (1 − 0.60)0.4 ∗ (1 − 0.75)0.3, 0.050.3 ∗ 0.000.4 ∗ 0.050.3,

0.600.3 ∗ 0.300.4 ∗ 0.100.3) = (0.581, 0.000, 0.266).

Step 2. In normalization step, the normalized decision matrix is constructed as given in
Table 3. There is only one cost attribute in this problem: price (C7). Hence, this last at-
tribute’s positive (μi7) and negative membership (vi7) degrees are replaced.

Step 3. Entropy-based objective weights of the attributes are calculated in this step. For
each attribute j , Eq. (57) or Eq. (58) is performed for computing entropies and the weights
are gathered after making a normalization which is formulated in Eq. (59). The related
entropies and weights of the attributes are given in Table 4. Generating from the definitions
of the entropy measures, there are few differences between the importance rankings of the
attributes as well as the weights. Therefore, in further steps, we will see the impact of this
difference on the solution of the problem.

By considering the weights of the attributes, the normalized matrix is weighted by
using the formula in Eq. (60). For simplicity, the application of the further steps will be
explained for the weight set which is found by Eq. (57): [0.156, 0.130, 0.154, 0.164, 0.184,
0.150, 0.062]. Table 5 shows the weighted normalized picture fuzzy decision matrix.
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Table 4
The weights of the attributes which are based on two novel entropy measures.

C1 C2 C3 C4 C5 C6 C7

Enj (Eq. 51) 0.330 0.441 0.339 0.297 0.211 0.355 0.732
1- Enj 0.670 0.559 0.661 0.703 0.789 0.645 0.268
wj 0.156 0.130 0.154 0.164 0.184 0.150 0.062
Importance ranking 3 6 4 2 1 5 7

Enj (Eq. 52) 0.391 0.436 0.365 0.374 0.291 0.375 0.532
1- Enj 0.609 0.564 0.635 0.626 0.709 0.625 0.468
wj 0.144 0.133 0.150 0.148 0.167 0.147 0.111
Importance ranking 5 6 2 3 1 4 7

Difference between weights 0.012 −0.003 0.004 0.016 0.016 0.003 −0.048

Table 5
The weighted normalized picture fuzzy decision matrix.

C1 C2 C3 C4 C5 C6 C7

A1 0.302 0.000 0.627 0.045 0.000 0.936 0.298 0.000 0.631 0.203 0.613 0.121 0.311 0.000 0.599 0.094 0.000 0.876 0.031 0.866 0.102
A2 0.115 0.000 0.851 0.165 0.677 0.104 0.101 0.702 0.197 0.220 0.000 0.700 0.345 0.000 0.577 0.138 0.000 0.805 0.037 0.000 0.951
A3 0.127 0.000 0.813 0.055 0.000 0.921 0.209 0.000 0.715 0.139 0.000 0.821 0.166 0.000 0.766 0.129 0.000 0.835 0.046 0.000 0.937
A4 0.133 0.000 0.829 0.086 0.741 0.173 0.209 0.000 0.715 0.046 0.613 0.319 0.299 0.000 0.607 0.252 0.000 0.665 0.044 0.000 0.943
A5 0.179 0.000 0.772 0.259 0.000 0.677 0.226 0.000 0.679 0.049 0.000 0.920 0.046 0.000 0.928 0.188 0.638 0.114 0.037 0.855 0.105
A6 0.194 0.627 0.117 0.055 0.000 0.921 0.192 0.631 0.116 0.203 0.613 0.121 0.345 0.000 0.577 0.138 0.000 0.805 0.039 0.000 0.948
A7 0.117 0.000 0.828 0.045 0.000 0.936 0.096 0.000 0.873 0.069 0.000 0.902 0.055 0.000 0.910 0.094 0.000 0.876 0.039 0.000 0.948
A8 0.233 0.000 0.704 0.121 0.000 0.828 0.141 0.000 0.800 0.069 0.000 0.902 0.051 0.577 0.347 0.204 0.000 0.721 0.039 0.000 0.948
A9 0.098 0.000 0.868 0.055 0.000 0.921 0.096 0.000 0.873 0.220 0.000 0.700 0.155 0.000 0.802 0.099 0.708 0.193 0.031 0.866 0.102
A10 0.152 0.000 0.787 0.082 0.000 0.892 0.132 0.000 0.831 0.314 0.000 0.613 0.345 0.000 0.577 0.292 0.000 0.638 0.037 0.855 0.105
ñs 0.098 0.000 0.868 0.045 0.000 0.936 0.096 0.000 0.873 0.046 0.000 0.920 0.046 0.000 0.928 0.094 0.000 0.876 0.031 0.000 0.951

Step 4. In CODAS, the origin point for the comparison of alternatives is the negative-ideal
solution. By performing Eq. (60), ñs = [ñsj ] is found as a row vector and shown in the
last row of Table 5.

Step 5. The ranking of the alternatives is based on the distances between the alternatives
and the negative-ideal solution. Euclidean and Hamming distances are found via Eq. (62)
and Eq. (63), respectively, and shown in Table 6. These distances are now crisp numbers.

Step 6. The pairwise comparison matrix including the combinative distances is built by
performing the procedure explained by the algorithm in Section 2.2. Table 7 gives the
comparison matrix. The required parameter of � is set to 0.05.

Step 7. The assessment score generated by summing the row values of the comparison
matrix is computed for each alternative. These Hi assessment values are represented in
Table 7.

Step 8. The highest separation measure refers to the best alternative. So, the alternatives
are ranked in descending order of Hi values as given in the last column of Table 7. Hence,
the best alternative is the 6th supplier while the worst one is the 7th supplier of beef in
terms of green supply performance. The full rank is A6 � A1 � A5 � A2 � A9 � A4 �
A10 � A8 � A3 � A7.
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Table 6
Euclidean and Hamming distances to the

negative-ideal solution.

Ei Ti

A1 0.642 0.681
A2 0.587 0.601
A3 0.122 0.137
A4 0.554 0.581
A5 0.612 0.596
A6 0.677 0.761
A7 0.022 0.020
A8 0.333 0.297
A9 0.603 0.538
A10 0.526 0.523

Table 7
Comparison of distances and the ranking of alternatives.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Hi Rank

A1 0.000 0.135 1.064 0.188 0.030 −0.034 1.282 0.693 0.039 0.274 3.671 2
A2 −0.055 0.000 0.930 0.033 −0.025 −0.089 1.147 0.558 −0.016 0.139 2.622 4
A3 −0.520 −0.465 0.000 −0.432 −0.490 −0.555 0.217 −0.211 −0.481 −0.404 −3.341 9
A4 −0.088 −0.033 0.876 0.000 −0.059 −0.123 1.094 0.505 −0.049 0.028 2.150 6
A5 −0.030 0.025 0.950 0.074 0.000 −0.064 1.167 0.579 0.010 0.159 2.871 3
A6 0.034 0.249 1.179 0.303 0.229 0.000 1.396 0.807 0.297 0.388 4.882 1
A7 −0.621 −0.565 −0.100 −0.532 −0.591 −0.655 0.000 −0.311 −0.581 −0.505 −4.461 10
A8 −0.309 −0.254 0.371 −0.221 −0.279 −0.344 0.589 0.000 −0.270 −0.193 −0.910 8
A9 −0.039 0.016 0.882 0.049 −0.010 −0.074 1.099 0.511 0.000 0.091 2.525 5
A10 −0.116 −0.061 0.791 −0.028 −0.086 −0.150 1.008 0.419 −0.077 0.000 1.701 7

In Step 3, there are two sets of attribute weights and we have shown the calculations for
the first weight set until now for simplicity. The application of PF-CODAS with the second
weight set determined via Eq. (58) is not shown in detail but the tables constituted are given
in Appendix A. While Table A4 shows the weighted normalized picture fuzzy decision
matrix, Table A5 depicts the distances obtained. Table A6 summarizes the comparison
results, assessment scores, and the rankings of the alternatives which is A6 � A1 � A2 �
A5 � A4 � A9 � A10 � A8 � A3 � A7. A comparison of the rankings will be made in
Section 6.

6. Comparison of Results

In order to check the validity of the proposed entropy-based PF-CODAS method, we have
analysed two cases. In the first analysis, the rankings of the alternatives which are found
by different entropy measures are compared. In the second one, a similar comparison is
done for the applications with various versions of CODAS and TOPSIS methods.

In terms of entropy-based comparison, the weight sets are determined. Table 8 gives
the results of the comparison of weights and Table 9 shows the rankings of the alterna-
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Table 8
The weights of the attributes which are based on several measures.

Enj

with
Eq.
(44)

wj

with
Eq.
(44)

Rank Enj

with
Eq.
(48)

wj

with
Eq.
(48)

Rank wj

with
Eq.
(66)

Rank Enj

with
Eq.
(57)

wj

with
Eq.
(57)

Rank Enj

with
Eq.
(58)

wj

with
Eq.
(58)

Rank

C1 0.346 0.143 5 0.472 0.149 4 0.147 4 0.330 0.156 3 0.391 0.144 5
C2 0.409 0.132 6 0.511 0.134 6 0.136 6 0.441 0.130 6 0.436 0.133 6
C3 0.343 0.149 2 0.448 0.149 3 0.148 3 0.339 0.154 4 0.365 0.150 2
C4 0.332 0.147 3 0.456 0.151 2 0.152 2 0.297 0.164 2 0.374 0.148 3
C5 0.253 0.170 1 0.373 0.169 1 0.165 1 0.211 0.184 1 0.291 0.167 1
C6 0.354 0.147 4 0.457 0.147 5 0.146 5 0.355 0.150 5 0.375 0.147 4
C7 0.555 0.112 7 0.586 0.101 7 0.106 7 0.732 0.062 7 0.532 0.111 7

Table 9
The comparison of assessment scores and alternative rankings.

Hi Ranks
with
Eq. (44)

Hi Ranks
with
Eq. (48)

Hi Ranks
with
Eq. (66)

Hi Ranks
with
Eq. (57)

Hi Ranks
with
Eq. (58)

A1 3.327 2 3.203 2 3.274 2 3.671 2 3.271 2
A2 2.712 3 2.751 3 2.713 3 2.622 4 2.731 3
A3 −3.279 9 −3.255 9 −3.273 9 −3.341 9 −3.260 9
A4 2.377 5 2.469 5 2.360 5 2.150 6 2.447 5
A5 2.627 4 2.547 4 2.606 4 2.871 3 2.558 4
A6 5.305 1 5.436 1 5.330 1 4.882 1 5.406 1
A7 −4.349 10 −4.324 10 −4.331 10 −4.461 10 −4.326 10
A8 −0.658 8 −0.639 8 −0.591 8 −0.910 8 −0.615 8
A9 2.266 6 2.186 6 2.240 6 2.525 5 2.192 6
A10 1.277 7 1.170 7 1.224 7 1.701 7 1.180 7

tives. The entropy measures used are represented on the columns. The last two are the
novel entropy measures proposed in the study and the first three are the existing ones in
the literature: Eq. (44) defined by Wang et al. (2018), Eq. (48) defined by Joshi (2020a),
and the knowledge measure in Eq. (52) defined by Lin et al. (2020). The third one pro-
vides a knowledge measure which is based on entropy measure and hesitancy degrees.
The stepwise methodology is summarized as follows:

(a) The entropy matrix showing the entropies for each pair of alternative and attribute is
derived as follows:

[
En(x̃ij )

] =
⎡
⎢⎣

En(x̃11) · · · En(x̃1n)
...

. . .
...

En(x̃m1) · · · En(x̃mn)

⎤
⎥⎦ , (64)

where En(x̃ij ) = min(dH (x̃ij ,Cmin),dH (x̃ij ,Cmax))

max(dH (x̃ij ,Cmin),dH (x̃ij ,Cmax))
and Cmin = 〈0, 0, 1〉 and Cmax =

〈1, 0, 0〉.
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Fig. 1. Comparison of the ranks of the attributes.

(b) The knowledge matrix is derived as follows:

[
K(x̃ij )

] =
⎡
⎢⎣

K(x̃11) · · · K(x̃1n)
...

. . .
...

K(x̃m1) · · · K(x̃mn)

⎤
⎥⎦ , (65)

where K(x̃ij ) = 1 − 0.5(En(x̃ij ) + πij ) and πij = 1 − μij − ηij − νij .
(c) If the knowledge measure of a criterion is larger across the alternative, it means that

the value of this criterion has a smaller variation. Hence, this one shows a greater
impact on the overall ratings of the alternatives. From this understanding, Eq. (66) is
used for attribute weighting:

wj =
∑m

i=1 K(x̃ij )∑n
j=1

∑m
i=1 K(x̃ij )

. (66)

The importance ranking of the attributes is presented in Fig. 1. It is seen that there are
few differences among the weight sets. Throughout the five sets, while C5, C2, and C7

keep their ranks, the most changing attributes are C1 and C3. Table 9 and Fig. 2 show the
comparisons of the alternative rankings gathered by applying the entropy-based weight-
ings determined in Table 8. As seen in Fig. 2, the rankings are slightly different for the
alternative pairs (A2, A5) and (A4, A9), while the other six alternatives keep their rank-
ings in all 5 applications. Another important finding is that the three applications which
are based on the existing entropy measures in the literature give the same ranking as the
proposed second entropy (Eq. (58)). The slightly different rankings are generated by the
application based on the first novel entropy proposition given in Eq. (57). In conclusion,
it is seen that although there are differences in entropy measures and attribute weights
associated, the rankings of the alternatives are stable throughout the process.
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Fig. 2. Comparison of the ranks of alternatives for different weight sets.

Fig. 3. Comparison of the ranks of alternatives for CODAS and TOPSIS versions.

The second analysis aims to compare the rankings of the alternatives of various ap-
proaches. Traditional CODAS developed by Keshavraz Ghorabaee et al. (2016), spheri-
cal fuzzy version of CODAS developed by Kutlu Gündoğdu and Kahraman (2019b), and
spherical fuzzy extension of TOPSIS (Technique for Order Preference by Similarity to an
Ideal Solution) developed by Kutlu Gündoğdu (2020) are utilized for this purpose. Each
method is performed by considering two entropy measure propositions of the study, sepa-
rately. To keep the flow of the study, the details of the methods are not given. The interested
readers can look at the referred studies.

Fig. 3 shows the results of the comparisons. SF-TOPSIS, CODAS, and SF-CODAS
give slightly different results while the proposed PF-CODAS generates different rankings
of the alternatives. In terms of A2 which is the best alternative obtained by PF-CODAS,
CODAS and SF-TOPSIS rank it as the 3rd best while SF-CODAS sees it as the 4th best.
A10 is found as the best alternative by the mentioned methods but PF-CODAS ranks it as
the 7th best. A1 and A7 keep their 2nd and 10th positions, respectively, but it is obvious
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Fig. 4. A comprehensive comparison.

that there are significant differences for the other 8 alternatives. For a more comprehensive
view, Fig. 2 and Fig. 3 are aggregated and the result is depicted in Fig. 4.

As Fig. 4 indicates, the most rank fluctuating alternatives are A10 and A6 while the
rankings of the other alternatives stay in an interval. For example, A8 is ranked as either
8th or 9th best while the ranking interval of A3 is [6–9]. The reason for these significantly
different findings can be that the PFSs allow the decision analysts to take the refusal degree
into account while aiding a MADM process. Spherical fuzzy versions of CODAS and
TOPSIS are selected for this comparison due to their hesitancy consideration power but
they do not cope with the refusal degree of the decision-makers. In short, it seems that
the fourth element considered by PF-CODAS may generate different rankings from the
existing CODAS and TOPSIS versions.

For a deeper understanding of the differences generated by the proposed entropy-based
SF-CODAS, Spearman’s rank correlation coefficients are also computed. Kahraman et al.
(2009) proposed the usage of this statistical tool for revealing the differences between the
rankings of various methods under group environment. Eq. (67) shows Spearman’s rank
correlation coefficient. A larger coefficient indicates a larger level of consensus among the
results of the compared approaches.

ρ = 1 − 6
∑

j d2

m(m2 − 1)
, (67)

where d is the difference between the rank of the alternatives determined by each pair of
approaches applied.

Table 10 shows the sum of the squared differences among the ranking results of
CODAS and TOPSIS versions and PF-CODAS method while Table 11 shows the correla-
tion coefficients of ρ. Except for 2 comparisons [CODAS-1 & PF-CODAS with Eq. (57)
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Table 10
Sum of the squared differences between methods.

PF-CODAS
with Eq. (44)

PF-CODAS
with Eq. (48)

PF-CODAS
with Eq. (66)

PF-CODAS
with Eq. (57)

PF-CODAS
with Eq. (58)

CODAS-1 64 64 64 76 64
CODAS-2 54 54 54 64 54
SF-CODAS-1 52 52 52 62 52
SF-CODAS-2 58 58 58 70 58
SF-TOPSIS-1 54 54 54 64 54
SF-TOPSIS-2 54 54 54 64 54

Table 11
Spearman rank correlation coefficients between methods.

PF-CODAS
with Eq. (44)

PF-CODAS
with Eq. (48)

PF-CODAS
with Eq. (66)

PF-CODAS
with Eq. (57)

PF-CODAS
with Eq. (58)

CODAS-1 0.612 0.612 0.612 0.539 0.612
CODAS-2 0.673 0.673 0.673 0.612 0.673
SF-CODAS-1 0.685 0.685 0.685 0.624 0.685
SF-CODAS-2 0.648 0.648 0.648 0.576 0.648
SF-TOPSIS-1 0.673 0.673 0.673 0.612 0.673
SF-TOPSIS-2 0.673 0.673 0.673 0.612 0.673

and SF-CODAS-2 & PF-CODAS with Eq. (57)], ρ coefficients are higher than 0.60. For
this case, it is concluded that there are medium to high level positive correlations among
the rankings of the methods used.

7. Concluding Remarks

PFS has been recently accepted by the MADM domain as one of the useful fuzzy envi-
ronments because of its extensive representation power of the preferences and opinions of
decision-makers. PFS is defined by four elements, namely positive, negative, neutral, and
refusal membership degrees and the first three elements can be independently assignable.
The only rule that must be satisfied is that the sum of these four elements should be equal
to 1.

Entropy is a very important information measure of fuzzy sets such as distance, inclu-
sion, or similarity. In the literature, there are few entropy measures developed for PFSs.
Entropy measures are exploited for determining the objective weights of attributes or the
importance of decision-makers. These objective weights are found beneficial in case the
subjective evaluation of weights is not desired or needed. The contributions of the study
may be listed as follows:

• Two novel entropy measures for PFSs are developed and their proofs are given.
• CODAS, which is based on two different distance measures from the negative-ideal

solution such as Euclidean and Hamming distance, is extended into PFS for the first
time in the literature. Although spherical fuzzy and neutrosophic versions of CODAS
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can handle the hesitancy degree of the decision-makers, none of the current versions
of CODAS are capable of handling their refusal degrees. The most powerful aspect of
the novel extension is the simultaneous consideration of both the hesitancy and refusal
degrees of the decision-makers.

• To validate the novel PF-CODAS, a real green supplier selection application for the beef
industry is conducted. The rankings are compared with different applications’ rankings
such as SF-TOPSIS, CODAS, and SF-CODAS. It is found that the proposed method
generates different rankings of the alternatives due to the consideration of refusal de-
gree.

• To understand the meaning of the differences in alternative rankings better, Spearman’s
rank correlation coefficient is used, and it is seen that there are medium to high cor-
relations among the alternative ranking results of the methods compared in the study.
In future applications, this situation should be investigated deeply.

In the proposed method, there are some limitations that should be handled. To cope
with the disadvantageous parts of the study, the possible improvements are listed as fol-
lows:

• Rather than enforcing the decision-makers to use a fixed and not-flexible linguistic term
set that has PFN correspondences, a future study may work on allowing the decision-
makers to directly allocate positive, neutral, and negative membership degrees so that
the data collection process becomes more realistic.

• Further studies should investigate the reason behind the finding of generating different
rankings of alternatives by PF-based MADM methods. In order to make more compre-
hensive comparisons, novel fuzzy set definitions such as Fermatean fuzzy sets (Senapati
and Yager, 2020), diophantine fuzzy sets (Riaz and Hashmi, 2019), and bipolar soft sets
(Mahmood, 2020) may be utilized.

• The entropy-based attribute weighting technique has some drawbacks. In some cases
requiring expert opinions about the importance of attributes, subjective and objective
methods can be incorporated. In this manner, the subjectivity can be kept in control
while respecting the expertise of the decision-makers.

• In the literature, a few studies (Wang, 2009; Han and Xiao, 2009) criticized the en-
tropy definitions from a probability perspective and claimed that entropy measure is
not enough to measure information in a data set. To deal with these sorts of problems,
future works can focus on studying newer objective attribute weighting methods, such
as MEREC, SECA, CRITIC, maximizing standard deviation, etc. under picture fuzzy
environment.

A. Appendix
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Table A1
The literature on fuzzy extensions of CODAS and their applications.

Paper CODAS Version Hybrid Method(s) Application
Keshavarz-Ghorabaee et al. (2017) Fuzzy sets F-EDAS and F-TOPSIS for comparison Numerical example on market segment

evaluation
Panchal et al. (2017) Fuzzy sets F-AHP for attribute weighting Selection of an optimal maintenance strategy for

an Ammonia Synthesis Unit of a urea fertilizer
industry located in North India

Peng and Garg (2018) Interval-valued fuzzy soft sets IVFS-MABAC and IVFS-WDBA for
comparison

A numerical example of emergency
decision-making issue of mine accidents

Karaşan et al. (2019c) Interval-valued hesitant fuzzy sets F-CODAS and HF-TOPSIS for comparison Residential construction site selection
Büyüközkan and Göçer (2019) Intuitionistic fuzzy sets IF-TOPSIS and IF-VIKOR for comparison Prioritization of the strategies for smart city

logistics
Karagöz et al. (2020) Intuitionistic fuzzy sets IF-WASPAS and IF-TOPSIS for comparison Locating an authorized dismantling centre in

Turkey
Dahooei et al. (2018) Interval-valued intuitionistic fuzzy

sets
IVIF-TODIM, IVIF-COPRAS,
IVIF-MABAC for comparison

Evaluation of business intelligence for enterprise
systems

Bolturk and Kahraman (2018) Interval-valued intuitionistic fuzzy
sets

CODAS for comparison Evaluation of wave energy technology
investments in Turkey

Roy et al. (2019) Interval-valued intuitionistic fuzzy
sets

The linear programming model for attribute
weighting CODAS, F-CODAS,
IVIF-VIKOR, IVIF-TOPSIS for comparison

Numerical example on an automotive parts
factory in India searching for the best material
for the automotive instrument panel

Yeni and Özçelik (2019) Interval-valued intuitionistic fuzzy
sets

IVIF-TOPSIS, IVIF-VIKOR, IVIF-SAW for
comparison

Personnel selection for an engineering position
in a company

Dahooei et al. (2020) Interval-valued intuitionistic fuzzy
sets

– Choosing the appropriate system for cloud
computing implementation in Iran

Deveci et al. (2020) Interval-valued intuitionistic fuzzy
sets

– Evaluation of renewable energy alternatives in
Turkey

Ouhibi and Frikha (2020) Interval-valued intuitionistic fuzzy
sets

– Sorting of natural resources in Tunisia

Remadi and Frikha (2020) Triangular interval-valued
intuitionistic fuzzy sets

TOPSIS, VIKOR, GRA, and CODAS for
comparison

Green supplier selection problem for olive oil

(continued on next page)
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Table A1

(continued)

Paper CODAS Version Hybrid Method(s) Application

Seker and Aydin (2020) Interval-valued intuitionistic fuzzy
sets

IVIF-AHP for attribute weighting
AHP&CODAS, F-AHP&F-CODAS for
comparison

Determination of the most appropriate public
transportation system to transfer people along
the campus

Yalçın and Yapıcı Pehlivan (2019) Hesitant fuzzy linguistic term sets F-EDAS, F-TOPSIS, F-WASPAS, F-ARAS,
F-COPRAS for comparison

Blue-collar personnel selection problem for a
manufacturing firm in Turkey

Sansabas-Villalpando et al. (2019) Hesitant fuzzy linguistic term sets AHP for attribute weighting Appraisal of the organizational culture of
innovation and complex technological changing
environments

Mukul et al. (2020) Hesitant fuzzy linguistic term sets HFL-AHP for attribute weighting Evaluation of smart health technologies
Büyüközkan and Mukul (2020) Hesitant fuzzy linguistic term sets HFL-AHP for attribute weighting

HFL-TOPSIS for comparison
Evaluation of smart health technologies

Bolturk (2018) Pythagorean fuzzy sets CODAS for comparison Supplier selection in a manufacturing firm
Peng and Ma (2020) Pythagorean fuzzy sets TOPSIS and TODIM for comparison Several hypothetical examples
Büyüközkan and Göçer (2020) Pythagorean fuzzy sets – Selection of additive manufacturing technologies

for the needs of the supply chain in Turkey
Bolturk and Kahraman (2019) Interval-valued Pythagorean fuzzy

sets
– Selection of the best AS/RS technology

Peng and Li (2019) Hesitant fuzzy soft sets HFS-WDBA A numerical example of an emergency
decision-making issue of mine accidents

Wang et al. (2020) 2-tuple linguistic neutrosophic sets – A numerical example for the safety assessment
of a construction project

He et al. (2020) 2-tuple linguistic Pythagorean
fuzzy sets

2TLPF-TODIM for comparison Numerical example on the assessment of
financial management performance

Karaşan et al. (2019a) Neutrosophic sets IVIF-TOPSIS for comparison Wind energy plant location selection problem
Karaşan et al. (2019b) Neutrosophic sets – Assessment of livability index of urban districts

in Turkey
Karaşan et al. (2020) Neutrosophic sets – Evaluation of defense strategies for Turkey
Kutlu Gündoğdu and Kahraman (2019b) Spherical fuzzy sets IF-TOPSIS and IF-CODAS for comparison A hypothetical example
Kutlu Gündoğdu and Kahraman (2020) Spherical fuzzy sets IF-TOPSIS for comparison Warehouse site selection problem
Karaşan et al. (2021) Spherical fuzzy sets – Assessment of livability index of suburban

districts in Turkey
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Table A2
Linguistic evaluations of the decision-makers.

C1 C2 C3 C4 C5 C6 C7

A1 VG VG VG MP MP MP VG VG VG G G G G VG VG MP F MG F F F
A2 F MG F G G G F F F MG G VG VG VG VG G MG F F F MP
A3 P MG G P MP F MG G VG MG MG MG G MG F MG MG MG P MP F
A4 MG MG MG F F F VG G MG P P P VG G VG VG G VG MP F MP
A5 F MG VG VG VG VG VG G G P P MP VP P MP G G G F F P
A6 G G G F MP P G G G G G G VG VG VG F MG G F MP F
A7 MP F G MP MP MP MP F MG P MP F P P MP MP F MG F MP F
A8 P VG VG G MG F F MG G P MP F P P P VG G MG F MP F
A9 P MG F F MP P MP F MG MG G VG MG MG MG F F F F F F
A10 MG MG G MP F MG MG MG MG VG VG VG VG VG VG VG VG VG P F F

Table A3
The experts’ decision matrices including PFNs.

DM1 C1 C2 C3 C4 C5 C6 C7

A1 0.9 0 0.05 0.3 0 0.6 0.9 0 0.05 0.75 0.05 0.1 0.75 0.05 0.1 0.3 0 0.6 0.5 0.1 0.4
A2 0.5 0.1 0.4 0.75 0.05 0.1 0.5 0.1 0.4 0.6 0 0.3 0.9 0 0.05 0.75 0.05 0.1 0.5 0.1 0.4
A3 0.25 0.05 0.6 0.25 0.05 0.6 0.6 0 0.3 0.6 0 0.3 0.75 0.05 0.1 0.6 0 0.3 0.25 0.05 0.6
A4 0.6 0 0.3 0.5 0.1 0.4 0.9 0 0.05 0.25 0.05 0.6 0.9 0 0.05 0.9 0 0.05 0.3 0 0.6
A5 0.5 0.1 0.4 0.9 0 0.05 0.9 0 0.05 0.25 0.05 0.6 0.1 0 0.85 0.75 0.05 0.1 0.5 0.1 0.4
A6 0.75 0.05 0.1 0.5 0.1 0.4 0.75 0.05 0.1 0.75 0.05 0.1 0.9 0 0.05 0.5 0.1 0.4 0.5 0.1 0.4
A7 0.3 0 0.6 0.3 0 0.6 0.3 0 0.6 0.25 0.05 0.6 0.25 0.05 0.6 0.3 0 0.6 0.5 0.1 0.4
A8 0.25 0.05 0.6 0.75 0.05 0.1 0.5 0.1 0.4 0.25 0.05 0.6 0.25 0.05 0.6 0.9 0 0.05 0.5 0.1 0.4
A9 0.25 0.05 0.6 0.5 0.1 0.4 0.3 0 0.6 0.6 0 0.3 0.6 0 0.3 0.5 0.1 0.4 0.5 0.1 0.4
A10 0.6 0 0.3 0.3 0 0.6 0.6 0 0.3 0.9 0 0.05 0.9 0 0.05 0.9 0 0.05 0.25 0.05 0.6

DM2 C1 C2 C3 C4 C5 C6 C7

A1 0.9 0 0.05 0.3 0 0.6 0.9 0 0.05 0.75 0.05 0.1 0.9 0 0.05 0.5 0.1 0.4 0.5 0.1 0.4
A2 0.6 0 0.3 0.75 0.05 0.1 0.5 0.1 0.4 0.75 0.05 0.1 0.9 0 0.05 0.6 0 0.3 0.5 0.1 0.4
A3 0.6 0 0.3 0.3 0 0.6 0.75 0.05 0.1 0.6 0 0.3 0.6 0 0.3 0.6 0 0.3 0.3 0 0.6
A4 0.6 0 0.3 0.5 0.1 0.4 0.75 0.05 0.1 0.25 0.05 0.6 0.75 0.05 0.1 0.75 0.05 0.1 0.5 0.1 0.4
A5 0.6 0 0.3 0.9 0 0.05 0.75 0.05 0.1 0.25 0.05 0.6 0.25 0.05 0.6 0.75 0.05 0.1 0.5 0.1 0.4
A6 0.75 0.05 0.1 0.3 0 0.6 0.75 0.05 0.1 0.75 0.05 0.1 0.9 0 0.05 0.6 0 0.3 0.3 0 0.6
A7 0.5 0.1 0.4 0.3 0 0.6 0.5 0.1 0.4 0.3 0 0.6 0.25 0.05 0.6 0.5 0.1 0.4 0.3 0 0.6
A8 0.9 0 0.05 0.6 0 0.3 0.6 0 0.3 0.3 0 0.6 0.25 0.05 0.6 0.75 0.05 0.1 0.3 0 0.6
A9 0.6 0 0.3 0.3 0 0.6 0.5 0.1 0.4 0.75 0.05 0.1 0.6 0 0.3 0.5 0.1 0.4 0.5 0.1 0.4
A10 0.6 0 0.3 0.5 0.1 0.4 0.6 0 0.3 0.9 0 0.05 0.9 0 0.05 0.9 0 0.05 0.5 0.1 0.4

DM3 C1 C2 C3 C4 C5 C6 C7

A1 0.9 0 0.05 0.3 0 0.6 0.9 0 0.05 0.75 0.05 0.1 0.9 0 0.05 0.6 0 0.3 0.5 0.1 0.4
A2 0.5 0.1 0.4 0.75 0.05 0.1 0.5 0.1 0.4 0.9 0 0.05 0.9 0 0.05 0.5 0.1 0.4 0.3 0 0.6
A3 0.75 0.05 0.1 0.5 0.1 0.4 0.9 0 0.05 0.6 0 0.3 0.5 0.1 0.4 0.6 0 0.3 0.5 0.1 0.4
A4 0.6 0 0.3 0.5 0.1 0.4 0.6 0 0.3 0.25 0.05 0.6 0.9 0 0.05 0.9 0 0.05 0.3 0 0.6
A5 0.9 0 0.05 0.9 0 0.05 0.75 0.05 0.1 0.3 0 0.6 0.3 0 0.6 0.75 0.05 0.1 0.25 0.05 0.6
A6 0.75 0.05 0.1 0.25 0.05 0.6 0.75 0.05 0.1 0.75 0.05 0.1 0.9 0 0.05 0.75 0.05 0.1 0.5 0.1 0.4
A7 0.75 0.05 0.1 0.3 0 0.6 0.6 0 0.3 0.5 0.1 0.4 0.3 0 0.6 0.6 0 0.3 0.5 0.1 0.4
A8 0.9 0 0.05 0.5 0.1 0.4 0.75 0.05 0.1 0.5 0.1 0.4 0.25 0.05 0.6 0.6 0 0.3 0.5 0.1 0.4
A9 0.5 0.1 0.4 0.25 0.05 0.6 0.6 0 0.3 0.9 0 0.05 0.6 0 0.3 0.5 0.1 0.4 0.5 0.1 0.4
A10 0.75 0.05 0.1 0.6 0 0.3 0.6 0 0.3 0.9 0 0.05 0.9 0 0.05 0.9 0 0.05 0.5 0.1 0.4
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Table A4
The weighted normalized picture fuzzy decision matrix for Eq. (58).

C1 C2 C3 C4 C5 C6 C7

A1 0.282 0.000 0.650 0.046 0.000 0.934 0.292 0.000 0.638 0.185 0.642 0.113 0.288 0.000 0.627 0.093 0.000 0.878 0.055 0.775 0.170
A2 0.106 0.000 0.862 0.169 0.671 0.106 0.099 0.708 0.193 0.201 0.000 0.724 0.320 0.000 0.606 0.136 0.000 0.808 0.064 0.000 0.915
A3 0.117 0.000 0.826 0.057 0.000 0.919 0.204 0.000 0.721 0.127 0.000 0.837 0.153 0.000 0.785 0.126 0.000 0.837 0.080 0.000 0.892
A4 0.123 0.000 0.841 0.088 0.736 0.176 0.204 0.000 0.721 0.042 0.642 0.296 0.277 0.000 0.634 0.248 0.000 0.670 0.076 0.000 0.901
A5 0.166 0.000 0.788 0.264 0.000 0.671 0.220 0.000 0.686 0.045 0.000 0.927 0.042 0.000 0.934 0.185 0.643 0.113 0.064 0.758 0.172
A6 0.181 0.650 0.111 0.057 0.000 0.919 0.188 0.638 0.114 0.185 0.642 0.113 0.320 0.000 0.606 0.136 0.000 0.808 0.068 0.000 0.910
A7 0.109 0.000 0.840 0.046 0.000 0.934 0.094 0.000 0.876 0.063 0.000 0.911 0.050 0.000 0.918 0.093 0.000 0.878 0.068 0.000 0.910
A8 0.217 0.000 0.724 0.124 0.000 0.825 0.138 0.000 0.805 0.063 0.000 0.911 0.047 0.606 0.325 0.201 0.000 0.725 0.068 0.000 0.910
A9 0.091 0.000 0.877 0.057 0.000 0.919 0.094 0.000 0.876 0.201 0.000 0.724 0.142 0.000 0.817 0.097 0.712 0.191 0.055 0.775 0.170
A10 0.141 0.000 0.802 0.084 0.000 0.889 0.128 0.000 0.835 0.288 0.000 0.642 0.320 0.000 0.606 0.288 0.000 0.643 0.064 0.758 0.172
ñs 0.091 0.000 0.877 0.046 0.000 0.934 0.094 0.000 0.876 0.042 0.000 0.927 0.042 0.000 0.934 0.093 0.000 0.878 0.055 0.000 0.915

Table A5
Euclidean and Hamming distances to the

negative-ideal solution for Eq. (58).

Ei Ti

A1 0.608 0.647
A2 0.583 0.592
A3 0.116 0.132
A4 0.558 0.583
A5 0.575 0.568
A6 0.687 0.766
A7 0.020 0.019
A8 0.346 0.303
A9 0.564 0.504
A10 0.472 0.480

Table A6
Comparison of distances and the ranking of alternatives for Eq. (58).

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 Hi Rank

A1 0.000 0.025 1.007 0.115 0.033 −0.079 1.216 0.606 0.044 0.302 3.271 2
A2 −0.025 0.000 0.926 0.025 0.008 −0.104 1.135 0.526 0.019 0.222 2.731 3
A3 −0.493 −0.467 0.000 −0.442 −0.459 −0.571 0.208 −0.230 −0.448 −0.357 −3.260 9
A4 −0.050 −0.025 0.893 0.000 −0.017 −0.129 1.101 0.492 −0.006 0.188 2.447 5
A5 −0.033 −0.008 0.895 0.017 0.000 −0.112 1.103 0.494 0.011 0.190 2.558 4
A6 0.198 0.279 1.205 0.312 0.310 0.000 1.413 0.804 0.385 0.500 5.406 1
A7 −0.588 −0.562 −0.095 −0.538 −0.555 −0.666 0.000 −0.326 −0.544 −0.452 −4.326 10
A8 −0.262 −0.237 0.401 −0.212 −0.229 −0.341 0.609 0.000 −0.218 −0.126 −0.615 8
A9 −0.044 −0.019 0.820 0.006 −0.011 −0.123 1.028 0.419 0.000 0.115 2.192 6
A10 −0.136 −0.111 0.705 −0.086 −0.103 −0.215 0.913 0.304 −0.092 0.000 1.180 7
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