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Abstract. This paper deals with the two-stage transportation problem with fixed charges, denoted by
TSTPFC. We propose a fast solving method, designed for parallel environments, that allows solving
real-world applications efficiently. The proposed constructive heuristic algorithm is iterative and
its primary feature is that the solution search domain is reduced at each iteration. Our achieved
computational results were compared with those of the existing solution approaches. We tested the
method on two sets of instances available in literature. The outputs prove that we have identified a
very competitive approach as compared to the methods than one can find in literature.
Key words: parallel computing, heuristic algorithms, transportation system design, two-stage
fixed-charge transportation problem.

1. Introduction

When looking at the definition of supply chains (SCs), we find the commonly accepted
variant: they are considered worldwide networks in which the actors are suppliers, man-
ufacturers, distribution centres (DCs), retailers and customers. The typical SC performs
several functions; these are: the purchase and processing of raw materials, and their sub-
sequent conversion into intermediary and finished manufactured goods, along with the
delivery of the goods to the customers. The major goal of this entire operation is the sat-
isfaction of the customers’ needs and wants.

A particular SC network design problem is the focus of this paper, more specifically,
the two-stage transportation problem with fixed charges for opening the distribution cen-
tres. This is a modelling problem for a distribution network in a supply chain that is
described as two-stage. This two-stage supply chain network design problem includes
manufacturers, DCs and customers and its primary feature resides in the fact that for the
opening of distribution centres there exist fixed charges added to the variable costs of
transportation, that are proportionate to the quantity of goods delivered. The aim of the
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envisaged optimization problem is to determine which DCs should be opened and to pin-
point and choose the shipping routes, starting from the manufacturers and passing through
the picked DCs to reach the customers, and to satisfy all the capacity restrictions at man-
ufacturers and DCs so as to meet the customers’ specific demands, minimizing the total
costs of distribution. The problem with this design was considered first by Gen et al.
(2006). For a survey on the fixed-charge transportation problem and its variants we refer
to Buson et al. (2014), Cosma et al. (2018, 2019, 2020), Calvete et al. (2018), Pirkul and
Jayaraman (1998), Pop et al. (2016, 2017), etc.

The variant addressed within the current paper envisages a TSTPFC for opening the
DCs, as presented by Gen et al. (2006). The same problem was also considered by Raj
and Rajendran (2012). The authors of the two specified papers developed GAs that build,
firstly, a distribution tree for the distribution network that links the DCs to customers, and
secondly, a distribution tree for the distribution network that links the manufacturers to
DCs. In both GAs, the chromosome contains two parts, each encoding one of the distri-
bution trees. Calvete et al. (2016) designed an innovative hybrid genetic algorithm, whose
principal characteristic is the employment of a distinct chromosome representation that of-
fers information on the DCs employed within the transportation system. Lately, Cosma et
al. (2019) described an effective solution approach that is based on progresively shrinking
the solutions search domain. In order to avoid the loss of quality solutions, a mechanism
of perturbations was created, which reconsiders the feasible solutions that were discarded,
and which might eventually lead to the optimal solution.

The investigated TSTPFC for opening the DCs is an NP-hard optimization problem
because it expands the classical fixed charge transportation problem, which is known to
be NP-hard, for more information see Guisewite and Pardalos (1990). That is why we
describe an efficient parallel heuristic algorithm.

Parallel computing seeks to exploit the availability of several CPU cores which can
operate simultaneously. For more information on parallel computing we refer to Trobec
et al. (2018).

In this paper, we aim to illustrate an innovative parallel implementation of the Shrink-
ing Domain Search (SDS) algorithm described in Cosma et al. (2019), that is dealing
with the TSTPFC for opening the DCs. Our constructive heuristic approach is called Par-
allel Shrinking Domain Search and its principal features are the reduction of the solutions
search domain to a reasonably sized subdomain by taking into account a perturbation
mechanism which permits us to reevaluate abandoned feasible solutions whose outcome
could be optimal or sub-optimal solutions and its parallel implementation that allows us
to solve real-world applications in reasonable computational time. The proposed solution
approach was implemented and tested on the existing benchmark instances from the liter-
ature.

The paper is organized as follows: in Section 2, we define the investigated TSTPFC
for opening the DCs. In Section 3 we describe the novel solution approach for solving
the problem, designed for parallel environments. In Section 4 we present implementation
details and in Section 5 we describe and discuss the computational experiments and our
achieved results. Finally, the conclusions are depicted in Section 6.
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Fig. 1. Illustration of the considered TSTPFC for opening the DCs.

2. Definition of the Problem

In order to define and model the TSTPFC for opening the DCs we consider a tripartite
directed graph G = (V ,A), that consists of a set of vertices V = V1 ∪ V2 ∪ V3 and a set
of arcs A = A1 ∪ A2 defined as follows:

A1 = {
(i, j)

∣∣ i ∈ V1 and j ∈ V2
}

and A2 = {
(j, k)

∣∣ j ∈ V2 and k ∈ V3
}
.

The entire set of vertices V is divided into three mutually exclusive sets corresponding
to the set of manufacturers denoted by V1 with |V1| = p, the set of distribution centres
denoted by V2 with |V2| = q and the set of customers denoted by V3 with |V3| = r .

In addition, we suppose that:

• Every manufacturer i ∈ V1 has Si units of supply, every DC j ∈ V2 has a given capacity
Tj , each customer k ∈ V3 has a demand Dk and the total number of units received by
DC j, j ∈ V2 from manufacturers and sent from DC j to customers is denoted by dj ;

• Every manufacturer may transport to any of the q DCs at a transportation cost bij per
unit from manufacturer i ∈ V1, to DC j ∈ V2;

• Every DC may transport to any of the r customers at a transportation cost cjk per unit
from DC j ∈ V2, to customer k ∈ V3;

• In order to open any of the DCs we have to pay a given fixed charge, denoted by fj

and there exists a limitation on the number of the DCs that are permitted to be opened,
denoted by w.

The goal of the investigated TSTPFC for opening the DCs is to select the DCs, the ship-
ping routes and corresponding transported quantities on these routes, so that the customer
demands are satisfied, all the transportation restrictions are fulfilled, and the total trans-
portation costs are minimized.

In Fig. 1 we present the investigated TSTPFC for opening the DCs.
In order to provide the mathematical formulation of the investigated transportation

problem with fixed charges, we consider the following decision variables: the binary vari-
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ables vj ∈ {0, 1} that indicate if DC j has been opened and the linear variables xij � 0
representing the amount of units have been transported from manufacturer i to DC j and
yjk � 0 representing the amount of units have been shipped from DC j to customer k.

Then the TSTPFC for opening the distribution centres can be formulated as the fol-
lowing mixed integer problem, proposed by Raj and Rajendran (2012):

min
p∑

i=1

q∑

j=1

bij xij +
q∑

j=1

r∑

k=1

cjkyjk +
q∑

j=1

vjfj

s.t.
q∑

j=1

xij � Si, ∀ i ∈ V1, (1)

q∑

j=1

yjk = Dk, ∀ k ∈ V3, (2)

p∑

i=1

xij =
r∑

k=1

yjk � Tj , ∀ j ∈ V2, (3)

q∑

j=1

vj � w, (4)

Sivj � xij � 0, ∀ i ∈ V1,∀ j ∈ V2, (5)
Dkvj � yjk � 0, ∀ j ∈ V2,∀ k ∈ V3. (6)

In order to have a nonempty solution set we make the following suppositions:

p∑

i=1

Si �
r∑

k=1

Dk, ∀ k ∈ V3, ∀ i ∈ V1, (7)

q∑

j=1

Tj �
r∑

k=1

Dk, ∀ k ∈ V3, ∀ j ∈ V2. (8)

The aim of the investigated problem is to minimize the total transportation costs, there-
fore the objective function has three terms associated to the transportation costs between
manufacturers and distribution centres, between depots distribution centres and customers
and the costs of opening the DCs, respectively. Constraints (1) guarantee that the capacity
of the manufacturers is not exceeded, while constraints (2) ensure that the total shipment
received from DCs by each customer satisfies its demand. Restrictions (3) are the flow
conservation conditions and they guarantee that the units received by a DC from man-
ufacturers are equal to the units shipped from the distribution centres to the customers
and as well ensure that the capacity of the DCs is not exceeded. Constraint (4) limits the
number of distribution centres that can be opened and the last three constraints ensure the
integrality and non-negativity of the decision variables.
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Fig. 2. The search strategy of the Parallel Shrinking Domain Search algorithm.

3. Description of the Parallel SDS Algorithm

The difficulty of the investigated transportation problem lies in the large number of feasible
solutions, from which the optimal option should be chosen. Because each used DC adds a
certain cost to the objective function, the fundamental decision of the algorithm is related
to the distribution centres that should be used in order to optimize the total distribution
costs. Thus, the operations of the algorithm can be separated into the following steps:

S1: Choosing a set of promising distribution centres.
S2: Solving an optimization subproblem in which only the DCs in the chosen set are used.

Each iteration of the PSDS algorithm involves one or more operations. The set of DCs
that are used in the optimal solution is called the best set.

At the initialization of the algorithm, the number of DCs in the optimal set (DCno) will
be estimated based on the minimum capacity of the DCs and the total customer demand.
This estimate will be permanently updated throughout the algorithm. If the distribution
system has q DCs, then the optimum set search domain has

(
q

DCno
)

elements. Evaluating
each set involves solving the S2 subproblem. For large systems, it is not possible to evalu-
ate all these variants. We will refer to the number of DCs in a set by the set type and to the
cost of the distribution solution obtained by solving subproblem S2 through the set cost.

The proposed Parallel Shrinking Domain Search algorithm (PSDS) is an iterative al-
gorithm that applies the following strategy: at each iteration, a fixed number of sets of the
search domain will be evaluated, after which the search domain for the next iteration will
be reduced. As the search domains narrow down, they will be explored at more detail.
In the last iterations, the search domains can be explored exhaustively because they will
contain fewer elements than the number settled for evaluation. The algorithm ends when
a single set exists in the search domain. In order to avoid losing the optimal solution in the
domain search reduction and for DCno estimate adjustment, a perturbation mechanism
has been created to reconsider some sets outside the search domain. The search strategy
of the PSDS algorithm is shown in Fig. 2.

The solution-building process is relatively expensive because it requires a large number
of operations and the problem is even more complex as the size of the distribution system
is larger. The performance of the algorithm has been improved by building solutions in
parallel. For this purpose, the Java Fork and Join framework has been used.

In Fig. 3, we illustrate the operating principle of the proposed PSDS algorithm.



686 O. Cosma et al.

Fig. 3. Our iterative Parallel Shrinking Domain Search algorithm.

The parallel shrinking domain algorithm maintains the following set of lists:

• Good DCs – contains the promising DCs, based on which the sets within the search
domain will be generated at every iteration. This list contains the features of surviving
sets;

• Bad DCs – a list of disadvantageous DCs that is necessary for the implementation of
the perturbation operation, and to correct the DCno estimation;

• Good sets – a list that preserves the best performing sets discovered during the execution
of the algorithm. This list has a fixed number of items representing the surviving sets.
The sets found at the beginning of this list, contain only good DCs. In the remaining of
this document, they will be called Best sets;

• Sets for evaluation – a list of prepared sets for evaluation representing the sets from next
generation of sets;

• Sets types – a list that contains a quality estimation of all types of sets found in the Best
sets list. This is a list of structures {type, quality};

• All sets – a hash set containing every set created and placed in the Sets for evaluation
list during the execution of the algorithm.

At the initialization of the algorithm, the optimal set type (DCno) is estimated and
all available DCs are added to the Bad DCs list. Then the Good Sets list, the Sets for
evaluation list and the All sets hash set are constructed and a single item of DCno type
and quality = 1 is added to the Sets Types list. Next, a Thread Pool is created with a
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number of Worker Threads equal to the number of CPU logic processors. For performance
comparison, experiments with fewer threads were also performed. The worker threads will
be enabled at each iteration by creating a Recursive Evaluator task that will be sent to the
Thread Pool for parallel evaluation of the sets in the Sets for evaluation list.

Every iteration of the proposed algorithm executes in sequence the four main blocks
presented in Fig. 3: Generation, Evaluation, Selection and Classification. The first block
prepares the sets to be evaluated, the second one deals with the evaluation of the sets,
and the last two handle the results. From the point of view of complexity, the first and the
last two blocks are negligible in relation to the second. The efficiency of the algorithm has
been significantly improved by parallel implementation of the processing in the Evaluation
block.

The Generation block contains three types of generators for feeding the Sets for evalua-
tion list. All the sets created during the algorithm are kept in a hash set All Sets. Thus, each
duplicate can be detected and removed easily. Such a mechanism could be implemented
because the total number of sets is relatively small. The optimization process ends after
a very small number of iterations. The total number of sets generated during the execu-
tion of the algorithm is relatively small. Due to this property, the PSDS algorithm can be
applied for solving large instances of the problem.

The first generator type creates a fixed number of sets by picking at random DCs from
the Good DCs list. The types of the created sets are retrieved from the Best types list. For
each type present in this list, a number of sets proportional to the quality of the type are
generated. The quality of the type is determined by the Classification block.

The second generator type creates perturbations by inserting “bad” distribution cen-
tres taken from the Bad DCs list in the good sets from the Good sets list. This operation
is essential for our optimization process: there could be distribution centres erroneously
categorized by the Classification module, because they were found only in sets composed
mainly by “bad” distribution centres. Due to the perturbation mechanism, at each itera-
tion these sets get an opportunity to return to the Good DCs list. This mechanism creates
a new set for each “bad” distribution centre in the Bad DCs list, by changing one element
of a set taken from the Good sets list. The Good sets list is processed in the order given
by the cost of the corresponding distribution solutions. This attempts to place each “bad”
distribution centre into the best possible set.

Another key operation is the update of the DCno estimation. For this purpose, both
larger and smaller sets than those existing in the Best sets list will be created by the third
generator type. For creating larger sets, each “bad” distribution centre is added to the best
possible set from the Best sets list. The smaller sets are generated by cloning sets from the
Best sets list and randomly deleting one of their elements.

The Evaluation block has the role of evaluating the sets from the Sets for evaluation
list. For this purpose, a Recursive Evaluator task is created, which is sent to the Thread
Pool for execution.

The operation of this task is shown in Fig. 4. The Recursive Evaluator task divides the
Sets for evaluation list into two equal parts, then creates two sub-tasks (ST ) to evaluate
the two halves. When the number of items a task has to evaluate drops below a certain
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Fig. 4. The operation of the Recursive Evaluator task.

threshold, a Final Task (FT ) is created that will be executed by one of the Worker Threads.
For the results presented in this article, a threshold of 10 was used. The algorithm by which
each set is evaluated by a FT will be presented at the end of this section.

The Selection and Classification blocks are triggered when all the worker threads have
ended. The Selection module takes all the sets in the Sets for evaluation list that are better
than the last element in the Good sets list and moves them to that list. Next, the Good
sets list is sorted by the set costs and only the best elements are kept, so that its size stays
constant. Then the Sets for evaluation list is cleared to make room for the next generation
of sets.

The Classification block uses the information in the Good sets list for updating the
Good DCs and Bad DCs lists. The Good sets list is traversed based on the cost order. The
first distribution centres found in the Good sets elements are added to the Good DCs list,
and the remaining ones form the Bad DCs list. The number of sets selected to form the
Good sets list decreases each time. Due to this, the PSDS algorithm ends after a small
number of iterations.

The Classification block estimates the quality of the set types in the Best sets list and
places the result in the Sets types list. The quality of each set type is estimated based on
the number of items of that type found in the Best sets list and the positions of those items
in the list.

The DC set evaluation operation is presented in Fig. 5.
The relatively bulky data structure representing the characteristics of the distribution

system (the unit costs bij and cjk), the fixed costs (fj ), the demands of the customers (Dk)
and the manufacturers and distribution centers capacities (Si and Tj ) is static, so it will
not be copied at the creation of each task. Because this data is shared by all the final tasks
running in paralel, it must remain unchanged. For the construction of each distribution
solution, two small lists (used DCs list and used Ms list) will be constructed by the final
task, in which the quantities to be delivered by the DCs and manufacturers used in the
solution will be kept.
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Fig. 5. The DC set evaluation operation.

Each solution is constructed in r stages. At each stage the best supply variant for one
customer is searched for. Every decision taken in this stage will affect all decisions to
be taken in the next stages, as certain transport links might be opened and some of the
capacities of manufacturers and distribution centres will be consumed.

Each customer demand is resolved in one or a few stages. At every stage, the cheapest
Manufacturer – Dictribution Centre – Customer supply route is sought by the Find Route
module, that performs a greedy search. The cost of a route depends on the amount of
transported goods, the unit costs of the transport lines and the fixed costs of the transport
lines that have not been opened previously. If the found route can not ensure the entire
demand of the customer, because of the limited capacities of the distribution centres and
manufacturers, then an extra stage is added for the remaining quantity.

The Supply module only uses the two local lists as storage area and updates the total
unit costs corresponding to the distribution solution. The last operations of the Supply
module is the removal of the unused distribution centres from the evaluated set, and the
addition of the remaining distribution centres fixed costs to the final cost of the set.

4. Implementation Details

In the description of our algorithm we will use the following abbreviations:

Zbest the cost of the best distribution solution;
Zworst the cost of the distribution solution corresponding to the last of the

Good sets;
Zs the cost of the distribution solution corresponding to set s;
totalQuality sum of the qualities of all types in the Sets types list;
sType the type of set s;
totalSets the number of sets kept in the Good sets list after each iteration;
bestSetsNo the number of items in the Best sets list;
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Fig. 6. The hierarchy of the PSDS algorithm procedures.

goodPercent the percentage of the total number of distribution centres that are
placed in the Good DCs list;

goodDCsNo the number of items in the Good DCs list;
speed the rate of decreasing the goodPercent;
AllDCs the list with all the distribution centres.

The hierarchy of the procedures that make up the PSDS algorithm is shown in Fig. 6.
The startup of the algorithm is presented in Algorithm 1. Based on experiments, the

following initialization parameters were used: totalSetsInit = 6q, goodPercentInit = 0.5,
where q is the total number of distribution centres. The calls on lines 15 and 16 generate
and evaluate an initial collection of sets and then, the call on line 17 starts the optimization
process.

The generation procedure is presented in Algorithm 2. It generates multiple sets based
on the distribution centres found in the DCList parameter. This procedure produces per-
turbations only if the second parameter is true. Petrurbations are almost always generated.
The only exception occurs in the case of the call on line 15 of the startup procedure.
A number of sets equal to totalSets will be generated at most. For each set type in the
SetsTypes list, a number of sets in proportion with the set quality will be generated. If the
DCList does not have enough elements for generating the required amount of sets, then the
exhaustiveGenerator procedure will be called to generate all the possible sets. Otherwise
procedure randomGenerator will be called. If perturbations are required, then the pro-
cedures largerSetsGenerator and perturbationsGenerator are called for each distribution
center in the BadDCs list.

The randomGenerator procedure presented in Algorithm 3 creates at least variantsNo
random sets of certain type with distribution centres taken from the DCList. The new
created sets are added to the Sets for evaluation list. The procedure shuffles the distribution
centres in a working list and avoids putting a distribution centre multiple times in the same
set. Each set is validated on line 10. For a valid set, the sum of the distribution centres
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capacities must be large enough to satisfy all the customers, and the set has to pass the
Duplicates detector.

The exhaustiveGenerator procedure is presented in Algorithm 4. It generates all pos-
sible sets of certain type with the distribution centres from the DCList. The newly created
sets are validated on line 3 and added to the Sets for evaluation list.

The largerSetsGenerator procedure is presented in Algorithm 5. It searches through
the Best sets list to find the best ranked set in which the badDC can be inserted to create a
new validated set. The procedure is called in line 14 of the generation procedure, aiming
to insert each bad distribution centre in a new valid set.

The perturbationsGenerator procedure presented in Algorithm 6 searches in the Good
sets list, the first set in which an item can be substituted by the badDC. All the new created
sets are added to the Sets for evaluation list. The procedure is called in line 15 of the
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generation procedure. It tries to insert each “bad” distribution centre in the best possible
set.

The evaluation procedure is presented in Algorithm 7. It is called in the startup and
shrinkingDomainSearch procedures, when the preparation of the Sets for evaluation list
is finished. The procedure creates a Recursive evaluator task for all the sets in the Sets for
evaluation list, and sends it to the Thread pool for execution. When the evaluation ends,
all the sets that are not worse than the ones in the Good sets list are moved to that list. The
Sets for evaluation list is cleared, to be prepared for a new iteration, and the Good sets list
is sorted according to sets cost.

The recursiveEvaluator procedure is presented in Algorithm 8. The first parameter
represents the position of the first set from the SetsForEvaluation list to be considered,
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and the length parameter represents the number of sets to be evaluated, starting from the
first. If the value of the length parameter exceeds the value of the threshold wThreshold,
then through the calls on lines 9 and 10 two sub-tasks are created, each having to evaluate
half of the initial number of sets. When the length parameter falls below wThreshold,
the procedure is converted into a Final Task that is retrieved and executed by one of the
available Worker Threads in the Thread Pool.

The shrinkingDomainSearch presented in Algorithm 9 is the central procedure of the
PSDS algorithm. The search domain is reduced at every iteration of the main loop, by
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decreasing the goodPercent. Therefore, the goodDCsNo is also reduced. The speed pa-
rameter controls the convergence of the algorithm. By increasing the speed parameter, the
total number of iterations is reduced. This reduces the total number of operations, the al-
gorithm runs quicker, but the optimal solution might be lost, because the search domains
are explored less thoroughly. For the results included in this paper, the speed parameter
was fixed to 1.1. The updateGoodDCs procedure call rebuilds the Good DCs and Bad
DCs lists, at each iteration. The for loop estimates the quality of all the set types from
the Best sets list, considering the number of items of each type, and the positions of those
items in the list. These estimations will determine the number of sets that will be generated
for each type. The DCNo estimation is updated on line 18. The generators and evaluation
procedures are called at the end of the main loop.

The updateGoodDCs procedure is presented in Algorithm 10. It moves from the Bad
DCs list to the Good DCs list a number of distribution centres equal to GoodDCsNo. The
distribution centres are taken from the best items of the Good sets list. The bestSetsNo
variable is recalculated in the process.

The smallerSetsGenerator procedure presented in Algorithm 11 generates all the pos-
sible sets by removing one distribution centre from the items in the Best sets list. Each
new created set is validated before being added to the Sets for evaluation list.

The remaining of this section is dedicated to the adjustment of the algorithm’s op-
erating parameters. The charts presented in Figs. 7–12 show the gaps for the average of
the best solutions and for the average running times required to find the best solutions, in
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the cases of four different instances. The selected instances have been run 10 times, using
five different values for the following algorithm parameters: speed, goodPercentInit and
totalSetsInit.

The gap of the average best solution Zgv is given by relation (9), where v is the value of
the studied parameter, ref is the reference value of the same parameter, Zv is the average
of the best solutions found in the ten runs of the instance when using v and Zref is the
average of the best solutions found in the ten runs of the instance when using ref. The gap
of the running time T gv is given by relation (10), where T v is the average of the running
times when using v and T ref is the average of the running times when using ref.

Zgv = Zv − Zref

Zref
× 100, (9)

T gv = T v − T ref

T ref
× 100. (10)

Figures 7 and 8 deal with the speed parameter. The reference value of this parameter
that has been set for building the charts is 1.1. For higher values of this parameter, the
algorithm ends faster because it performs fewer iterations, but this increases the likelihood
of missing the optimal solution, because the search domains are reduced too much with
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Fig. 7. The influence of the speed parameter on the best solution found.

Fig. 8. The influence of the speed parameter on the running time.

each iteration. For speed = 1.4 the running time gap decreases to about −50%, but the
best solution gap can increase to about 0.3%. For values lower than the reference, the
running time gap increases unreasonably.

Figures 9 and 10 deal with the goodPercentInit parameter. This parameter determines
how much the solution search domain is reduced after the first iteration of the algorithm.
The reference value of this parameter that has been set for building the charts is 50. The
graph in Fig. 9 shows that the decrease of this parameter below the reference value in-
creases the probability of missing the optimal solution, and the graph in Fig. 10 shows that
increasing this parameter over the reference value also unjustifiably increases the running
time.

Figures 11 and 12 deal with the totalSetsInit parameter, that is: totalSetsInit = q × tc,
where tc is the totalSetsInit coefficient, and q is the number of distribution centres. The
reference value of the totalSetsInit coefficient that has been set for building the charts
is 6. The chart in Fig. 11 shows that decreasing the initial number of sets below q × 6
increases the likelihood of missing the optimal solution, and the chart in Fig. 12 shows
that increasing too much the initial number of sets has a negative impact on the running
time of the algorithm.
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Fig. 9. The influence of the goodPercentInit parameter on the best solution found.

Fig. 10. The influence of the goodPercentInit parameter on the running time.

Fig. 11. The influence of the totalSetsInit coefficient on the best solution found.

5. Computational Results

This section is dedicated to the achieved computational results with the aim of assessing
the effectiveness of our approaches suggested for solving the TSTPFC for opening the
DCs.
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Fig. 12. The influence of the totalSetsInit coefficient on the running time.

The results presented in this section were obtained by running our algorithm for solving
the TSTPFC for opening the DCs on a set of 16 test instances of medium sizes, and on a set
of 8 instances of larger sizes. Both sets of benchmark instances are known from literature.
We refer to Calvete et al. (2016) for more information regarding the characteristics of
the first set of instances, and to Cosma et al. (2019) for more information regarding the
characteristics of the second set instances.

We implemented our parallel heuristic algorithm for solving the considered transporta-
tion problem, in Java language. We have run each of the instances 10 times, as Calvete
et al. (2016) did. For our tests, we used two computing systems having the following two
significantly different Central Processing Units:

• Intel Core i5-4590 CPU at 3.3 GHz having 4 cores / 4 logical processors;
• Intel Xenon Silver 4114 at 2.2 GHz having 10 cores / 20 logical processors.

For the envisaged test instances, we compared our developed parallel heuristic algo-
rithm with the existing solution approaches with the aim of analysing the performance of
our solution. The obtained computational results are presented in Tables 1 and 2.

In Table 1, we describe the results of the computational experiments in the case of the
two classes of instances introduced by Calvete et al. (2016). The first column of the table
provides the name and the characteristics of the test instance, the next column provides the
optimal solution of the problem, denoted by Zopt achieved by the professional optimization
software LINGO and as well the corresponding execution time Topt required to obtain it,
the next column displays the best solution Zbest achieved by Calvete et al. (2016) and as
well the corresponding average computational time Tavg and average number of iterations
I tavg required to achieve the best solution. Finally, the last seven columns display results
achieved by our novel parallel heuristic algorithm: the best solution Zbest achieved in all
ten runs of the computational experiments, the corresponding best computational times
Tbest and average computational times Tavg for obtaining the solution, the best and the
avearage iteration at which the best solution appears, the average duration of an iteration
avg T/it in seconds and the number of worker threads used in each experiment wt#.
The computational times are displayed in seconds, with four exceptions, in the case of
problems P6,1, P7,1, P8,1 and P8,2 where LINGO needs more than two hours to solve the
problems.
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Table 1
Computational results for the instances introduced by Calvete et al. (2016).

Instance LINGO HEA Calvete
et al.

Our solution approach
Zbest Time Iteration Avg.

T/It
wt#

Best Avg. Best Avg.
Pl,l: p = 10,

q = 20, i = 40
Zopt = 295703
Topt = 1

Zbest = 295703 295703 <0.001 <0.001 1 1.00 <0.001 1
Tavg = 0.05 <0.001 0.01 1 1.00 0.01 2
ITavg = 1.0 <0.001 <0.001 1 1.00 <0.001 4

P2,l: p = 10,

q = 20, i = 60
Zopt = 500583
Topt = 1

Zbest = 500583 500583 <0.001 <0.001 1 1.00 <0.001 1
Tavg = 0.08 <0.001 <0.001 1 1.00 <0.001 2
ITavg = 1.6 <0.001 <0.001 1 1.00 <0.001 4

P3,l: p = 25,

q = 50, r = 100
Zopt = 803019
Topt = 7

Zbest = 803019 803019 0.03 0.04 1 1.00 0.04 1
Tavg = 0.81 0.02 0.02 1 1.00 0.02 2
ITavg = 4.2 0.02 0.02 1 1.00 0.02 4

P4,l:p = 25,

q = 50, i = 150
Zopt = 1230358
Topt = 144

Zbest = 1230358 1230358 0.05 0.06 1 1.00 0.06 1
Tavg = 1.78 0.02 0.03 1 1.10 0.03 2
ITavg = 9.0 0.02 0.02 1 1.00 0.02 4

P5,l: p = 50,

q = 100, i = 200
Zopt = 1571893
Topt = 2633

Zbest = 1571893 1571893 0.30 0.32 1 1.20 0.28 1
Tavg = 6.88 0.14 0.18 1 1.30 0.14 2
ITavg = 11.4 0.08 0.13 1 1.40 0.09 4

P6,l: p = 50,

q = 100, r = 300
Zopt = 2521232
Topt > 2 hours

Zbest = 2521232 2521232 0.44 0.55 1 1.50 0.38 1
Tavg = 11.73 0.22 0.24 1 1.10 0.23 2
ITavg = 13.4 0.14 0.17 1 1.40 0.12 4

P7,l: p = 100,

q = 200, r = 400
Zopt = 3253335
Topt > 2 hours

Zbest = 3253335 3253335 2.31 4.49 1 2.80 1.68 1
Tavg = 56.73 1.20 1.95 1 2.20 0.99 2
ITavg = 23.4 0.70 1.16 1 2.10 0.60 4

P8,l: p = 100,

q = 200, r = 600
Zopt = 4595835
Topt > 2 hours

Zbest = 4595835 4595835 3.47 3.49 1 1.00 3.49 1
Tavg = 38.39 1.80 1.83 1 1.00 1.83 2
ITavg = 9.6 1.03 1.10 1 1.00 1.10 4

Pl,2: p = 10,

q = 20, r = 40
Zopt = 228306
Topt = 1

Zbest = 228306 228306 <0.001 0.02 1 2.70 0.01 1
Tavg = 0.20 <0.001 0.01 1 1.70 0.01 2
ITavg = 5.6 <0.001 <0.001 1 1.70 <0.001 4

P2,2: p = 10,

q = 20, i = 60
Zopt = 348837
Topt = 0

Zbest = 348837 348837 0.02 0.02 1 2.30 0.01 1
Tavg = 0.23 0.02 0.02 1 2.10 0.01 2
ITavg = 4.8 <0.001 0.01 2 3.20 0.01 4

P3,2: p = 25,

q = 50, r = 100
Zopt = 507934
Topt = 2

Zbest = 507934 507934 0.20 0.36 2 4.30 0.09 1
Tavg = 2.55 0.09 0.20 2 4.90 0.04 2
ITavg = 12.0 0.08 0.14 3 5.80 0.02 4

P4,2: p = 25,

q = 50, i = 150
Zopt = 713610
Topt = 4

Zbest = 713610 713610 0.31 0.61 2 5.60 0.12 1
Tavg = 4.17 0.20 0.32 3 5.50 0.06 2
ITavg = 12.6 0.13 0.19 2 5.20 0.04 4

P5,2: p = 50,

q = 100, i = 200
Zopt = 985628
Topt = 33

Zbest = 985628 985628 4.80 7.71 9 13.00 0.59 1
Tavg = 20.46 2.83 4.09 9 13.70 0.30 2
ITavg = 39.4 2.28 2.84 11 13.80 0.21 4

P6,2: p = 50,

q = 100, r = 300
Zopt = 1509476
Topt = 51

Zbest = 1509476 1509476 6.75 10.91 7 13.70 0.84 1
Tavg = 43.70 3.28 5.96 6 15.40 0.41 2
ITavg = 62.2 3.09 4.09 10 14.70 0.29 4

P7,2: p = 100,

q = 200, r = 400
Zopt = 1888252
Topt = 305

Zbest = 1888252 1888252 72.63 92.90 14 18.30 5.08 1
Tavg = 120.92 32.64 45.71 12 18.10 2.53 2
ITavg = 54.0 13.05 24.66 9 18.50 1.34 4

P8,2: p = 100,

q = 200, i = 600
Zopt = 2669231
Topt > 2 hours

Zbest = 2669231 2669231 55.76 98.05 7 13.70 7.27 1
Tavg = 154.42 22.96 39.25 6 11.70 3.44 2
ITavg = 35.2 15.91 26.32 7 14.60 1.83 4
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Table 2
Computational results for the instances introduced by Cosma et al. (2019).

p
Zbest

Cosma et al. Our solution approach
I q IEEE Access
# r Time [s] Iteration CPU Time [s] Iteration Avg. wt

w Best Avg Best Avg Best Avg Best Avg T/It #

1

150
300
800
50

i3 47.61 112.99 8 17 6.66 4
4c, 4 lp 41.82 191.88 3 15.85 12.21 2
3.58 GHz 184.95 400.48 7 16.65 24.3 1

3600012 206.79 216.52 18 19.0

Xeon
10c, 201p
2.2 GHz

48.99 59.15 14 18 3.3 20
45.53 58.23 13 17.25 3.38 16
38.96 56.91 11 16.4 3.48 12
55.41 74.57 13 18 4.18 8
99.46 129.28 12 17.00 7.67 4
467.97 492.64 17 18.75 26.42 1

2

150
300
1000
50

i3 47.42 149.35 4 17.36 8.72 4
4c, 4 lp 139.55 260.61 10 16.97 15.37 2
3.58 GHz 183.33 481.88 6 16.38 29.74 1

4531394 260.37 311.11 14 16.8
Xeon
10c,
201p
2.2 GHz

28.28 63.83 6 15.14 4.27 20
59.09 74.92 14 17.6 4.25 16
51.8 70.8 12 17.25 4.16 12
39.83 83.4 7 17.60 5.42 8
138.01 159.82 16 18.25 9.06 4
466.01 578.98 16 31.62 1

3

200
400
1500
60

i3 144.92 336.46 6 15.28 22.28 4
4c, 4 lp 305.63 624.35 7 15.62 40.53 2
3.58 GHz 635.52 1221.32 6 15.17 81.85 1

6594333 468.97 721.36 8 12.8

Xeon 10c,
201p
2.2 GHz

99.39 176.27 9 16.92 10.49 20
112.61 166.2 10 15.4 10.86 16
140.05 192.61 12 17.1 11.29 12
90.58 199.83 6 14.6 13.89 8
175.63 338.08 6 13 26.57 4
962.04 1287.39 12 15 86.09 1

4

200
400
2000
60

i3 96.54 442.01 3 17.17 26.02 4
4c, 4 lp 344.31 848.23 6 17.58 48.53 2
3.58 GHz 815.78 1681.32 8 17.32 97.66 1

8828329 461.28 1020.21 7 16.2

Xeon 10c,
201p
2.2 GHz

144.52 215.19 11 16.92 12.79 20
147.32 224.16 10 17.2 13.13 16
144.18 230.6 9 16.9 13.8 12
51.32 265.5 2 14.8 19.27 8
404.8 506.15 13 17.25 29.46 4
1590.44 1886.82 15 17.5 108.01 1

5 250
500
2500
70

i3 321.67 1194.81 5 20.07 60.02 4
4c, 4 lp 1569.33 2294.09 12 20.06 114.82 2
3.58 GHz 2744.46 4276.71 11 19.38 222.91 1

11055247 2709.26 2733.78 21 21.5

Xeon 10c,
201p
2.2 GHz

353.18 522.15 12 18.71 28.07 20
497.03 569.26 17 19.75 28.86 16
539.16 605.85 20 21.75 28.02 12
427.66 663.61 11 19.20 34.96 8
1235.03 1368.82 20 21.00 65.19 4
4529.15 4609.30 18 19.75 235.26 1

(continued on next page)
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Table 2
(continued)

p
Zbest

Cosma et al. Our solution approach
I q IEEE Access
# r Time [s] Iteration CPU Time [s] Iteration Avg. wt

w Best Avg Best Avg Best Avg Best Avg T/It #

6

250
500
3000
70

i3 658.72 1029.29 8 16.33 64.35 4
4c, 4 lp 733.17 2062.34 4 15.93 133.13 2
3.58 GHz 1482.97 4093.83 5 15.34 271.97 1

13150463 1423.67 2275.37 8 15.0

Xeon 10c,
201p
2.2G Hz

443.38 588.29 13 18.08 32.54 20
264.15 452.47 7 13.29 34.5 16
448.52 586.94 13 17.83 33 12
441.11 740.31 9 17.00 44.24 8
646.10 908.02 7 10.50 86.92 4
3065.59 4712.13 10 16.25 292.96 1

7

300
600
3500
80

i3 621.07 1795.15 5 17.91 101.73 4
4c, 4 lp 1191.45 3653.61 5 18.57 198.91 2
3.58 GHz 2869.08 7824.73 6 17.48 453.42 1

15190167 1531.77 4439.75 5 15.8

Xeon 10c,
201 p
2.2 GHz

414.1 894.56 7 18.33 49.7 20
510.9 947.71 9 18.4 51.9 16
732.69 1017.76 13 19.33 52.2 12
985.16 1274.07 15 19.4 65.7 8
2284.5 2376.73 20 20.25 117 4
8520.18 8759.55 20 20.33 430.7 1

8

300
600
4000
80

i3 1381.14 2133.52 10 18.51 116.24 4
4c, 4 lp 2875.94 4159.1 10 19.07 220.35 2
3.58 GHz 3441.87 8269.08 8 18.35 454.77 1

17266134 3046.88 5368.18 11 19.8

Xeon 10c,
201 p
2.2 GHz

978.31 1116.29 18 20.25 55.25 20
784.3 1121.98 13 18.9 59.49 16
515.16 1150.47 7 19.22 60.87 12
1265.48 1459.72 17 20 73.07 8
1540.24 2168.33 10 14.75 148 4
6721.36 8589.16 12 17 512.2 1

The results in Table 1 show that our developed parallel heuristic algorithm delivers
the same result as the one provided by Calvete et al. (2016), in all ten runs of computing
experiments. These results correspond to the optimal solutions of the problem obtained by
LINGO. In terms of efficiency, our parallel heuristic algorithm runs faster than the hybrid
evolutionary algorithm proposed by Calvete et al. (2016) when using a single working
thread and our calculation runtimes decrease as the number of worker threads increases,
for all the tested instances.

Since Table 1 shows a comparison of the running times of the proposed algorithm
with those obtained by Calvete et al. (2016), a comparison of the effectiveness of the
programming languages in which the two algorithms were implemented and a comparison
of the processing power of the CPUs used in the experiments, are required. The algorithm
proposed by Calvete et al. (2016) has been run on an Intel Pentium D CPU at 3.0 GHz.
For the results presented in Table 1, we used an Intel Core i5-4590 processor at 3.3 GHz.
The single thread ratings of the two processors are shown in PassMark. Pentium D rating:
698, Core i5 rating: 2114. The processor used in our experiments is 3.03 times more
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powerful. Regarding the languages, the proposed algorithm is implemented in Java while
the algorithm proposed by Calvete et al. (2016) is programmed in C++. A comparison of
the two programming languages in terms of efficiency is shown in Hundt (2011). C++ has
a time factor of 1, and 64 bit Java has a time factor of 5.8. The programming language used
for implementing the PSDS algorithm is 5.8 times slower. We considered that the greater
speed of the processor roughly compensates the slowness of the Java language. Because
the ratings are always approximate, we did not use a scaling factor. The times shown in
Table 1 were actually measured during the experiments.

The results corresponding to the set of larger instances are presented in Table 2, and
they are compared to the results achieved by Cosma et al. (2019). The first two columns
display the instance number (I#) and the instance features (p, q, r and w). The next five
columns display the results of the Shrinking Domain Search (SDS) algorithm reported
by Cosma et al. (2019): the best solution Zbest , the best and the average running time for
finding the best solution and the best and the average iteration in which the best solution
appears. The next column displays the CPU used in the experiments. The last six columns
display the results achieved by the PSDS algorithm: the best and the average running times
for obtaining the best solution, the best and the average iteration at which the best solution
appears, the average duration of an iteration avg T/it in seconds and the number of worker
threads wt#. We reported the computational times in seconds.

Two different processors (Intel i5-4590 and Intel Xenon 4114) were used for the experi-
ments shown in Table 2. Because the working frequencies of the 2 processors are different,
for analysing the results we calculated a scaling factor based on the single thread results as
follows: s = average(tXe/t i5), where t i5 and tXe are the average running times required
for finding the best solution in the case of i5 and Xenon processors. Thus, based on the
data in Table 2, s = 0.89. Analysing the data in Table 2, it turns out that in single thread
mode, the PSDS algorithm is on average 67.58% less efficient than the SDS algorithm.
This decrease in efficiency occurs because some of the CPU power used to initiate the
parallel processing, and the Recursive evaluator cannot be as effective as the evaluation
procedure in the SDS algorithm. When 4 worker threads are enabled, then in the case of
the i5 processor, the average running time required for finding the optimal solution de-
creases by an average of 55.09%. When 20 worker threads and the Xenon processor are
used, then the average running time required to find the optimal solution decreases by an
average of 80.06%. The scaling factor s = 0.89 was used to calculate this gain. It should
be noted here that although 20 worker threads have been activated, the Xenon processor
has only 10 physical cores, so the efficiency of the PSDS algorithm cannot be increased
by increasing the number of worker threads above 10.

In Tables 1 and 2 we may remark that, in the case of all the test instances our parallel
heuristic algorithm obtained the same results in all ten runs of computational experiments.
This confirms both the robustness and the quality of our developed innovative method. The
computational execution time decreases as the number of worker threads increases for all
instances tested. Because the algorithm has an important random component, the number
of iterations required until the optimal solution is found differs at each of the runs. For
this reason, the run times are not inversely proportional to the number of threads. To better
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Fig. 13. Evolution of the PSDS algorithm results, when run by Intel i5 processor.

Fig. 14. Evolution of the PSDS algorithm results, when run by Intel Xenon processor.

quantify the gain due to parallelism, the average time of an iteration was calculated for each
run, after which an average was calculated for each test instance. Thus, it can be seen that
for relatively small instances (P1,1–P4,1 and P2,2–P4,4), the gain is negligible because
there is not enough data to be processed. For the other instances, the gains are significant.
The average duration of an iteration roughly halves when doubling the number of worker
threads. In terms of single thread performance, the Xenon processor is weaker than the i5
processor, because of the lower clock frequency. The Xenon processor has 10 cores and
20 logical processors. As expected, our algorithm could not obtain any significant gain
in terms of efficiency when increasing the number of worker threads over the number of
physical cores.

Figures 13 and 14 show a comparison of the time evolution of the solutions found by
the PSDS algorithm according to the number of used worker threads. The Intel Core i5-
4590 CPU at 3.3 GHz was used in the case of Fig. 13 and the Intel Xenon Silver 4114
CPU at 2.2 GHz was used in the case of Fig. 14. Each graph represents the average of
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the best found solution as a function of the running time, when using a certain number of
worker threads. At least ten runs of the second last instance from Table 2 were performed
for each of the graphs. The graphs demonstrate the effectiveness of parallel processing.
The time required to obtain the same result roughly halves when doubling the number of
worker threads.

6. Conclusions

This study suggests an effective and fast constructive parallel heuristic algorithm whose
purpose is to solve the two-stage transportation problem with fixed-charges for opening
the distribution centres, which generates an essential design for the distribution system
from manufacturers to customers via the DCs.

Our parallel solution approach is based on reducing of the solutions search domain to
a subdomain with a reasonable size by considering a perturbation mechanism that per-
mits us to reevaluate abandoned solutions that could conduct to optimal or sub-optimal
solutions. Our approach is designed for parallel environments and takes advantage of the
multi-core processor architectures.

The achieved computational results on two sets of instances from the existing liter-
ature: the first one consisting of 20 medium size benchmark instances and the second
one consisting of 8 large size benchmark instances prove that our suggested innovative
method is remarkably competitive, and surpasses in terms of execution time the other ex-
isting solution approaches meant for providing solutions to the TSTPFC for opening the
DCs, allowing us to solve real-world applications in reasonable computational time.

Here are some significant characteristics of the method we suggest: it is designed for
parallel environments and takes advantage of the new multi-core processor architectures;
it is based on the reduction of the solution search domain to a subdomain with a reasonable
size by considering a perturbation mechanism that permits us to reevaluate abandoned so-
lutions that could conduct to optimal or sub-optimal solutions; it is extremely effective,
offering outstanding solutions to all the instances tested and in all ten runs of the com-
puting experiments, and it can be adapted easily to various supply chain network design
problems, proving its flexibility.
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