
INFORMATICA, 2021, Vol. 32, No. 3, 477–498 477
© 2021 Vilnius University
DOI: https://doi.org/10.15388/21-INFOR450

A Comparative Study of Stochastic Optimizers
for Fitting Neuron Models.
Application to the Cerebellar Granule Cell

Nicolás C. CRUZ1, Milagros MARÍN2,∗, Juana L. REDONDO1,
Eva M. ORTIGOSA3, Pilar M. ORTIGOSA1

1 Department of Informatics, University of Almería, ceiA3 campus, Spain
2 Department of Biochemistry and Molecular Biology I, University of Granada, Spain
3 Department of Computer Architecture and Technology, University of Granada, Spain
e-mail: ncalvocruz@ual.es, mmarin@ugr.es, jlredondo@ual.es, ortigosa@ugr.es,
ortigosa@ual.es

Received: November 2020; accepted: April 2021

Abstract. This work compares different algorithms to replace the genetic optimizer used in a re-
cent methodology for creating realistic and computationally efficient neuron models. That method
focuses on single-neuron processing and has been applied to cerebellar granule cells. It relies on the
adaptive-exponential integrate-and-fire (AdEx) model, which must be adjusted with experimental
data. The alternatives considered are: i) a memetic extension of the original genetic method, ii) Dif-
ferential Evolution, iii) Teaching-Learning-Based Optimization, and iv) a local optimizer within a
multi-start procedure. All of them ultimately outperform the original method, and the last two do it
in all the scenarios considered.
Key words: granule cell, neuron model, model tuning, optimization, meta-heuristics.

1. Introduction

One of the main pillars in Computational Neuroscience is understanding the brain oper-
ation by studying information processing primitives of brain areas. For this purpose, it is
necessary to simulate brain microcircuits using large-scale neural networks with thou-
sands or millions of neurons. Neuron computational models aim to reproduce neuronal
firing patterns as well as the information contained in electrophysiological recordings.
However, biological realism frequently requires high computational resources. Thus, neu-
ron models for large-scale simulations need to be computationally efficient.

The adaptive-exponential integrate-and-fire (AdEx) model (Brette and Gerstner, 2005)
is a simplified neuron model that meets both requirements of realism and efficiency. It
consists of only two differential equations and performs reasonably well in fitting real
electrophysiological recordings with a few parameters and low computational cost (Naud

∗Corresponding author.

https://doi.org/10.15388/21-INFOR450

478 N.C. Cruz et al.

et al., 2008). Nevertheless, some of the parameters in the AdEx model lack an experi-
mental (measurable) counterpart, and finding an appropriate set of parameters becomes
a challenging problem (Barranca et al., 2014; Hanuschkin et al., 2010; Venkadesh et al.,
2018). Fitting mathematical neuron models to real electrophysiological behaviour can be
considered a suitable optimization problem that remains partially unsolved.

The cerebellum is a centre of the nervous system involved in fine motor control, so-
matosensory processing, and non-motor control (emotional, cognitive, and autonomic
processes such as attention and language) (Schmahmann, 2019). In its anatomical struc-
ture, there exists one input layer named granular layer (GrL), and it is compounded of
cerebellar granule cells (GrCs). The GrCs are the smallest and the most numerous neu-
rons in the human brain (Lange, 1975; Williams and Herrup, 1988). The cerebellar GrCs
are thought to regulate the information processing through the main afferent system of
the cerebellum (Jörntell and Ekerot, 2006). These neurons show regular repetitive spike
discharge in response to a continuous direct stimulus, and their first-spike latency un-
der direct stimulation is well characterized (D’Angelo et al., 2009; Masoli et al., 2017).
Besides, previous findings suggest that the theta-frequency oscillatory activity (around
4–10 Hz in rodents) contributes to signal integration in the GrL. Indeed, the spiking reso-
nance (as enhanced bursting activity) at the theta-frequency band of single cerebellar GrCs
in response to low-frequency sinusoidal stimulation has been proposed to strengthen in-
formation transmission in the GrL (D’Angelo et al., 2009, 2001; Gandolfi et al., 2013).
However, the functional role of resonance at the theta band in the information processing
of cerebellar GrCs remains elusive.

Previous work by Marín et al. (2020) proposed a methodology for building computa-
tionally efficient neuron models of cerebellar GrCs that replicate some inherent properties
of the biological cell. Since the cerebellar GrCs show compact and simple morphology
(D’Angelo et al., 2001; Delvendahl et al., 2015), it is appropriate to consider a mono-
compartment model. Thus, the cerebellar GrC was modelled with the AdEx neuron model
because of its computational efficiency and realistic firing modes. This fact has been sup-
ported by several comparisons with detailed models and experimental recordings (Brette
and Gerstner, 2005; Nair et al., 2014; Naud et al., 2008). As part of their method, Marín et
al. (2020) tuned the parameters of the AdEx model to fit the neuronal spiking dynamics of
real recordings. In this context, the authors model the tuning procedure as an optimization
problem and study different objective functions to conduct the optimization. These func-
tions combine the accumulated difference between the set of in vitro measurements and
the spiking output of the neuron model under tuning. However, their evaluation involves
launching computer simulations with uncertainty and nonlinear equations. For this reason,
the authors proposed a derivative-free, black-box or direct optimization approach (Price
et al., 2006; Storn and Price, 1997). Namely, they successfully implemented a standard
genetic algorithm (Boussaïd et al., 2013; Cruz et al., 2018; Lindfield and Penny, 2017) to
face the parametric optimization problem.

This work focuses on the optimization component of the methodology proposed by
Marín et al. and evaluates alternative algorithms. Since no exact method is known to solve
the nonlinear and simulation-based target problem, the choice of Marín et al. is sound.

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 479

Genetic algorithms are widely-used and effective meta-heuristics, i.e. generic problem
resolution strategies (Boussaïd et al., 2013; Lindfield and Penny, 2017). Nevertheless,
the optimization part of the referred work has been tangentially addressed, and this paper
aims to assess the suitability of some alternative meta-heuristics that perform well in other
fields. More precisely, this paper compares four more meta-heuristics in the context of the
reference work. One of them is Differential Evolution (DE) (Storn and Price, 1997), which
is arguably one of the most used methods for parametric optimization in Engineering.
Another option is the Teaching-Learning-Based optimizer (TLBO) (Rao et al., 2012),
which features configuration simplicity, low computational cost and high convergence
rates. A third option is the combination of a simple yet effective local optimizer, the Single-
Agent Stochastic Search (SASS) method (Cruz et al., 2018) by Solis and Wets (1981),
with a generic multi-start component (Redondo et al., 2013; Salhi, 2017). This compound
optimizer will be referred to as MSASS. The last method, which will be called MemeGA,
is an ad-hoc memetic algorithm (Cruz et al., 2018; Marić et al., 2014) that results from
replacing the mutation part of the genetic method by Marín et al. (2020) by the referred
local search procedure, SASS.

The rest of the paper is structured as follows: Section 2 describes the neuron model
with the parameters to tune and the corresponding optimization problem. Section 3 ex-
plains the optimizers considered as a potentially more effective replacement of the ge-
netic method. Section 4 presents the experimentation carried out and the results achieved.
Finally, Section 5 contains the conclusions and states some possible future work lines.

2. Neuron Model

This section starts by describing the neuron model, whose parameters must be adjusted,
and by defining the tuning process as an optimization problem to solve. After that, the
section explains both the neuron simulation environment and how the experimental pieces
of data have been recorded according to the reference paper.

2.1. Model Structure and Problem Definition

The adaptive exponential integrate-and-fire (AdEx) model consists of two coupled differ-
ential equations and a reset condition that regulate two state variables, i.e. the membrane
potential (V) and the adaptation current (w):

Cm

dV

dt
= −gL(V − EL) + gL�T exp

(
V − VT

�T

)
+ I (t) − w, (1a)

τw

dw

dt
= a(V − EL) − w. (1b)

Equation (1a) describes how V varies with the injection of current, I (t). When V ex-
ceeds the threshold potential (VT), the slope factor (�T) models the action potential. This
depolarization persists until V reaches the reset threshold potential (Vpeak), which de-
fines the reset condition aforementioned. At that point, V resets to Vr , and w increases the

480 N.C. Cruz et al.

Table 1
Parameters to tune for configuring the AdEx model including the

boundaries and units.

Parameter Boundaries Parameter Boundaries

Cm (pF) [0.1, 5.0] VT (mV) [−60, −20]
�T (mV) [1, 1000] a (nS) [−1, 1]
EL (mV) [−80, −40] b (pA) [−1, 1]
Vr (mV) [−80, −40] gL (nS) [0.001, 10]
Vpeak (mV) [−20, 20] τw (ms) [1, 1000]

fixed amount b. The first term models the passive mechanisms of the membrane potential
that depend on the total leak conductance (gL), the leak reversal potential (EL) and the
membrane capacitance (Cm), which regulate the integrative properties of the neuron. The
second exponential term models the spike generation and shape, whose dynamics depend
on �T and VT (Naud et al., 2008).

Equation (1b) models the evolution of w. It depends on the adaptation time constant
parameter (τw), the sub-threshold adaptation (a), and the spike-triggered adaptation pa-
rameter (b).

There are ten parameters to tune for reproducing the firing properties or features of the
cerebellar GrCs with the AdEx neuron model. Table 1 contains the list of model parame-
ters to tune including their units and the range in which they must be adjusted.

Roughly speaking, the tuning process is equivalent to minimizing the accumulated
difference between each firing feature for the studied parameter set and the corresponding
experimental recordings. Let f be the function that models this computation. It is defined
in (2) as an abstract function that depends on the ten model parameters included in Table 1.
This configuration is that tagged as FF4 in Marín et al. (2020), and it is further explained
below.

f (Cm, . . . , τw) =
∑

i∈[MF,LF]

(|f eati − expi | · wi

)

+
N∑

j=1

(|BFsimj
− BFexpj

| · WBF · (
std(BFsimj

) + 1
))

. (2)

In practical terms, f implies a neuron simulation procedure gathering the output of
the behaviour of interest. In order to obtain a neuron model that reproduces the properties
of the cerebellar GrCs, the following features were integrated into f : i) repetitive spike
discharge in response to continuous direct stimulation (measured as the mean frequency
of spike traces) (MF), ii) first-spike latency under direct current stimulation (measured as
the time to the first spike) (LF), iii) spiking resonance in the theta range under sinusoidal
current stimulation (measured as the average burst frequency with different oscillation
frequencies) (BF).

MF and LF are included in the first term of f , where the score of each feature is
the accumulative absolute difference between the model output of the i feature (f eati)

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 481

under different step-current amplitudes, and its experimental equivalent (expi), for i ∈
{MF, LF}. In order to integrate several components in this function, this term is multiplied
by a weighting factor (wi) as described in the next section.

Regarding BF, it is considered in the second part of f . This term accumulates the
summation of each separate absolute difference for j = 1, . . . , N sinusoidal stimulation
frequencies. The score for each one results from the absolute difference between: i) the
average burst frequency of the simulated neuron after a certain number of oscillatory cy-
cles, BFsimj

, and ii) the experimental value, BFexpj
, at that stimulation frequency, j . This

term is multiplied by the weight of this particular feature, wBF (as detailed in the sec-
tion below). It is also multiplied by the standard deviation of the simulated neuron burst
frequency (std(BFsimj

)) plus one. This additional multiplicative term promotes configu-
rations both close to the target and stable.

The lower the value of f is for a given set of parameters, the more appropriate it is for
replicating the desired neuronal behaviour. It is hence possible to formally define the target
optimization problem according to (3). The constraints correspond to the valid range of
every parameter, which is generally defined by the max and min superscripts linked to the
parameter symbol referring to the upper and lower bounds, respectively. The numerical
values considered are those shown in Table 1.

minimize
Cm,...,τw

f (Cm, . . . , τw)

subject to Cmin
m � Cm � Cmax

m

. . .

τmin
w � τw � τmax

w .

(3)

2.2. Model Context and Feature Measurement

According to Marín et al. (2020), the initial membrane potential starts with the same value
as the leak reversal potential, i.e. Vinit = EL. The burst and mean frequency have been
weighted by 1 because they are measured in hertz and are in comparable ranges. In contrast
to them, since it is measured in seconds, the weight of the first spike feature was set to
1000. Consequently, for instance, an error of 1 Hz at burst frequency is weighted as an
error of 1 Hz at repetitive spike discharge and a lag of 1 ms at latency to the first spike.

For the experimental measurements of the spiking resonance, the burst frequency is
computed as the inverse of the average inter-spike interval (ISI) of the output neuron (the
cerebellar GrC) during each stimulation cycle. Then, the average burst frequency is mea-
sured from 10 consecutive cycles during a total of 22.5 seconds of stimulation. The sinu-
soidal amplitude is of 6 and 8 pA (including a 12 pA offset), and the spike bursts are gen-
erated corresponding with the positive phase of the stimulus (sinusoidal phase of 270◦).
The burst frequencies with stimulation frequencies beyond 10.19 Hz in amplitude of 6 pA
and 14.23 Hz in amplitude of 8 pA are set to zero because either one or no spikes were
observed in the experimental measurements (D’Angelo et al., 2001).

The typical behaviour of the cerebellar GrCs implements a mechanism of repetitive
spike discharge in response to step-current stimulation. It could help to support the spiking

482 N.C. Cruz et al.

resonance of burst frequency at the theta-frequency band (D’Angelo et al., 2001). Accord-
ing to recent literature (Masoli et al., 2017), the fast repetitive discharge in the GrCs has
been characterized based on the mean frequency and the latency to the first spike in re-
sponse to three different step-current injections (10, 16 and 22 pA) of stimulation of 1 s.

3. Optimization Methods

As introduced, five numerical optimization algorithms have been considered for solving
the problem stated in Section 2.1: i) the genetic algorithm used in the reference paper
(GA) (Marín et al., 2020), ii) a memetic optimizer based on it (MemeGA), iii) Differential
Evolution (DE), iv) Teaching-Learning-Based Optimization (TLBO) (Rao et al., 2012),
and v) Multi-Start Single-Agent Stochastic Search (MSASS). The first four cover the two
main groups of population-based meta-heuristics (Boussaïd et al., 2013): Evolutionary
Computation and Swarm Intelligence. The optimizers in the first group are inspired by
the Darwinian theory, while those in the second rely on simulating social interaction.
Namely, GA, MemeGA, and DE belong to the first class, and TLBO can be classified into
the second one. Regarding MSASS, it is a single-solution-based meta-heuristic (Boussaïd
et al., 2013) that iteratively applies a local search process to independent random starts.

Since all the algorithms rely on randomness, they can be classified as stochastic meth-
ods. The following subsections describe these optimizers for the sake of completeness.
However, the interested reader is referred to their corresponding references for further
information.

3.1. Genetic Algorithm (GA)

Genetic algorithms, popularized by Holland (1975), were developed as an application of
artificial intelligence to face hard optimization problems that cannot be rigorously solved
(Boussaïd et al., 2013; Salhi, 2017). Roughly speaking, genetic algorithms work with a
pool of candidate solutions. Although they are randomly generated at first, the solutions
are ultimately treated as a population of biological individuals that evolve through sexual
reproduction (involving crossover and mutation). Based on these ideas, genetic algorithms
define a general framework in which there are different options for every step and are used
in a wide range of problems (Boussaïd et al., 2013; Salhi, 2017; Shopova and Vaklieva-
Bancheva, 2006). The problem addressed in this work has also been previously faced with
a genetic algorithm in Marín et al. (2020). It will be referred to as GA, and it is described
next as one of the methods compared.

GA starts by creating as many random candidate solutions as required by the parameter
that defines the population size. Every one of these so-called ‘individuals’ is represented
by a vector in which the i component corresponds to the i optimization variable. Random
generation in each dimension follows a uniform distribution between the boundaries indi-
cated in Table 1. After generating the initial individuals, they must be evaluated according
to the objective function and linked to their resulting fitness. As the problem at hand is

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 483

Fig. 1. Single-point crossover between two individuals.

a minimization one, the lower the fitness is, the better it is. The population size remains
constant during the search even though individuals change due to evolution.

After creating the initial population, GA simulates as many generations as required
by the parameter that defines the number of cycles. Each of them consists of the ordered
execution of the following steps or genetic operators:

Selection: This step selects those individuals from the current population that might be-
come the progenitors and members of the next one. It chooses as many individuals
as defined by the population size according to a tournament selection process (Salhi,
2017; Shopova and Vaklieva-Bancheva, 2006). This strategy consists in choosing ev-
ery individual as the best out of a random sample whose size is another user-given
parameter. In contrast to other selection approaches, this one tends to attenuate strong
drifts in the population because the scope of selection is limited by the tournament
size (Salhi, 2017). Thus, not only the top best are selected, but also more regular ones,
which increases variability and avoids premature convergence to local optima.

Crossover: This step simulates sexual reproduction among those individuals previously
selected to explore new regions of the search space based on the information provided
by the progenitors. The process iterates through the selected individuals and pairs those
at even positions with those at odd ones. For each pair, there is a user-given probability
of performing single-point crossover (Salhi, 2017; Shopova and Vaklieva-Bancheva,
2006). It consists in randomly selecting a dimension of the individuals and swap-
ping the rest of the vector between the two involved. Figure 1 depicts the single-point
crossover procedure. As shown, the two progenitors (left) result in the two descendants
(right) after having selected the fourth as the splitting dimension.

Mutation: This step tries to randomly alter the offspring that comes from the two pre-
vious ones. While crossover explores in depth the area of the search space covered by
progenitors, mutation aims to allow reaching new regions of it, which avoids stagnation
at local optima. The mutation procedure has a user-given probability to be launched
for every individual of the offspring. Every time that it happens to apply, the individ-
ual is traversed, and each of its components has another user-given probability to be
randomly reset.

484 N.C. Cruz et al.

After the three evolutionary steps described, the individuals involved are evaluated
according to the objective function (only those that changed after being selected) and
replace the current population for the next cycle. It is also relevant to highlight that the
algorithm keeps a record with the best individuals found through the process. The solution
to the problem is taken as the best one among them.

3.2. Memetic Algorithm Derived from GA (MemeGA)

Memetic algorithms (Cruz et al., 2018; Marić et al., 2014) are an extension of standard ge-
netic methods formalized by Moscato (1989). Their name comes from the term ‘meme’,
defined by Dawkins (1976) as an autonomous and cultural entity similar to biological
genes. However, while the individuals of genetic algorithms are mainly passive, those of
memetic methods can be seen as active agents that improve their aptitude autonomously.
In practical terms, this is achieved by adding the use of complementary local search tech-
niques to the underlying process of Darwinian evolution. This approach, which is useful
to avoid premature convergence while improving the exploitation of the search space, is
popular in many different fields. For instance, in Marić et al. (2014), the authors design an
effective and efficient parallel memetic algorithm for facility location, an NP-hard combi-
natorial optimization problem. A memetic algorithm is also the best-performing method
for parametric heliostat field design in the study published in Cruz et al. (2018). Similarly,
the optimization engine of the recent framework for drug discovery extended in Puertas-
Martín et al. (2020) is a memetic method.

Considering the theoretical capabilities and the previous success cases of this kind of
algorithms, a memetic method has been specifically designed and included in the present
study. As introduced, the referred method is MemeGA, and it is based on the genetic
method designed by Marín et al. (2020) for the problem at hand. The algorithm maintains
the same structure as GA with the only exception of the mutation stage, which is replaced
by the use of a local search algorithm. Namely, the original mutation probability is treated
as the percentage of individuals to be randomly selected for the local search to improve
them at each cycle. This approach is aligned with the proposal in Marić et al. (2014) since
the local search is applied to a random subset of the population rather than to all of them,
which increases diversity. As introduced, the local optimizer used is SASS, by Solis and
Wets (1981), which is also the local method included in the memetic algorithms applied
in Cruz et al. (2018), Puertas-Martín et al. (2020). Thus, every individual is a potential
starting point for an independent execution of SASS.

As a method, SASS is a stochastic hill-climber with an adaptive step size that starts at a
certain point of the search space, x. At the beginning of every iteration, SASS generates a
new point, x′, according to (4). The term ξ is a random perturbation vector in which every
component i (there is one for each decision variable) follows a Gaussian distribution with
component-specific mean bi and common standard deviation σ (assuming a normalized
search space), i.e. ξi = N (bi, σ). Both, the b vector (also known as the bias) and σ ,
will be varied during the search. However, b starts as a zero vector, and σ is a user-given
parameter.

x′ = x + ξ. (4)

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 485

Having generated x′, SASS computes the value of the objective function at it. If x′
represents a better solution, the algorithm moves its focus from x to x′, and the iteration
is considered successful. The b vector is then recomputed as b = 0.2b + 0.4ξ for the next
iteration. Otherwise, SASS explores the opposite direction by computing an alternative
new point, x′′ = x−ξ . Again, if the evaluation of x′′ returns a better value for the objective
function, SASS moves from x to x′′, and the iteration is also considered successful. Under
this circumstance, b is updated as b = b − 0.4ξ . However, if neither x′ nor x′′ were better
than x, the iteration is supposed to be failed, and b is recomputed as b = 0.5b.

In contrast to the bias vector, the standard deviation of perturbation is not modified after
every iteration but considering consecutive failures or successes for stability. Namely, if
the number of consecutive successful iterations reaches a user-given parameter, Scnt, σ

is expanded by a factor ex, which is also user-defined and supposed to be greater than 1,
i.e. σ = ex · σ . Analogously, if the number of consecutive failed iterations reaches a
user-given parameter, F cnt, σ is contracted by a factor c, which is also user-defined in
(0, 1) ∈ R, i.e. σ = c · σ . However, notice that σ is also bounded by the user, and if it
goes out from the valid range, σ is automatically reset to its upper bound.

SASS executes as many iterations, i.e. attempts to modify its current solution, as it can
perform according to the number of objective function evaluations allowed by the user.
After this process, the current solution of the method is finally returned. Under no circum-
stance will it move to a worse solution in the search space. Hence, the result of SASS will
be the same initial point or a better one in the worst and best scenarios, respectively.

3.3. Differential Evolution (DE)

DE is a simple yet powerful genetic-like numerical optimizer that was proposed by Storn
and Price (1997) and has become widely used (Dugonik et al., 2019; Price et al., 2006).
It maintains a user-defined number (NP) of randomly-generated candidate solutions (in-
dividuals) and progressively alters them to find better ones. Like GA, every individual is
a vector with a valid value for each optimization variable. The workflow of this method
does not try to imitate aspects such as the selection of progenitors and sexual reproduc-
tion as closely as standard genetic methods like GA. However, the terminology of DE also
comes from traditional Genetic Algorithms, so each iteration applies mutation, crossover,
and selection stages to every individual.

The step of mutation follows (5) to compute for each individual Sj (j = 1, . . . , NP),
a mutant vector vSj . Both r2 and r3 are different and random integer indexes in the range
[1, . . . , NP]. Regarding r1, it can be either another random population index or that of
the best candidate solution in the population. The former is known as ‘rand’ strategy, and
the latter is called ‘best’. Regarding F , which controls the amplification of the differential
variation, it is a user-given real and constant factor in the range [0, 2] in the traditional
method. However, it can be randomly redefined in the range [0.5, 1] either for each itera-
tion or for every mutant vector during the search. This approach is known as ‘dither’ and
improves the rate of convergence with noisy objective functions. Finally, notice that the
term Sr2 −Sr3 defines a single difference vector between candidate solutions, but it is pos-
sible to use more than one. The most popular alternative uses two instead, which results in

486 N.C. Cruz et al.

Sr2 − Sr3 + Sr4 − Sr5 (assuming that r4 and r5 are two random population indices more).

vSj = Sr1 + F
(
Sr2 − Sr3

)
. (5)

The step of crossover merges each candidate solution, Sj , with its mutant vector, vSj .
The result is a mutated version of Sj , Sj ′ , which is known as ‘trial vector’. The compu-
tation follows (6), which is in terms of the i component of the trial vector. According to
it, S

j ′
i can come from either the current individual Sj or its mutant vector. The compo-

nent selection is controlled by the user-given crossover probability, CR ∈ [0, 1], which is
linked to uniform random number generation between 0 and 1. Regarding k, it is the index
of one of the components defining the individuals, i.e. one of the optimization variables.
This index is randomly selected for each computation of (6) to ensure that at least one of
the components of the trial vector comes from the mutant one.

S
j ′
i =

{
v
S

j
i

if rand() � CR or i = k,

S
j
i otherwise.

(6)

Additionally, there exists an additional stage that can be linked to crossover. It is a prob-
abilistic random-alteration process proposed by Cabrera et al. (2011) to define a variant
of DE aimed at mechanism synthesis. However, the addition is not limited to that field but
is of general-purpose in reality. It entails an in-breadth search component that increases
variability and is similar to the traditional mutation phase of genetic algorithms such as
GA. This addition aims to help the algorithm to escape from local optima, especially when
working with small populations. In practical terms, it follows (7) to make more changes
to each trial vector. According to it, each i component of the input trial vector can be
randomly redefined around its current value with a user-given probability. The origin of
the components, i.e. the current individual or its associated mutant vector, is not relevant.
Therefore, this stage only adds two expected parameters: the per-component mutation
probability, MP, and the modification range, range.

S
j ′
i =

{
rand() ∈ [Sj ′

i ± range] if rand() � MP,

S
j ′
i otherwise.

(7)

After the previous steps, DE evaluates each trial vector as a solution according to the
objective function. Only those trial vectors that outperform the candidate solutions from
which they come persist and replace the original individuals. This process defines the pop-
ulation for the next iteration. DE concludes after having executed the user-defined number
of iterations. At that point, the algorithm returns the best individual in the population as
the solution found.

3.4. Teaching-Learning-Based Optimization (TLBO)

TLBO is a recent numerical optimization method proposed by Rao et al. (2012). As
a population-based meta-heuristic, this algorithm also works with a set of randomly-
generated candidate solutions. However, instead of representing a group of individuals

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 487

that evolve through sexual reproduction like the previous method, TLBO treats the set of
solutions as a group of students. The algorithm simulates their academic interaction, con-
sidering a teacher and plain pupils, to find the global optimum of the problem at hand.
This optimizer has attracted the attention of many researchers in different fields, from
Engineering to Economics, because of its simplicity, effectiveness and minimalist set of
parameters (Cruz et al., 2017; Rao, 2016).

The algorithm only requires two parameters to work, namely, the population size and
the number of iterations to execute. Based on this information, TLBO first creates and eval-
uates as many random candidate solutions or individuals as indicated by the population
size. As it occurs with the previous method, every individual is a plain vector containing a
valid value for each optimization variable of the objective function. After this initial step,
TLBO executes as many iterations as required, and every one consists of the teacher and
learner phases.

The teacher phase models the way in which a professor improves the skills of his/her
students. In practical terms, this step tries to shift each candidate solution towards the
best one in the population, which becomes the teacher, T . After having identified that
reference solution, TLBO computes the vector M . Every i component in M results from
averaging those of the individuals in the current population. This information serves to
create an altered or shifted solution, S′, from every existing one, S, according to (8). The
computation is defined in terms of every component or optimized variable, i. ri is a random
real number in range [0, 1] and linked to component i. Similarly, TF , known as ‘teaching
factor’, is a random integer that can be either 1 or 2. Both, ri and TF , are globally computed
for the current step. Finally, every S′ is evaluated and replaces S if it obtains a better value
from the objective function (S′ is discarded otherwise).

S′
i = Si + ri(Ti − TF Mi). (8)

The learner phase simulates the interaction between students to improve their skills.
At this step, TLBO pairs every student, S, with any other different one, W . The goal is to
generate a modified individual, S′, which will replace S if it is a better solution according
to the objective function. Every i component of S′ results from (9), where ri is a random
number in range [0, 1] linked to component i and globally computed for the current step.
According to it, the movement direction in every pair goes from the worst solution to the
best.

S′
i =

{
Si + ri(Si − Wi) if error(S) < error(W),

Si + ri(Wi − Si) otherwise.
(9)

Additionally, although it is usually omitted, there is also an internal auxiliary stage
to remove duplicate solutions in the population (Waghmare, 2013). At the end of every
iteration, duplicity is avoided by randomly altering and re-evaluating any of the involved
candidate solutions. Finally, after the last iteration, TLBO returns the best solution in the
population as the result of the problem at hand.

488 N.C. Cruz et al.

3.5. Multi-Start Single-Agent Stochastic Search (MSASS)

The Multi-Start Single-Agent Stochastic Search, as introduced, consists in the inclusion
of the SASS algorithm (already described as part of MemeGA in Section 3.2) within
a standard multi-start component (Redondo et al., 2013; Salhi, 2017). The former is a
simple yet effective local search method that will always try to move from a starting point
to a nearby better solution. The latter is in charge of randomly generating different initial
points, provided that the computational effort remains acceptable.

Considering the local scope of SASS, the multi-start component serves to escape from
local optima by focusing the local exploration on different regions of the search space.
Namely, at each iteration, the multi-start module randomly defines a feasible point. It then
independently starts SASS from there. Once the local search has finished, so does the
iteration, and the process is repeated from a new initial point while keeping track of the best
solution found so far, which will be finally returned as the result. As a compound method,
MSASS works until consuming a user-given budget of objective function evaluations.

The multi-start component expects from the user the total number of function evalu-
ations allowed. It will always launch SASS with its maximum number of evaluations set
to the remainder to consume all the budget, and the rest of its traditional parameters as
defined by the user (see Section 3.2). However, in this context, SASS is enhanced with an
extra parameter, i.e. the maximum number of consecutive failures that force the method to
finish without consuming all the remaining function evaluations. By proceeding this way,
once SASS has converged to a particular solution, the method will not waste the rest of
the evaluations. Instead, it will be able to return the control to the multi-start component
to look for a new start. This aspect is of great importance to increase the probabilities of
finding an optimal solution.

4. Experimentation and Results

4.1. Environment and Configuration

The present study inherits the technical framework defined by the reference work in Marín
et al. (2020). Consequently, the GrC model is simulated with the neural simulation tool
NEST (Plesser et al., 2015), in its version 2.14.0, and using the 4th-order Runge-Kutta-
Fehlberg solver with adaptive step-size to integrate the differential equations. The cost
function, known as FF4 in the reference work as introduced, is implemented in Python
(version 2.7.12) and linked to the NEST simulator. The simulation environment uses a
common and fixed random-generation seed to define a stable framework and homogenize
the evaluations. In this context, the GA method by Marín et al. (2020) was also imple-
mented in Python 2.7.12 using the standard components provided by the DEAP library
(Kim and Yoo, 2019).

Marín et al. configured their GA method to work with a population of 1000 individ-
uals for 50 generations and selection tournaments of size 3. They adjusted the crossover,
mutation, and per-component mutation probabilities to 60%, 10%, and 15%, respectively.

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 489

Table 2
Varied parameters for each population-based method and computational cost.

Computational cost (f.e.)

Method Parameters 15k 22.5k 30k 60k

GA Population 1500 1500 1000 1000
Cycles 16 25 50 100

MemeGA Population 500 500 300 300
Local f.e. 10 12 20 35
Cycles 20 26 40 50

DE Population 250 250 200 150
Cycles 60 90 150 400

TLBO Population 250 250 200 150
Cycles 30 45 75 200

Approximately, this configuration results in 30 000 evaluations of the objective function
(f.e.) and also defines a general reference in computational effort. This aspect is espe-
cially relevant since the development and execution platforms differ from the original
work. Namely, the four new optimizers compared (MemeGA, DE, TLBO, and MSASS)
run in MATLAB 2018b after having wrapped the objective function of Marín et al. to be
callable from it. The experimentation machine features an Intel Core i7-4790 processor
with 4 cores and 32 GB of RAM.

The comparison takes into account four different computational costs in terms of the
reference results: 50%, 75%, 100%, and 200% of the function evaluations consumed by
GA, i.e. 15 000, 22 500, 30 000, and 60 000, respectively. Nevertheless, before launching
the final experiments, the population-based optimizers have been tested under different
preliminary configurations to find their most robust set of parameters. After having ad-
justed them, the focus was moved to those parameters directly affecting the overall com-
putational cost, i.e. function evaluations. In practical terms, those are limited to the pop-
ulation sizes and the number of cycles for DE and TLBO. Similarly, they are the only
parameters of the reference method, GA, that have been ultimately re-defined to encom-
pass the new execution cases. However, for its memetic version, MemeGA, the number
of objective function evaluations for each independent local search (local f.e.) has also
been varied with the computational cost. In contrast to them, MSASS is directly config-
ured in terms of function evaluations. Its local search component has kept the constant
configuration explained below.

Table 2 shows the previous information for each population-based optimizer and com-
putational cost. Concerning the population sizes, the general paradigm followed opted for
spawning larger populations with the lower computational costs to increase and speed up
the exploration. More precisely, when the computational cost is below 100% of the refer-
ence method, the population is larger to accelerate the identification of promising regions
in the search space and to compensate for the impossibility of allowing the optimizer to
run more cycles. Numerically, the population sizes of GA remain in the range of the ref-
erence paper for the most demanding cases and get an increment of 50% for the others.
Those of MemeGA come from GA but are approximately divided by 3 to allow for the

490 N.C. Cruz et al.

function evaluations of its independent instances of SASS, which grow from 10 to 35 for
the 60k configuration. The population sizes of DE are in the range of multiplying by ten
the number of variables, as suggested by the authors, and doubled to maximize diversity.
TLBO successfully shares the same strategy.

Regarding the number of cycles, it is adapted from the corresponding population size
to achieve the desired computational effort. GA has statistical components, but its approx-
imate number of function calls is 60% of the population size each cycle. MemeGA keeps
the crossover and mutation probabilities of GA and redefines the latter as the percentage
of individuals to be locally improved. Hence, it approximately executes 60% of the pop-
ulation size plus 10% of the referred value multiplied by the number of local evaluations
each cycle. DE consumes as many f.e. as individuals per cycle, and TLBO takes twice.
The cost of evaluating the initial populations is neglected.

Concerning the rest of the parameters that have been fixed, the internal SASS com-
ponent of MemeGA considers Scnt = 5, Fcnt = 3, ex = 2.0, and c = 0.5 with
σ ∈ {1e−5, 0.25}. This is mainly the configuration recommended by Solis and Wets
(1981) with the only exception of the upper bound of sigma being 0.25 instead of 1. It
is because preliminary experimentation revealed that when allowing few function evalu-
ations, most individuals were directly moved to the bounds by big perturbations without
the possibility to improve. Thus, the smaller upper bound of σ allows for a better local
exploration within MemeGA. However, for MSASS, all the parameters of SASS coin-
cide with the recommended values because its execution approach does not have to share
resources. That said, every instance of SASS will be stopped after 50 non-improving or
failed iterations to save function evaluations for later independent starts. Regarding DE,
after preliminary experimentation, it has been configured to use ‘rand’ selection, a single
difference vector, and per-generation dither. Notice that the latter aspect avoids adjusting
the F parameter of the optimizer and takes into account its potential convergence advan-
tages. Finally, the crossover rate has been fixed to 0.8, which is in the general-purpose
range and between the values used in the extension proposed in Cabrera et al. (2011).

4.2. Numerical Results

Table 3 contains the results achieved by each method. There is a column for every opti-
mizer, and each one consists of groups of cells that cover the different scenarios of com-
putational cost. The algorithms have been independently launched 20 times for each case
considering their stochastic nature, i.e. their results might vary even for the same problem
instance and configuration. The referred table includes the average (ave.) and standard
deviation (STD) of each case. Since the problem addressed is of minimization, the lower
the values are, the better result they represent. The best average of each computational
cost is in bold font. Notice that the results of GA and 30 000 f.e. (i.e. 100%) combine the
five ones obtained by Marín et al. (2020) plus the remaining executions to account for
20 cases in total. Finally, to orientate the readers about the real computational cost, it is
interesting to mention that completing each cell of 15 000 f.e. approximately takes 9 hours
in the experimentation environment and scales accordingly.

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 491

Table 3
Objective function values achieved for each compared optimizer.

Effort (f.e.) GA MemeGA DE TLBO MSASS

15 000 (50%) Ave.: 115.38 Ave.: 113.51 Ave.: 115.78 Ave.: 105.76 Ave.: 106.88
STD: 4.19 STD: 10.83 STD: 7.38 STD: 5.90 STD: 4.50

22 500 (75%) Ave.: 110.32 Ave.: 111.46 Ave.: 112.18 Ave.: 104.61 Ave.: 104.71
STD: 5.98 STD: 8.03 STD: 5.96 STD: 7.09 STD: 5.29

30 000 (100%) Ave.: 108.70 Ave.: 103.45 Ave.: 107.98 Ave.: 98.63 Ave.: 101.20
STD: 6.59 STD: 4.47 STD: 4.74 STD: 5.97 STD: 3.52

60 000 (200%) Ave.: 104.17 Ave.: 100.06 Ave.: 99.44 Ave.: 97.67 Ave.: 100.52
STD: 6.70 STD: 5.60 STD: 4.08 STD: 3.37 STD: 3.04

4.3. Discussion

From the results in Table 3, it is possible to make several overall appreciations. Firstly,
none of the optimizers stably converges to a single global solution even after doubling the
computational effort allowed in the reference paper. This aspect indicates that the search
space is hard to explore and features multiple sub-optimal points. For this reason, ensuring
stable and global convergence might not be feasible in a reasonable amount of time. Fortu-
nately, it is not a requirement in this context as long as the found configurations make the
simulated neurons behave as expected. Secondly, all the optimizers tend to improve the
average quality of their results when the computational cost increases, but TLBO always
achieves the best average quality. It is also the method that has found the best individual
solution known so far, with a value of 87.45. Thirdly and last, the reduction in standard
deviations is not as regular as that of the averages, but for most methods, the standard de-
viation of the results after 60 000 f.e. is approximately half of that observed for 15 000 f.e.
The only exception is the reference optimizer, GA, whose STD was better for the lightest
configuration than for the heaviest. Hence, in general, the probability of obtaining particu-
larly divergent results in quality is reduced when the optimizers are provided with enough
computational budget.

As previously commented, all the methods provide better average results after increas-
ing the computational budget, but they effectively evolve at different rates. Certainly, the
average quality achieved by a certain optimizer with a particular computational cost turns
out to be nearly equivalent to that of another one. Nevertheless, some of the algorithms re-
quire more computational effort to be at the same level as others. For instance, the average
of GA for 60 000 f.e. is very similar to those of MSASS and TLBO for 22 500 f.e. In fact,
between 15 000 and 30 000 f.e., MSASS and TLBO are a step beyond the rest. Moreover,
not all the methods ultimately achieve the same degree of quality. More specifically, for
60 000 f.e., MemeGA, DE and MSASS perform similarly, but GA is worse than them,
and TLBO remains numerically ahead. Thus, according to the computational cost, some
of the methods stand out from the rest. TLBO and MSASS do it positively with the best
averages, and GA does it negatively considering the two heaviest configurations. Regard-
ing MemeGA and DE, the former starts to outperform the reference method with 30 000
f.e., and the latter does it after doubling this value.

492 N.C. Cruz et al.

After the preliminary analysis, it is necessary to test whether the methods exhibit sta-
tistically significant differences considering the impact of uncertainty. For this reason, the
individual results have been studied according to the Kruskal-Wallis test (Kruskal and
Wallis, 1952; Mathworks, 2021), which is a non-parametric method for testing whether
the samples come from the same distribution. By proceeding this way, it is possible to as-
sess if the results registered for each optimizer and cost seem to significantly differ from
each other with reduced datasets and without making distribution assumptions. The over-
all significance of the tests is 0.05, i.e. the corresponding confidence level is 95%.

Observing in depth the results in Table 3 for the lightest computational cost, it seems
that there are two groups. Specifically, TLBO and MSASS exhibit the best performance
with close values between them, while GA, MemeGA, and DE show worse averages (and
also numerically similar between them). According to the Kruskal-Wallis test, there is no
significant statistical difference within each group either. Thus, for 15 000 f.e., TLBO and
MSASS return indistinguishable results within a significance of 0.05. In other words, for
half of the computational budget of the reference work, TLBO and MSASS are equiva-
lent according to the results achieved. Moreover, both perform better than the rest with a
statistically significant difference, including the reference method, GA. Analogously, the
performances of GA, MemeGA, and DE are equivalent in this context, so there is no more
expected difference than the effect of uncertainty between the three. Additionally, the fact
that the memetic variant of GA, MemeGA, does not significantly outperform it can be
attributed to the lack of computational budget to let local search be effective.

For 22 500 f.e., the previous situation persists: TLBO and MSASS define the group
of the best-performing optimizers, without significant difference between using one or
the other. GA, MemeGA, and DE remain the worst-performing methods without practical
difference between them. However, for 30 000 f.e., the situation changes: MemeGA moves
from the group of GA and DE to that of TLBO and MSASS, which feature the best average.
At this point, the methods achieving the worst results are GA and DE, which keep being
statistically indistinguishable. Those with better performance are now TLBO, MSASS,
and MemeGA. Among them, TLBO and MSASS keep being statistically indistinguishable
within a significance of 0.05, but the same occurs between MemeGA and MSASS. Finally,
the previous trend is confirmed with 60 000 f.e: another method, DE, separates from the
reference one, GA, and outperforms it. Therefore, GA persists as the only member of
worse-performing methods in the end, while MemeGA, DE, TLBO, and MSASS become
statistically indistinguishable between them and achieve better results than the reference
method.

Based on the previous analysis, TLBO and MSASS are the best choices for 50 and
75% of the function evaluations allowed in the reference paper. For the same computa-
tional budget considered by Marín et al. (2020), the performance of MemeGA reaches
the level of those two referred methods, which remain ahead. Finally, with the highest
computational cost, MemeGA, DE, TLBO, and MSASS significantly outperform the ref-
erence method, and there is no meaningful difference between the four. Thus, the reference
method, GA, is always outperformed by at least TLBO and MSASS. MemeGA and DE
also tend to separate from it to join the other two at 30 000 and 60 000 f.e., respectively.

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 493

Additionally, for the sake of completeness, the significance of the difference between
the results of each method has also been systematically assessed with the Kruskal-Wallis
test under the previous significance level. According to the study, there is no statistically
significant difference between the results of GA after 22 500 and 30 000 f.e. Hence, it
seems possible to reduce the computational effort in the reference work by 25% without
expecting worse results for any cause apart from stochasticity. TLBO, MemeGA and DE
experience the same phenomenon, but they do between 15 000 and 22 500 f.e, while the
performance of the last two is still similar to that of GA. Finally, MSASS stagnates between
30 000 and 60 000 f.e., which is well aligned with its conceptual simplicity and lack of
sophisticated components to globally converge.

4.4. Insight into the Best Solution

To conclude this section, the best result found will be analysed with further details in
Fig. 2. The best-fitted neuron model according to all the features (with the lowest score)
is an individual obtained by TLBO featuring a quality of 87.45 (blue lines). The neuron
model from the reference work (GA optimizer) (Marín et al., 2020) with a score of 104.24
is also compared (orange lines). Finally, the in vitro data used to define the fitness function
are also represented (black dots) (D’Angelo et al., 2001; Masoli et al., 2017).

The selected neuron model has successfully captured the well-demonstrated features
of the intrinsic excitability of cerebellar GrCs, i.e. repetitive spike discharge in response
to injected currents (implemented as the mean frequency), latency to the first spike upon
current injection (implemented as the time to the first spike), and spiking resonance in
the theta-range (implemented as the average burst frequencies in response to sinusoidal
stimulations). The neuron model resonates in the theta frequency band as expected, i.e.
8–12 Hz (Fig. 2(A)). The model practically reproduces identical resonance curves as the
model of reference (GA model) (Marín et al., 2020). These resonance curves are the graph-
ical representation of doublets, triplets, or longer bursts of spikes generated when stim-
ulated by just-threshold sinusoidal stimulation at different frequencies (Fig. 2(B)). The
main behaviour of biological GrCs is the increase of spike frequency when the latency to
the first spike decreases as current injections increase. A sample of the neuron behaviour
from which these features are calculated is shown in Fig. 2(E). The repetitive spike dis-
charge of the TLBO model is similar to that of the model of reference and in accordance
with the experimental measurements in real cells (Fig. 2(C)). The real improvement ob-
tained by the neuron model of the proposed optimizer lies in the first-spike latency feature.
The model from the reference work exhibited longer latencies than those experimentally
reported, mainly with low stimulation currents (Fig. 2(D)). However, the TLBO model
achieves an adjustment in its score of 7.95 ms compared to the 34.95 ms-error obtained
by the GA model, both with respect to the in vitro data. Thus, the TLBO optimizer proves
not only to be effective in fitting the model parameters to diverse spiking features, but
also to improve both the quantitative and qualitative predictions of these supra-threshold
characteristics against the methodology of reference (GA).

494 N.C. Cruz et al.

Fig. 2. Spiking properties predicted by the best-fitted cerebellar granule cell (GrC) model obtained by TLBO
optimizer. Simulated features and electrophysiological traces of the best solution from TLBO (blue) and com-
pared to the neuron model from the reference work (orange) and the target in vitro recordings used in the fitness
function (black dots). A) Spiking resonance curves of the models computed as average burst frequencies in re-
sponse to sinusoidal stimulation of 6 pA (left) and 8 pA (right) with increasing frequencies (in steps of 0.5 Hz).
B) Membrane potential evolution of the TLBO model generates spike bursts in response to sinusoidal current
injections with offset of 10 pA and amplitude of 6 pA. This is shown after 2 s of stimulation (stabilization).
C) Repetitive spike discharge (intensity-frequency curves) of the models computed as the mean frequency in
response to step-currents of 1 s. D) Latency to the first spike in response to step-currents of 1 s. E) Membrane
potential traces of the TLBO model in response to step-current injections of 1 s with various amplitudes.

5. Conclusions and Future Work

This article has studied the optimization component of a recent methodology for realistic
and efficient neuron modelling. The referred method focuses on single-neuron process-
ing, relies on the use of the adaptive-exponential integrate-and-fire (AdEx) model, and
has been applied to cerebellar granule cells. It requires fitting its parameters to mimic
experimental recordings, which can be defined as an optimization problem of ten vari-
ables. The original paper implemented a traditional genetic algorithm (GA) to address
the resulting problem. This work has compared that optimizer to four alternatives: an ad-
hoc memetic version of the referred genetic algorithm (MemeGA), Differential Evolution
(DE), Teaching-Learning-Based Optimization (TLBO), and a multi-start method built on
the same local optimizer used for MemeGA (MSASS).

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 495

All of the methods are stochastic heuristic algorithms based on solid principles that
exhibit high success rates in different problems, which is why they have been selected. The
comparison has been performed in terms of the context defined by the reference paper. It
has considered four computational budgets for the problem resolution: 50, 75, 100, and
200% of that invested in the referred work. The effect of stochasticity at optimization has
been considered by making 20 independent executions for each method and computational
budget. Moreover, the assessment has not been limited to comparing their average quality.
It has been complemented by studying whether the different sets of results significantly
differ according to the Kruskal-Wallis test.

The original hypothesis for this work was that the optimization engine defined for the
referred method could be improved, and it has been confirmed. The reference optimizer
is outperformed by some of the candidates in all the scenarios, while the others equal it at
least. Moreover, they tend to positively differentiate from GA as the computational budget
increases. Namely, either TLBO or MSASS is equally the best choice for 15 000 and 22 500
function evaluations. Once the computational budget is the same as in the reference work,
i.e. 30 000 function evaluations, MemeGA joins TLBO and MSASS. Before that point,
there were no enough function evaluations to fully exploit the theoretical advantage of
using a dedicated local search component over its original version. Then, no unambiguous
evidence support one of them over the other two, but the three outperform GA and DE
in that scenario. Ultimately, with 60 000 f.e., DE also achieves better results than GA and
merges itself with TLBO, MSASS and MemeGA.

The real benefit of increasing the computational cost has also been separately stud-
ied. According to the analysis performed, the results achieved by the reference method do
not significantly vary between 22 500 and 30 000 function evaluations, so the computa-
tional cost of just applying GA can be reduced by 25% without expecting a reduction in
its performance. Regarding MemeGA, DE, and TLBO, they experience the same situation
between 15 000 and 22 500 function evaluations. Similarly, the computational effort if us-
ing any of them could be reduced by 25% without executing more than 15 000 evaluations
(logically, unless the budget can reach 30 000). Concerning MSASS, this phenomenon oc-
curs between 30 000 and 60 000 evaluations. In this situation, 50% of the computing time
could be saved by not doubling the budget for this method.

Additionally, the best configuration known so far has been found at experimentation.
TLBO is the method that achieved it, and the resulting model features higher temporal ac-
curacy of the first spike than that of the reference paper. This aspect is key for the reproduc-
tion of the relevant properties that could play a role in neuronal information transmission.
This finding supports the relevance of using an effective and efficient optimization engine
in the referred methodology. The gain in biological realism in simple neuron models is
expected to allow the future simulation of networks compounded of thousands of these
neurons to better mimic the biology. Obtaining more realistic yet efficient neuron models
also allows research at levels in which in vitro or in vivo experimental biology is limited.
Thus, simulations of sufficiently realistic neuronal network models can become valid to
shed light on the functional roles of certain neuronal characteristics or on the interactions
that may have various mechanisms among each other.

496 N.C. Cruz et al.

In future work, the existence of multiple sub-optimal solutions will be further studied.
For that purpose, the aim is to use a state-of-the-art multi-modal optimization algorithm
that can keep track of the different regions throughout its execution. That study might
identify patterns that allow reducing the search space proposed in the reference work.

Acknowledgements

The authors would like to thank R. Ferri-García, from the University of Granada, for his
advice on Statistics. The results included in this article are part of Milagros Marín’s PhD
thesis.

Funding

This research has been funded by the Human Brain Project Specific Grant Agreement 3
(H2020-RIA. 945539), the Spanish Ministry of Economy and Competitiveness (RTI2018-
095993-B-I00), the National Grant INTSENSO (MICINN-FEDER-PID2019-109991GB-
I00), the Junta de Andalucía (FEDER-JA P18-FR-2378, P18-RT-1193), and the Univer-
sity of Almería (UAL18-TIC-A020-B).

References

Barranca, V.J., Johnson, D.C., Moyher, J.L., Sauppe, J.P., Shkarayev, M.S., Kovačič, G., Cai, D. (2014). Dynam-
ics of the exponential integrate-and-fire model with slow currents and adaptation. Journal of Computational
Neuroscience, 37(1), 161–180.

Boussaïd, I., Lepagnot, J., Siarry, P. (2013). A survey on optimization metaheuristics. Information Sciences,
237, 82–117.

Brette, R., Gerstner, W. (2005). Adaptive exponential integrate-and-fire model as an effective description of
neuronal activity. Journal of Neurophysiology, 94(5), 3637–3642.

Cabrera, J.A., Ortiz, A., Nadal, F., Castillo, J.J. (2011). An evolutionary algorithm for path synthesis of mecha-
nisms. Mechanism and Machine Theory, 46(2), 127–141.

Cruz, N.C., Redondo, J.L., Álvarez, J.D., Berenguel, M., Ortigosa, P.M. (2017). A parallel teaching–learning-
based optimization procedure for automatic heliostat aiming. Journal of Supercomputing, 73(1), 591–606.

Cruz, N.C., Redondo, J.L., Álvarez, J.D., Berenguel, M., Ortigosa, P.M. (2018). Optimizing the heliostat field
layout by applying stochastic population-based algorithms. Informatica, 29(1), 21–39.

D’Angelo, E., Nieus, T., Maffei, A., Armano, S., Rossi, P., Taglietti, V., Fontana, A., Naldi, G. (2001). Theta-
frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow
K+-dependent mechanism. Journal of Neuroscience, 21(3), 759–770.

D’Angelo, E., Koekkoek, S.K.E., Lombardo, P., Solinas, S., Ros, E., Garrido, J., Schonewille, M., De Zeeuw,
C.I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162(3),
805–815.

Dawkins, R. (1976). The Selfish Gene. Oxford University Press, London.
Delvendahl, I., Straub, I., Hallermann, S. (2015). Dendritic patch-clamp recordings from cerebellar granule cells

demonstrate electrotonic compactness. Frontiers in Cellular Neuroscience, 9, 93.
Dugonik, J., Bošković, B., Brest, J., Sepesy Maučec, M. (2019). Improving statistical machine translation quality

using differential evolution. Informatica, 30(4), 629–645.
Gandolfi, D., Lombardo, P., Mapelli, J., Solinas, S., D’Angelo, E. (2013). Theta-frequency resonance at the

cerebellum input stage improves spike timing on the millisecond time-scale. Frontiers in Neural Circuits, 7,
64.

A comparative Study of Stochastic Optimizers for Fitting Neuron Models 497

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., Diesmann, M. (2010). A general and efficient method for
incorporating precise spike times in globally time-driven simulations. Frontiers in Neuroinformatics, 4, 113.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan Press, USA.
Jörntell, H., Ekerot, C.F. (2006). Properties of somatosensory synaptic integration in cerebellar granule cells in

vivo. Journal of Neuroscience, 26(45), 11786–11797.
Kim, J., Yoo, S. (2019). Software review: DEAP (Distributed Evolutionary Algorithm in Python) library. Genetic

Programming and Evolvable Machines, 20(1), 139–142.
Kruskal, W.H., Wallis, W.A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American

Statistical Association, 47(260), 583–621.
Lange, W. (1975). Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell

and Tissue Research, 157(1), 115–124.
Lindfield, G., Penny, J. (2017). Introduction to Nature-Inspired Optimization. Academic Press, USA.
Marić, M., Stanimirović, Z., Djenić, A., Stanojević, P. (2014). Memetic algorithm for solving the multilevel

uncapacitated facility location problem. Informatica, 25(3), 439–466.
Marín, M., Sáez-Lara, M.J., Ros, E., Garrido, J.A. (2020). Optimization of efficient neuron models with realistic

firing dynamics. The case of the cerebellar granule cell. Frontiers in Cellular Neuroscience, 14, 161.
Masoli, S., Rizza, M.F., Sgritta, M., Van Geit, W., Schürmann, F., D’Angelo, E. (2017). Single neuron optimiza-

tion as a basis for accurate biophysical modeling: the case of cerebellar granule cells. Frontiers in Cellular
Neuroscience, 11, 71.

Mathworks (2021). Kruskal-Wallis test. https://www.mathworks.com/help/stats/kruskalwallis.html. [Last ac-
cess: March, 2021].

Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts: towards memetic
algorithms. Technical report, Caltech concurrent computation program, C3P Report.

Nair, M., Subramanyan, K., Nair, B., Diwakar, S. (2014). Parameter optimization and nonlinear fitting for com-
putational models in neuroscience on GPGPUs. In: 2014 International Conference on High Performance
Computing and Applications (ICHPCA). IEEE, pp. 1–5.

Naud, R., Marcille, N., Clopath, C., Gerstner, W. (2008). Firing patterns in the adaptive exponential integrate-
and-fire model. Biological Cybernetics, 99(4–5), 335.

Plesser, H.E., Diesmann, M., Gewaltig, M.O., Morrison, A. (2015). NEST: The Neural Simulation Tool. Springer,
New York, USA, pp. 1849–1852. 978-1-4614-6675-8. https://doi.org/10.1007/978-1-4614-6675-8_258.

Price, K., Storn, R.M., Lampinen, J.A. (2006). Differential Evolution: A Practical Approach to Global Opti-
mization. Springer Science & Business Media, Germany.

Puertas-Martín, S., Redondo, J.L., Pérez-Sánchez, H., Ortigosa, P.M. (2020). Optimizing electrostatic similarity
for virtual screening: a new methodology. Informatica, 31(4), 821–839.

Rao, R.V. (2016). Applications of TLBO algorithm and its modifications to different engineering and science
disciplines. In: Teaching Learning Based Optimization Algorithm. Springer, Switzerland, pp. 223–267.

Rao, R.V., Savsani, V.J., Vakharia, D.P. (2012). Teaching–learning-based optimization: an optimization method
for continuous non-linear large scale problems. Information Sciences, 183(1), 1–15.

Redondo, J.L., Arrondo, A.G., Fernández, J., García, I., Ortigosa, P.M. (2013). A two-level evolutionary algo-
rithm for solving the facility location and design (1| 1)-centroid problem on the plane with variable demand.
Journal of Global Optimization, 56(3), 983–1005.

Salhi, S. (2017). Heuristic Search: The Emerging Science of Problem Solving. Springer, Switzerland.
Schmahmann, J.D. (2019). The cerebellum and cognition. Neuroscience Letters, 688, 62–75.
Shopova, E.G., Vaklieva-Bancheva, N.G. (2006). BASIC—A genetic algorithm for engineering problems solu-

tion. Computers & Chemical Engineering, 30(8), 1293–1309.
Solis, F.J., Wets, R.J.B. (1981). Minimization by random search techniques. Mathematics of Operations Re-

search, 6(1), 19–30.
Storn, R., Price, K. (1997). Differential evolution – a simple and efficient heuristic for global optimization over

continuous spaces. Journal of Global Optimization, 11(4), 341–359.
Venkadesh, S., Komendantov, A.O., Listopad, S., Scott, E.O., De Jong, K., Krichmar, J.L., Ascoli, G.A. (2018).

Evolving simple models of diverse intrinsic dynamics in hippocampal neuron types. Frontiers in Neuroin-
formatics, 12, 8.

Waghmare, G. (2013). Comments on “A note on Teaching–Learning-Based Optimization algorithm”. Informa-
tion Sciences, 229, 159–169.

Williams, R.W., Herrup, K. (1988). The control of neuron number. Annual Review of Neuroscience, 11(1),
423–453.

https://www.mathworks.com/help/stats/kruskalwallis.html
https://doi.org/10.1007/978-1-4614-6675-8_258

498 N.C. Cruz et al.

N.C. Cruz is a researcher at the Supercomputing – Algorithms (SAL) Research Group at
the University of Almería, Spain. He obtained his PhD from the University of Almería.
His publications can be found on https://publons.com/researcher/1487279/nc-cruz/. His
research interests include high-performance computing, global optimization and applica-
tions. Personal web page: http://hpca.ual.es/~ncalvo/.

M. Marín is a predoctoral student at the department of Biochemistry and Molecular Bi-
ology at the University of Granada. She is currently pursuing her PhD within the Ap-
plied Computational Neuroscience group at the Research Centre for Information and
Communications Technologies. She is a young researcher participating in the interna-
tional project Human Brain Project (HBP). Some of her publications are available at
https://publons.com/researcher/3213167/milagros-marin/. Her interdisciplinary research
interests are located between Health and Biochemistry (Cerebellum, Molecular Biology
and Biomedicine) and Information and Communication Technologies (Computational
Neuroscience and Bioinformatics). Personal web page: http://acn.ugr.es/people/mmarin/.

J.L. Redondo is an assistant professor at the Informatics Department at the University of
Almería, Spain. She obtained her PhD from the University of Almería. Her publications
can be found on https://www.scopus.com/authid/detail.uri?authorId=35206862500. Her
research interests include high performance-computing, global optimization and applica-
tions. Personal web page: https://sites.google.com/ual.es/jlredondo.

E. M. Ortigosa is an assistant professor at the Computer Architecture and Technology De-
partment at the University of Granada, Spain. She received her PhD degree in computer
engineering from the University of Málaga, Spain. She has participated in the creation of
the spin-off company Seven Solutions, S.L. It is an EBT (Technology-Based Company)
that has received numerous awards. Her research interests include computational neuro-
science and efficient network simulation methods, bioinformatics, and hardware imple-
mentation of digital circuits for real time processing in embedded systems. Personal web
page: https://atc.ugr.es/informacion/directorio-personal/eva-martinez-ortigosa.

P.M. Ortigosa is a full professor at the Informatics Department at the University of
Almería, Spain. She obtained her PhD from the University of Málaga, Spain. Her publica-
tions can be found on https://www.scopus.com/authid/detail.uri?authorId=6602759441.
Her research interests include high-performance computing, global optimization and ap-
plications. Personal web page: https://sites.google.com/ual.es/pmortigosa.

https://publons.com/researcher/1487279/nc-cruz/
http://hpca.ual.es/~ncalvo/
https://publons.com/researcher/3213167/milagros-marin/
http://acn.ugr.es/people/mmarin/
https://www.scopus.com/authid/detail.uri?authorId=35206862500
https://sites.google.com/ual.es/jlredondo
https://atc.ugr.es/informacion/directorio-personal/eva-martinez-ortigosa
https://www.scopus.com/authid/detail.uri?authorId=6602759441
https://sites.google.com/ual.es/pmortigosa

	Introduction
	Neuron Model
	Model Structure and Problem Definition
	Model Context and Feature Measurement

	Optimization Methods
	Genetic Algorithm (GA)
	Memetic Algorithm Derived from GA (MemeGA)
	Differential Evolution (DE)
	Teaching-Learning-Based Optimization (TLBO)
	 Multi-Start Single-Agent Stochastic Search (MSASS)

	Experimentation and Results
	Environment and Configuration
	Numerical Results
	Discussion
	Insight into the Best Solution

	Conclusions and Future Work

